The BBC microcomputer
IN science teaching

R.A. Sparkes

The BBC microcomputer
In science teaching

g

The BBC microcomputer
INn science teaching

R. A. Sparkes

Hutchinson

London Melbourne Sydney Auckland Johannesburg

The programs listed in this book hadveen checked carefullin the fands of acompetent
user, all programs listed should performithetendedfunctionsatisfactorily. But no
program can ever be entirely free from error, es@piedexactly from an accurate print
out. Therefore the publisredo notguarantee thprograms and take no responsibility for
any errors in oomissions from tem. Noliability is assumedor anydamage, either
physical or psychological, that ensuesirihe use of any information contained in this
book. Neither is there is any guarantieat theequipment described in this book will not
change, thus renderiradl programs unworkable.

COPYRIGHT 1983 R.A.SPARKES

World rights reserved.

No part of this publiation may be copied, transmitted or reproduicedny way without
prior written approval from the publishers, with the following exception. @rograms in

this book may be entered into a computer, eteztand stored on magnetape or diskor

use by he reader personally but such programs may not subsequently be sold, exchange:
made available to others.

Hutchinson & Co. (Publishers) Ltd
An imprint of the Hutchinson Publishing Group
17-21 Conway Street, London WIP 6JD

Hutchinson Group (Austri) Pty Ltd
3032 Cremorn&treet, Richmond South, Victoria 3121
PO Box 151, Broadway, New South Wales

Hutchinson Group (NZ) Ltd
32-34 View Road, P@ox 40086, Glenfield, Auckland 10

Hutchinson Group (SKPty) Ltd PO Box 337, Bergvlei 2013puth Africa
First published 1984
© R.A.Sparkes 1984

Printed and bound in Great Britain by
Anchor Brendon Ltd, Tiptree, Essex

British Library Cataloguing in Publication Data
Sparkes, R. A.

The BBCmicrocomputer in science teaching

1. Science Computer assisted instruction

2. Science Study and teaching

3. BBC microcomputer

l. Title

507'.8 Q181.A2

ISBN 0 09 154571 4

For Margaret

Acknowledgements

The BBC microcomputer, on which the programs in this book were written, belongs to m
wife and | am grateful for the use of it (not to mention the television set too). Once agair
thank Miss A. Hynes for producing the art work and | also acknowledgeipip®t given

by the publishers, especially Bob Osborne. My ideas changed radically (and often), yet th
were always patient and able to supply advice aedweagement. | am especially grateful

to teachers who attendedservice courses at St Andrew'sliEge and were willing to try

out my ideas and offer further suggestions.

However, none of these can share any blame for the errors and omissi@wthat
this book, and | take full responsibility for them. | look forward to receiving commenmts fr
readers on how this book and the use of the BBC microcomputer in the areas | ha
discussed might be improved.

Once again most thanks are due to my wife, Margaret, for her encouragements &
criticisms and for her patience and understanding. Thelolement of this book and the
ideas in it has been at the expense of both Margaret and the children. | can only hope 1
their sacrifice is found to be worthwhile.

The University of
Stirling.

Contents

© 00 N oo o b~ w NP

Introduction

The new resource

Programming techniques
Computation and mathematical modelling
Microcomputer timing and control
Analogue inerfacing

The 6502 microprocessor
Assembly language programming
Interfacing in machine code
Dedicated systems

Suppliers

Electroniccomponents
Bibliography

Program listings

Index

11
13
27
60
93
153
174
222
263
277
285
288
289
291
391

Listed programs

The programs listed in the Appendix are given below. To allow them to be stocksk
each has also been given a shortened name to fulfihdisle requirements

Program 1 LOGIC GATES (LGCGATE)
Program 1A LOGIC TEST (LGCTEST)
Program 2 LOGIC TUTOR CLGCTUT)

Program 3 LOGIC MAKER (LGCMKR)

Program 4 6502 SIMULATION
(MICSIM)

Program5 STOPCLOCK (STPCLK)

These three programs teach (or tes:
pradically) the principles of Boolean
logic and show the use of a
microcomputer in solving logic
problems. They require a logic boar
connected to the user port, details ¢
which are given in the text.

teaches the instruction set and
mnemonic codes of the 6502
Mmicroprocessor.

measires time intervals with a visual
display of theelapsed time in large
digits

Program 6 REACTION TIMER (REACT) measures reaction times

The next four programs require a digital input connected to bits 0 or 1 of the user port.

Program 7 FAST TIMER FASTTMR)
Program 8 TSA METER (TSA)

Program 9 CONSERVATION OF
MOMENTUM
(CONSMOM)

Program 10 SPEEDTIME PLOTTER
(SPTPLOT)

measures time intervals in ten
microsecondinits.

measures time, speed and
acceleration.

measures speeds of two colliding
trolleys, simultaneously if necessary

plots aspeedtime or distancgime
graph.

The nexttwo programs demonstrate the use of separate gates to control timing.

Program 11 PULSE TIMER (PLSTMR)

Program 12 FREQUENCY METER
(FREQMTR)

measures the length of a square pu

measures pulseequency.

Program 13 PROGRAMMABLE provides alternating voltages with
OSCILLATOR (PROGOSC) changeable waveforms and
frequencies. This program needs ¢
digital to analogue converter
connected to the user port.
Program 14 CAPACITOR DISCHARGE measures the voltage across a lar¢

(CAPDIS) capacitor as it discharges.
Program 15 FAST ADC (FASTADC) takes rapid readings of input
voltagesusing a special converter.
Program 16 DIGITAL MULTIMETER displays voltage, currenpower and
(DIGMULT) resistace.
Program 17 CURRENT-VOLTAGE automatically plots-V
PLOTTER (IVPLOT) characteristics.

Program 18 FOUR-CHANNEL CHART displays four channels of voltage
RECORDER (CHRTREC) input and scrolls horizontally.

The remaining programs do not need interfaces. Their use is described in Chapter 1 anc
they are referred to throughout the text as examples.

Program 19 MECHANICS DRILL (MECHDRL)
Program 20 INTEGRATED SCIENCE TEST (INSCTST)
Program 21 RADIOACTIVE DECAY (RANDECY)
Program 22 SUM OF TWO DICE (SUMDICE)
Program 23 STANDING WAVES (STWAVES)
Program 24 WAVE SUPERPOSITION (WAVESUP)
Program 25 WAVE REFLECTION (WAVREFL)
Program 26 MOLECULAR MOTION (MOLMOT)
Program 27 BROWNIAN MOTION (BRWNMOT)
Program 28 GRAVITY (GRAVITY)
Program 29 RESONANCE (RSNANCE)
Program 30 PROJECTILES (PROJECT)
Program 31 NEWTON (NEWTON)
Program 32 RUTHERFORD (RUTHFRD)
Program 33 MASTERMIND (MSTRMND)
Program 34 ELEMENTS (ELMENTS)

Program 35
Program 36
Program 37

10

PILES
FAST SCREEN TRANSFER
DISASSEMBLER

(PILES)
(YESNO)
(DISASSM)

Introduction

This book is a BBC microcomputer version of my previous bdmkocomputers irscience
Teaching which was written mainly for PET and Applsers. The differencdsetween
these machines and the BBC microcomputer are such that a major rewribedms
necessary. That previous book was also not helpful to those who wished to dbee&lop
own interfaces for using the microcomputer in the lalmoyaso 1 have tried to remedy this.
These chapters assume some knowledge of basic electronics such as that founc
Microelectronics (Hutchinson, 1984). To allow this book to be caiitained, some of the
relevant ideas iMicroelectronicshave been reged here.

To some extent this book is also a sequdllicroelectronics That book concluded that
the most sensible way to introduce students to microelectronics is through programming
microcomputer to control the environment. Accordingly a lame @f this book considers
the use of the BBC microcomputer in analogue and digital measurement and control.

To reduce the overall amount of material, | have tried to exclude things that are describ
in the BBC microcomputer user guide and | assumaé ieaders are well acquainted with
that manual. Throughout that book the author has drawn attention to areas where 'Sp
simply does not permit an adequate explanation...". While not claiming that my explanatio
are adequate, | have attempted to fill the gaps in the user guide to allow BBC
microcomputer owners to get even more out of their machines.

| have concentrated mostly on those applications of the BBC microcomputer that a
particularly relevant to science teachers. | have interpretedetimn pretty widely and there
Is a great deal to interest teachers of engineering science, CDT and mathematics too. v
examples are taken from physics, but the principles they demonstrate apply to all subje
This area is one of very rapid developmant new ways of doing things are constantly
being found. For this reason | have emphasized the principles involved as well as providi
specific examples. Thirtgight programs are listed in the Appendix and these are referrec
to in the text as exampled$ the points being made. In addition many other listings are
included in the text to illustrate particular ideas. Note that these examples (which are al
available on disk for readers who wish to save time) are not-pdoatf', that is they have
not bea tested and protected against pressing the wrong keys or entering the wro
information etc.

My programs are mainly intended to help BBC microcomputer users to write their own
programs. The listings are utilities that can be developed by teachers for their own purpos
There are those who decry this attitude saying that we can't expect teachers to becc
program writers. Unfortunatelyhere is ever enough money in education to pay for the
programs that teachers want, which results in teachers having to write their own (or st
them from someone else). In any case program writing is well within the capabilities of tr
average science teacheké@ilearning to drive a car).

11

| often use the analogy of the motor car in this context. If you occasionally need travel fro
one part of the country to another in reasonable comfort, you may take taxi. This will k
very expensive. Alternativelyou may larn to drive the car yourself. This will take time
initially and is only worthwhile if you expect to do a lot of travellihgkewise, if you only
expect to use the microcomputer on a few rare occasionsyou ilvant pupils to use it
without supervisionthen by all meanspay the extra and get craplhoof programs. But if
you intend to make considerable use of the microcompuighetter to learn programming
for yourself. Then you will be able to take control. You will not be afraid if a program
crashes because you will know how to recover it, you will be able to adapt an unsatisfactc
program to your own specification and you vaidly very much less for programs.

The effort in writing programs is less in getting them to work than in making them
absolutely idiotproof. | appreciate that programs designed for use by novices must hay
this protection built into them. If this is:amportant criterion for you, then you will logiite
happy to pay for someone to create the program for you. But if you have the ability to wri
your own programs and therefore the ability to recover from a crash, you will not be s
happy at having to yeextra for someone else's lack of competence., A@mowill want the
ability to stop programs, list them and alter them to your own requirements and commerc
programs generally prevent this. One wagvercoming this ‘protection’ racket is by writing
your own programs and making them available to others.

In support of this precept my programs are presented so that you will be able to mod
them for your own applications. If they were locked up on-aoqy disk, the bendfthat
they could give would be more limited. | hope that anyone else making use of the:
programs will have the same attitude and will acknowledge authorship trathgonal
way.

12

1 The new resource

'‘Where shall | begin, please your Majesty?'
(Lewis Carroll,Alice's Adventures in Wonderland

One of the unfortunate results of the history of computing is that most people stillitegard
as a branch of mathematics. A common response to the call to learn programming is, *
no good at maths'.his is amistake sincdhere is no longer much relationship between
mathematics and computing. For science teachers, the microcomputer is much more a
piece of educational technology than a super calculating machine. Its use is not confinec
the mathenatics department nor to a computing department. This chapter explores tl
possible applications of the microcomputer in science teaching.

To emphasize the difference between the traditional computer and its modatarpart
the new phrase 'informah technology' has been invented. The modern microcomputer is
mainly concerned with collecting, processing and presenting information. The machir
should therefore appeal instantly to the teacher, whose task it is to disseminate informat
in its widestsense.

There are several aspects of such 'presentation’. Fiadl; tie microcomputer can be
used to display a page of text on its television screen (or VDU). The information could als
include a set of figures or a list of names in columitiernatively,the information could
be presented graphically (i.e. as a diagram or picture or graph) or by an animation or movi
picture. This is where the video screen has an immediate advantage over the blackboar:
OHP , since animation is not avdila on the latter. The microcomputer is thus a textbook,
blackboard, slide projector and film loop all together in one instrument. It is not restricte
to use by individuals, there are several ways in which it can be used with quite large grou
In this ase the display is unlikely to be just text, because this cannot be read from a distat
(although there are ways of displaying a few words at a time in large letters). More likely
IS a picture or an animation that is being presented for all to seeitbbthe added advantage
of interaction. At any stage during a demonstration the students can be asked to suggest
the parameters should be changed. A discussion can then take place as to the likely eff
of this change upon the phenomenon beingstgated. The changes may then be made to
check on the predictions. The general name for this applicatEledgonic blackboard,
where the microcomputer is used by the teacher in front of the whole class.

The microcomputer is also a powerful tool for helping small groups of pupils. Until clas:
sets of microcomputers become available, it is envisaged that this applicatidme will
confined to use by students in station'slaboratey (where there are a number of
workstationsand the students move from one to the other). The microcomputer can thus |
used by small groups for short periods of time within a les&lbernatively, students

13

The BBC microcomputer in science teaching

might use the computer in a library or ressmicentre. | use the generic tecamputer
assisted learningor CAL for this application.

At the other end of this spectrum the microcomputer can be used by oneuativdil
working alone. The program being used might be simple drill and practigtutorial or
the microcomputer might be controlling a complete programme &, &djusting the level
of presentation to the particular abilities of each individual pupil.
Onereason why microcomputers have suddenly become important is becausekbéyema
dream of individualized learning a reality. The difficulties of managingnbikcaids and
the tests etc. that are needed in thez&tled learning situation are overcome ifytlage
presented by the microcomputer. New material can be writteneasctken fothe student
to read and answer questions about. If the student is correct, then sonmeaitdrel can
be presented, but a wrong answer causes the microcomputer to téfeagrtly, either by
presenting the question again or by branching to a remedial teaching loop. It is this abili
to react differently to different situations that makes the microcomputer more powerful the
any other resource we have had before. The interaction between éheandg the
microcomputer creates possibilities for monitoring the teaching process much mo
efficiently than hitherto. The process of instruction can be halted frequently to check th
the student is still following. This is something that every teaaies to do but cannot
achieve in the conventional way for each individual student. Given these facilities, th
microcomputer's role in programmed learning is obvious.

Scientists have an application of microcomputers that is peculiar to their diseigdin
use as a powerful laboratory instrument. We have already reached the stage, where
physics laboratory is complete withoutrecrocomputerand | think that this situatiowill
soon applyin other areas. With suitable transducers and interfdmesdmputer igast
becoming the only equipment in some industrial laboratories. | do not think thatilthis
happen in schools, but they do need to mirror the real world to some extent. The BE
microcomputemay be used to measure almost any physicattgyadesired. At a rough
estimate its use in this way can save up to a thousand pounds worth of alt@mzdinsus,
as well as enabling some hitherto unmeasurable quantities (like acceleration) to
displayed. This is my own favourite use of the micnmputer and much of this book is
devoted to it.

Inside every microcomputer is an incredibly powerful device calleuceoprocessor.
By talking to this device, new horizons can be opened up, especially for animated diagra
and for using the microcopaiter as a laboratory instrument. Because this is adeavfor
most teachers it is presented in Chapter 6 as a microcomputer simulation and tutori
providing a step by step approach to the principles of assembly language programming. T
is intended ot only to explain microprocessor instructions, but also to demonstrate thi
advantages of a computer simulation. Readers who follow this through might care to refle
on how this way of visually presenting a new topic could be transferred to teachihgrin ot
areas, for example, the operation of a nuclear power station or the electrics of a motor ¢
Outside the classroom the microcomputer could take over the role of keeping records, in-
same way that bigger computers have been doing in commerce fer thom As

14

The new resource

might be expected, a great deal of research and development has already been done ir
area, and there is little point in any individual teacher doing it all again. There are sevel
projects under way on the development of administragamrkages for schools and, before
very long, these will become generally available. These will not only include studer
records, timetabling, equipment records, library loans, etc. but also there will be comple
packages for marks processing and assessinrt if no other part of the school is affected
by microcomputers, the school office certainly will be.

Under this heading too | consider the use of a microcomputewasigrocessoor text
editor to be very exciting. Readers of my previous bddicrocomputers in Science
Teachingwill note how parts of it have been used in this book too. It was a simple toatter
call up the text of that book onto the screen, to select the parts required, alter them and s
them once more on disk. There are salvsuchword processoravailable for the BBC
microcomputer and their use more than repays their cost. Teachers who prepare their ¢
worksheets will find that their productivity increases by a factor of three or four at leas
There is an even bigger sagiof time for ondingered typists like me.

Let us now explore some of these ideas in more detail with particular examples
illustrate the principles discussed. Note that these examples (which are listed in t
Appendix and are also available orsldifor readers who wish to save time) are not
thoroughly tested programmes, guaranteed to work with even the most stupid of users. Tl
are examples only of the sort of things that can be done with microcomdeestheless,
they have been tried and thdo work and provided the user has a moderate understandin
of programming, they will produce no problems.

Specific examples

Testing

A common use of microcomputers in schools is testing. This means not so much-the el
of-term examination as theutine questiorandanswer sessions, with which teachers
attempt to reinforce learning. Because time does not permit the conventional method to
used on an individual basis, not all children benefit from it. Indeed, the public nature of tt
responses tén causes pupils to adopt strategies for avoiding an answer. If a child remai
dumb for long enough, most teachers will direct the question elsewhere. The microcompu
can be viewed as a resource for handling questimranswer sessions.

At the smplest level are numerical tests; the microcomputer is perfectly capable of settir
its own arithmetic questions and working out the answers for itself. MECHANICS DRILL
(program 19) illustrates this application. It would be relatively easy to adjust thieenu
range and the difficulty of programs like this to suit the user. For practical purposes th
program needs to be improved in several ways. Where is the power of the microcompu
being used? There are no diagrams or pictures or animations. INTEGRATHNCE
TEST (20) shows what can be done in this area. In this program the number of correct ¢
wrong answers may be counted, so that a final score can be given. It is also useful to n
which questions the student getsong in casehis reveals the soce of the ignorance. A
properly structured test would be written for

15

The BBC microcomputer in science teaching

Ruestion 1

|

—

A bulb gives out light energu

when it is switched on.
It also gives out another kind of

energy. MWhich one 7

Heat energy
Chemical energy
Movement energy
Potential energy
Electrical energy
Press ONE of the letters A,

Plate 1 Integrated science test

Ruestion 3

What kind of energy does the engine

give to the van 7

Sorry, BOB
that is not right.

The engine makes the van move along.

Press SPAHCE to try again.

Plate 2 Remedial response for a wrong answer
16

The new resource

this purpose anyway. A way of doing this can be seen in the score routines
INTEGRATED SCIENCE TEST.

A particularly powerful use of the microcomputer is to allow the student to aslelior
if the offered problem proves too difficult. This could be automatically given aétgrthree
attempts, or it could be available upmressing key H. After the first feguestions, it is a
little wearisome to a student to be given exactly the samk dMee!’ response each time.
No teacher would do this, so why should we accept a lower standard from tr
microcomputer? It is not diffiduto create a whole range of responses in an array, and tc
pick one out at random. Also, thought should be given to more dramatic ways of respondir
Arcade invaders leap about with delight, when they schie@n thedefenders, why can't
the same grapts be used in education? As a suggestion FAESREEN TRANSFER
(program 36) illustrates how this might be done by flashing words onto the screen in rag
succession. This could be incorporated into a test program to indicate whether the stud
has got theight or wrong answer. The most exciting thing about test examples presente
via the microcomputer is that children tend to treat them more as a game. They aim to 'b
the computer' or to ‘do better than last time'.

INTEGRATED SCIENCE TESTillustrates several of the basic principles of using
multiple choice items. This program can be used as the framework for anynoitieie-
choicetest. The items are kept separate from the main program, which hahé®gaard
inputs and scores etc. The questnumbers, clues and correct responses are passed t
procedures as parameters. Scoring is a separate procedure and the final

Ruestion 4

BATTERY
What sort of energy is stored

in a battery 7

Well done, BOB

A battery stores its energy as chemical

energy. This is turned into electrical
energy only if connected into a circuit.

Press SPACE for the next question.

Plate 3 Reinforcement of correct response

17

The BBC microcomputer in science teaching

presentation of the results is also smihtained. Note the way that graphinas/e been
included with each item. These are not essential in all cases, but they do inwrgegeon.

The longer test, from which these items were taken, was the one that made me realize
power of the microcomputer. Some children ran the teshagnl again to see if they could
get full marks. | have never noticed this in a traditional school test. This area is also knov
as drilkandpractice. The microcomputer is programmed to ask the questions and to monit
the responses. To do this there ttabe some way for the user and the microcomputer to
interact with the user, an aspect which is covered in the next chapter.

Simulations

Almost any phenomenon, model or experiment can be imitated or simulated by tt
computer. Somprograms of thisypegive tables of numbers as results, while others give
graphs or animations. GRAVITY (program 28) is an example of the former and th
remaining simulations show the use of graphics.

Computer simulations are most useful where the real experimempassible (negative
gravity?) or very difficult to perform satisfactorily (Millikan's experiment?) rost
accessible (behaviour of an atomic pile?). | do not think that students should carry o
computer simulations of experiments, where the practicperaxent itself could be
performed. A microcomputer could be used to demonstrate, for example, how tattrate
acid against an alkali. One could press keys to allow the acid to drip in andyighth
resolutioncolour graphics, could produce a superkeefof the indicator changing colour.

A meter could be displayed also to indicate the current pH as the acid is added. As
introduction only, this could be very useful for showing the student what steps wer
involved. The only objection to this would ifét replaced the actual experiment.

There is also another danger in simulation experiments, of implying that one is actual
observing nature. Students may come to think that the characters moving arcsordehe
are behaving just like moleculesa real gas. This cannot be true, because werttavetion
of what the molecules of a real gas are actually doing. We canobakevations and draw
conclusions about their behaviour and then produce simuldhiahappear to produce the
same behaviouBut that does not mean that the gas molecules are likgattieles on the
screen. The students are really being encouraged to 'discover' our model of the behaviou
the molecules, which is the reason why the simulation experiments must be integftated w
experiments on the real world, so that our theories about its behaviour can be tested.

Programs 21 to 32 are straightforward simulations of physical events, some of whic
make use of machine code graphics to achieve the necessary spezdcUiagonseeded
to keep 256 particles continuously moving at once are quite beyonchpiadilities of
BASIC. RADIOACTIVE DECAY (21)is a simulation of the decay of radioactpeticles
using the RND function othe BBC microcomputer. A graph of theimber of nuclei
remaining after each time interval is displayed. Each nucleus that decaya ehaiks thus
giving an audible record of the rate of decay at any instantaiirhef the simulation might
be for students to discover about Heél from a ®ries ofruns but a teacher might wish to
use it for a different purpose instead. For example, it

18

The new resource

could be used in comparison with CAPACITOR DISCHARGE (14) and students asked wt
the results are so similar from such different physical starting padilésnatively,it could
be incorporated into a CAL package and the student instructed to make @estwations.

SUM OF TWO DICE (22) is another example of the use of the random number generat
to simulate the shaking of two dice. Thegram adds the dice together and displays the
number produced each time. This program illustrates the graphics capabilities of the BE
microcomputer in displaying a bar chart, while at the same time continuously updating it.

The next programs arensillations designed to get across ideas of the behaviour of waves
STANDING WAVES (23) shows what happens when two waves travelling in opposite
directions interfere to produce standing waves. WAVE SUPERPOSITION (24) is designe
to explain the relationshigsetween speedrequencywavelength and also to demonstrate
the nature of a transverse wave. The amplitude, frequency and relative phase between
waves may be altered and the production of beats between two waves of different frequel
demonstrated. @ksical interference between two waves that only diffphase may also
be shown.

The way that the microcomputer is used to obtain these effects is discussed in detalil
Chapter 7.Basically, they use machine code plotting or scrolling routinesother
application of the same technique is to keep a record of the positions of dots on the scr
and so to move them around under the control of certain laws. In WAVE REFLECTION
(25) this method is used to simulate the behaviour of water waves in @ taol, where
the water waves are themselves imitating the behaviour of light waves as they mee
reflecting barrier.

The next program also uses this directed motion technique. Graphics characters
directed across the screen in straight lines, taegl bounce off the walls simulating the
behaviour of molecules. MOLECULAR MOTION (26) demonstrates what happens to ga
molecules at different temperatures. Here a sound routine is used to demonstrate how
number of collisions with the walls of the ¢damer is dependent both upon the number of
molecules and the temperature of the gas.

Similar routines in digh-resolutionmode enable the behaviour of smoke particles to be
simulated. Pupils look at a Whitley Bay smoke cell throughi@oscope buhave no idea
what they are supposed to see. BROWNIAN MOTION (27) directs their attention to th
essentials so that they may then observe properly. No one is suggesting that the simula
should replace the practical experiment, it is only another weagbe ieacher's armoury.

Computer assisted learning

This area has many names depending upon whether it is emphasizing what the prograr
doing (instruction) or what the student is supposed to be doing (learning). | shalltiggore
fine distinctions mvolved, while still using the general term or CAL, for short. The above
discussion of drilandpractice inevitably leads onto the use of the microcomputer for CAL.
INTEGRATED SCIENCE TEST moves some way towards it, since that program replies t
each respnse with a statement about why the chosen answer is correc

19

The BBC microcomputer in science teaching

or wrong. It is clearly possible to integrate such testing with the teachmeyomaterialn
the same way. The idea is to present the topic and then ask queststabtsh imether
the stident understands. Then, if it becomes cleat tie studentloes notunderstand,
remedial action can be undertaken.

A program that does this is termetlugorial and there are nmg in circulation. Themost
common areselfinstructional tutorials in BASIC pgramming. Most studentparticularly
of those subjects which lend themselves to linear progressimi as mathematics and
computing, find such tutorials useful. They may even priékem totraditional classroom
methods, because of the immediacy of the feedhadkhe facthat theycan learn at their
own pace. Programs like this are ndfidult to write, but they should use the full range of
interaction, reinforcement and, of courseraphics that is \ailable Several author
languages, like PILOT, exist to aid writers of CAtograms, but these can be too restrictive.
They were not developed with microcomputers in mind aagmeed special adaptation to
allow an author to incorpate graphics or other speciathniques.

There is, though, a great deal more to CAL than is implied above. To begin with, there
a clear distinction between teaching andnglliToo many of the seteaching packages that
have been phlished so far, fall into the latter categoWWhat is involved in producing a
good CAL pakage?

There are two broad categories of CAL programs, one of which favours a structure
approach to learning and the other a more ageted approach. The former is based on
programmed learning theory, vahi may be summarized as follows:

1

20

The main objectives of the topics to be learned are specified, in terms of observal
outcomes, as precisely as possible. Not the 'student should understand sometr
about molecular weight', but specifics, like 'givenisa df chemical compounds
and a table of the atomic masses of the elements, the student should toe able
calculate the correspondingiolecular masses for at least sewen of ten of
them'.

The djectives should then be listed hierarchicalorder, in the sense that each
objective earlier in the list should not bependentupon objectivesthat come
later. For example, the followirapjectiveshould be attained before the one stated
above 'givena list of chemical compounds, the student should be able to write ou
the corresponding chemical formulae for at least eight out of ten of them'.

The next step is to arrange thigiectivesinto a learningsequenceTeachersend

to do this automaticallyso they usually find ndlifficulty here. Thedifference

with programmediarningis the attempt tensuramastey of the earlieobjectives
before the later ones are tackled. One ofdifieculties of traditional classroom
teachinghasbeenthe ingstencethat all pupils should progress dhe same rate.
Thus puils who had a particularlearningdifficulty, might never acquire later
objectives not because they were unable to, but because they never quitedhaste
the earlier ones. This is why the objeeswabovearecriterionreferencedStudents

do not just have to get higher marks than average, they actually havaitthe
external stanard setby the oljectives.

The learning sequence is then turned into a series of lessons appiragpriate

The new resource

teaching strategies for each objective. At certain stages throughout the sequen
tests have to be devised to see whether a student is ready to proceed to the r
objective. These diagnostic tests are not stored up for the studentd-tenah
grades, their purpose is to inform the student of his or her mastery of eac
particular objective.

5 Finally the package needs to be tested on a sample of students similar to those v
will ultimately use it. Any or all of the preceding stages may tawe modified
in the light of this experience.

A CAL package is thus not just something that any knowledgeable person can write
down in an evening. Estimates vary as to the length of time needed, but a good average
figure is that 100 hours of deveiment time must be devoted to produce matesikéep
a student occupied for one ho8n,an expert programmer could put a year'stintie
work into a CAL package to keep a class occupied for one week! The failure of
programmed learning in the past mad necessarily been that it doesn't work, but that
there were not enough people around to write the packages. This position has not chanc
with the introduction of microcomputers. It requires a massive effort to produce good
software.

Even then ther are hardware problems to be overcome. With graphics and
animations, a complete teaching package which could adapt its teaching to the individua
needs of its students could not be run with a cassette system for program loading. A disk
system is essentia

Should teachers, therefore, give up the whole idea of CAL? | do not think so, because
can never come unless there is a substantial number of teachers who have experience c
But | think that this is a task for a properly funded team of va;teot individuals.
Unfortunately the ease with which software can be copied is likely to deter commercial
organizations from being interested.

Teachers, or better still a group of teachers, could begin by taking some topic that is
particularly suite to a programmed learning approach; one that is linear in structure, will
fit into the video text method of presentation and where it is easy to write the objectives.
The commonest fault is to attempt too much, so that insufficient time is spent imgnsuri
the mastery of each component part. After writing it, several trial runs with students (and
not just the school' s computer addicts) should be made with the teacher in attendance.
They should be challenged to ‘crash the program' if they can. All prelliscovered by
them should be noted and rectified. Only then should it be placed on the market; it shoul
not be the end users who have to debug the programs!

There is one powerful reason for not spending a great deal of effort at the moment on
CAL (apart from the fact that few schools possess a-fldlssf microcomputers) and that
is the technology is changing fast. Within a few years the video disk wildxto
present the graphics, textstsand other items that currently have to be put into a CAL
program. In future the microcomputer will become much more of a manager, calling up
from the disk the current lesson and also having previous lessons &vtolat@medial
review. With a single videdisk holding the equivalent of several hundred floppy disks of
information, CAL will no longer be a dream.

21

The BBC microcomputer in science teaching

Discovery learning
The other way of using the microcomputer to teach is, in my opinion, much mor@gxcit
than CAL anyway. It is also less likely to bepersedeahen the video disk arrives. iBh
Is its use in opeended investigation. Instead of the computer asking the stisiedént
interrogates the computer. Already several thatse programs exis.g.MICROQUERY)
to allow students to obtain information by typing certain keyword into the computer. Ir
biology this promises to be very useful since a studenthmancary out a search without
being forced into a particular direction by a CAL programasimplerlevel many programs
can be developed that allow the student to determinévehar she would like to know.
Imagine that you wanted to teach a student about the properties of waves using aNuffie
type ripple tank. This could be done thyect instruction, with the teacher pointing out the
essential details. Or it could be left to the student to discovesriheples for himself or
herself. My experience is, however, that pupils cannot seedkies because th&p not
know what to lookat. WAVE REFLECTION (25) strips awaye inessentials and allows
the pupil to concentrate on the features that are important. The student may alter the ar
at which the waves strike the barrier and then see if the same results occur with the r
waves.This approach does not teach directly, but it does point the student along a particu
path. There is no guarantee that learning will take place. But all our experience indicat
that if it does, then the student will not just have

Plate 4 Plane wave reflection from a barrier

22

The new resource

learned the facts, he or she will also have gained an insight that could transfer to ott
properties of waves too.

Most of the simulation programs listed were originally devised for this purpose. The
illustratethe principles of discovery learning quite clearly, but their use is not restricted t«
it. The versatility of the microcomputer ensures that a program can be used for mal
different purposes, only a few minutes of adaptation being required.

Number-crunching

A glance at a list of available software reveals programs on Fourier transforms, least sque
fit, linear circuit analysis, linear programming, numerical methods, integration by Simpson
rule and so on. The microcomputer is being used programmable calculator, with all the
advantages of screen display and editing, error detection and program storage.

There are occasions in teaching when an equation needs to be solved many times
where the result is more important than theusoh itself. One example is typing
experimental data into a microcomputer to obtain an automatic sthiaiglpiot. In this case
the important aspect is the interpretation of the data, not the long process of plotting it c
by hand. GRAVITY (28) givesrether instance, calculating the height of a ball thrown
vertically against gravity. it is the nature of the motion that is being investigated, not th
solution of algebraic equations. Even here though a graph of the results would be even m
meaningful.

Modelling

The equation of motion used in GRAVITY (28) is a mathematical model of the behaviou
of a real stone falling. It is inaccurate because it ignores certain features such as friction,
it does give some insight into the nature of the motieiChapter 3 we shatliscuss ways

of making the model more real by using iterative methods. Physics and chemistry abou
with such models and most students can understand an equation much better if they can
what happens to it when different parametgeschanged. For example RESONANCE (29)
uses a simple technique to plot the resonance curve for an LCR circuit. The student i
observe the effect of altering the capacitance or the resistance of the circuit.

Usually in science we eliminate some loé tvariables in order to make the mathematical
analysis of the phenomenon easier. The microcomputer allows some of these other varial
to be considered. GRAVITY ignores the effects of friction, but this is not too difficult to
incorporate provided theaditional technique of analysis is abandoned in favour of the
iterative method. PROJECTILES (30) uses this technique to provide a more accurate picti
of the motion of real stones being thrown through the air. The iterative method, which
discussed in etail in Chapter 3, is particularly powerful when dealing with central forces
since the motion of satellites is obtained without recourse to integral calculus (a solutic
that Newton would himself have likedh addition, the motion is not confined to tiecular
case, elliptical motion IS no more

23

The BBC microcomputer in science teaching

difficult for the microcomputer than is the imaginary circular case. NEWTON (34) is
mathematical simulation of Newton's thought experiment on why the moon daesn't (
rather does) fall towards the earth. RRERFORD (32) is a variation of this prograthat
replaces the attractive force with a repulsive one to simulate the scattering qfaldias

by gold nuclei.

Games

If the recent fury that has developed over video games does not obsassedhéherenay

be very little distinction between this section and discovery learning. It mpgdsible to
distinguish between educational and recreational games, but | doubt if even that could
maintained. There are reports of slow learners who hagge very greatly helped by 'space
invaders', which, it is claimed, has increased their span of attention at other, more acade
activities. Nevertheless, | do think that some games exercise the intellect more than othe
and it is in these that | amtarested.

A standard favourite amongst beginners to computing is learning to prograr
MASTERMIND (33) or one of its forerunners like BullsndCows, which is easier uses
numbers. This game requires a strategy for getting the answer and | shouldrigeocize
on it by encouraging the user to develop the correct strategy. | have seen evehiloliczr
adopting arial-and-errormethod rather than using the information in previous guesses as
basis for the next. If strategy training could be done,heoeld a

BOB,
Guess a letter.

The word 1s ANTIM-N-

Plate 5 Guessing gameelements

24

The new resource

similar system be possible to teach students a strategy for, say, solving equations? It is
clearly an important potential development.

Guessing games are among the most popular and | have includemlvmyguiz
ELEMENTS (34). | am not sure that | agree with the traditional version of this game
(HANGMAN) on educational grounds. Doesn't learning theory require us to reward succe
rather than punish failure? | have included my version to illustrate thaitat ways of
handling guessed inputs. The game is easily adaptable to other topics nghlamgature
of the words (this one is based upon the elemernis$ is easily done because they are all
contained in data statements at the end. The prodraoses the nextord at random and,
to avoid repetition, contains a routine to pick each word once only. Therefore, if you inter
to adapt it to your own use, you will need to alter the maximum number of words availab
(103 in this case) wherever it appea the program.

My favourite guessing game is called ANIMALS and several versions are available fc
the BBC microcomputer. The computer ‘'learns' the names of different animals and gues
the one that you are thinking about, by asking a serieesshg questions.

Does your animal live in the sea?
Does your animal fly?
Does your animal have horns?

When the computer gets to the end of its branching search without success, it gives up ¢
asks the user to say what the animal is arsligigest a suitable question for distinguishing

it from the previously named animal. Thus the computer 'learns' anew animal. Thaf form
the game usually given needs alteration, since it asks whether the animal in duastion
long ears before even discowey whether it is insect, bird, fish or mammal. As a strategy
for guessing, it is therefore very poor. In the hands of a competent biologist the program
could be invaluable for teaching about classification. In chemistry too, it could be used tc
develop arunderstanding of the periodic table.

Finally, | add another game that is designed solely to promote thinking; PILES (35).
The user is provided with five piles each of four blocks, which may be yellow or blue. The
aim is to build four piles of fivelbcks with the colours in any one pile being the same.
Bricks are moved from the top of one pile to another by hitting the keys 1,2,3,4 or 5 only.
The number of attempts is recorded and revealed to the user as the game progresses. T
program also illusttas the use of sound to reinforce the user's responses. The program
was developed for use in primary schools from a version written by A. Wiltshirat find
very good as a means of encouraging logical thinking in secondary schools too.

The new curriculum

| suppose it is inevitable that teachers first use microcomputers to enhance the curr
curriculum. At the drilandpractice level it is even reinforcing current syllabuses. The
discussion under Discovery learning above, though, does imply thatd¢recomputer will

eventually alter both how and what we teach. The way forward has been shown by Par
and the LOGO language. With this, pupils can explore the world of space, shap

25

The BBC microcomputer in science teaching

size and angle and discover the properties of language at the sanW¥aimekit be possible
in the same way to use a microcomputer as a cofrisxtmethod of developgprocess
skills in science?

It might be possible to invent different worlds with particulaoperties to be
investigatedGamow'sMr Tompkins in Wond&nd describes worlds where the speed of
light is reduced to ten m.p.h. and where Planck 's constant is unity. The purpose of this
not just to provide entertaining science fiction, it is rather to explain the real world by
exploring theproperties of an imaginary one. | should like to see this done with a
microcomputer. At a simple level GRAVITY and some of the simulation programs in
Chapter 3 allow the acceleration due to gravity to be altered from its normal value.of 9.8
Could this e extended to exploring situations where an inverse cube law of force existed
What would be the properties of visible light if our eyes could see into they Xr
microwave regions? This exploratory use of microcomputers cuts across tradition
boundares, so that science, mathematics and art become united.

At the moment few schools possess teletext facilities allowing them access to the v:
databanksof information that exist. When these darive, they will raise important
guestions regarding tlwntent of school syllabuses. In particular we shall have to questior
the current emphasis upon knowledge. The 'Brain of Britain 1983' is the one who c:
remember the most information. What will be the value of this skill when we each hav
access to anyasired information via a home computer terminal? A good memory will be
as outmoded as the ability to extract square roots by pencil and paper (which | was taug
The skills we shall come to prize will be the processes of handling information. 'Brain c
Britain 1999' will be the one who can solve problems.

Despite a generation or more of protagonists for process skills, most school science (c
nearlyall universityphysics) is still heavily content basé&itudents have little chance to
apply their minds to new situations, they are too busy learning about old ones. Given the
opportunitythe microcomputer could be used to put us back on the right track. Wagyis
| call this section "The new curriculumbelieve that the introduction aficrocomputers
will be far more revolutionary than any of us expect.

26

2 Programming technigues

'I'm afraid | don't quite understand,' said Alice.
'It gets easier farther on," Humpty Dumpty replied.

(Lewis Carroll,Through the Looking Glags

This chapter isot an introduction to BASIC programming, | assume you can do that
already. Instead, it attempts to explain some of the things thaB@arBcrocomputeuser
guide omits (because they are of specialist interest). It also looks at wapproling
tutorial programs with the use of graphics, proper display of text and methookecting

and processing responses from the keybo&nahlly, it looks at the whole process
developing an educational program.

Programming

Introduction

The heart (or perhaps it should be brain) of any computer ¢eiitsal processing unit
(CPU). A microcomputer like the BBC microcomputer is no exceptitmCPU is the
Rockwell 6502 microprocessor. Note that this word 'microprocessor' refers only(Blthe
People who use it in place of the word ‘'microcomputer' are fundamentally incorrect. Tt
microprocessor is only one of many chips inside the microotenpeven if it is the one
which does all the work. Figure 2.1 shows a simple picture of the wayniat@omputer
works.

For most purposes thPUT to the microcomputer is via its keyboard. TOeTPUT
IS via the television screen or monitor gomputer jargon this is a VDU or visual display
unit). One purpose of this book is to show you how to make use of other forms of INPUT
and OUTPUT.

The microprocessor is a programmable device. There are two kinds of program tr
control the microprocessor, tmesident program and the&ser program. The same 6502
microprocessor is used in the Apple, BteT,the VIC and the Atom as well as in the BBC
microcomputer. These machines all behave in different ways because they have differt
operating systems which tell the microprocessor how to read the keyboard tovpare
characters on the screen and so forth.

A programmer can write different application programs for the microcompuggetuite.

For example, one program can be written to draw pictures on the video soreter can
search through a list of numbers for the smallest value. This user program will not reme
in the machine after it has been switched off (it is said teoksgile). Every time that the
microcomputer is switched on, a new user program musialbe@in its program memory.
This can, of course, be entered from the keyboard or loaded from disk

27

The BBC microcomputer in science teachin

RAM

6502
microprocessor

\ 4

input

output

\ 4

Figure 2.1 The
microcomputer
as a system

program memory

or cassette tape. To allow the microcomputer to store different programs, the memory |
user programs is alterable. It is calRAM (which stands forandom access memory

To make it easier to produce such programs, they are often writtenlanthege cétd
BASIC. The microprocessor does not understand BASIC, it is a digital device and on
‘understands' digital signals.

Information can only be sent to the microprocessor as a set of HIGH and LOW voltac
levels. The 6502 microprocessor leght lines for thisnformationand it reads all eight
lines at once. From our point of view these eight lines can be considered toirzrya
number. (Note, however, that the microprocessor does not understand binary athamore
it understands BASICWith eight lines there are 256 possible binary numeithe range
0000 0000 to 1111 1111) and any information received by the microproocassobe one
of these numbers. Each digit of this binary number (call&t) és either ad ora 1. To make
it easier for us, we usually convert these binary numbersiedimals using théllowing
values for each bit position:

Binary Decimal

0000 0000 0
0000 0001 1
0000 0010 2
0000 0100 4
0000 1000 8
0001 0000 16
0010 0000 32
0100 0000 64

1000 0000 128
The binary number 0110 0011 is equivalent to

28

Programming techniques

0+64+32+0+0+0+2+1, or99in decimal

The whole set of eight bits is calledbgte. One measure of the power of a computer is
the number of bytes of information that it cgtore. The BBC microcomputer modelkcAn
store about 16 000 bytes and the model B about 32 000. It might seem thatimiyight
bits to a byte is verjimiting if we can only give the microprocessor 256 different pieces of
information.However thereare only seventy keys on a typewriter keyboard, yet how many
different books can be written? It is clearly the sequence of the instructions given to tt
microprocessor that is important.

Machine language

One way of programming the microprocessor woukdtd give it sequences of binary
numbers via eight switches. A separate switch could be used to tell the micropratessor
the next coded instruction was ready. This is obviously very slow and many mistakes mic
be made. (It was the way that the eadynputers were programmed.)

A better way would be to write all the binary numbers into the memory beforehand. Th
microprocessor could then fetch each one in turn and execute it. It would be better still if v
could type in these numbers from the kegttab This is the purpose oh@achine language
monitor. (The word 'monitor' here has no connection with the television monitor.) The BBC
microcomputer does not possess a machine language monitor, since it has an even b
method of entering instruction®lder microcomputers, like the PET and the Apple have
machine language monitors as part of their resident program.

Assembly language

Using a machine language monitor is still slow, laborious and very prone to miSihkes.
BBC microcomputer allows therogrammer to type in instructions for the microprocessor
in a speciahssemblylanguage. For example, the instruction to the microprocessor to retur
from a subroutine is 0110 0000 in binary and RTS in assembly language. The latter
obviously easier tetemember. The BBC microcomputer' s resident program contains at
assemblerwhich takes each line of an assembly language program and turns it into tt
correct binary number for thmicroprocessor to execute. It is a very powerful tool for a
programmer espéaily when the BBC microcomputer is being used for measurement or
control. Assembly language programming is the subject of Chapter 7 of this book.

BASIC

Even assembly language is not simple,hggh-level languages have been developed.
BASIC is one of these. The BASIC instruction to return from a subroutine is RETURN
which is even easier to remember. The microcomputer needs a special program, called
BASIC interpreter, to turn BASIC statements into thieary numbers needed by the
microprocessor. This interpreter also contains error checking, so that errors in programmi
give the message 'mistake’ to the programmer. BASIC is so very eas

(by comparison with the other methods) that only a fanatic wasddassemblianguage
unnecessarily. BASIC programs are used wherever possible throughout thisHoook

29

The BBC microcomputer in science teachin

certain purposes, however, like rapid measurements, assembly language graggam
necessary and Chapter 8 of this book is devoted to this topic.

The resident program

The operating system, the assembler and the BASIC interpreter are all part ofdéet resi
program in the BBG@nicrocomputer. Since this must always be there when the neaishin
switched on, it is nowolatile, and is written in ROM (reaonly memory). ®M camat be
changed, but it has the advantage of not disappearing when the machine isdsditch
Because it has to do so much, thisrquite a lot of it in the BBC microcomputer,en80
000bytes. Some of this is useful to us even mive are not using BASIC. Also, a& shall
see later, it is quite possible to write machine language programs to makBBthe
microcomputer behave in different ways. You could even write your own ofgesgstem
(and make the BBC microcomputer behave like a PET!). The advanftagechine
language is the extra power it gives to the user.

Hexadecimal notation

In BASIC most users are unaware of binary, but when we start to talkriodtogrocessor

it is not possible to avoid it altogether. But what are we to make of binary number like 111
0110 1010 0111 ? Even copying it down might produce errors Wa siserthand system
called hexadecimal coding. Each sefioir bits (halfa byte is called a nybbley represented

by a code according to the following table:

Decimal Binary Hexadecimal
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TMTMOOW>>OO~NOUNAWNEO

e e ol
M rOR IREo©ONOUIAWNREO

The sixteerbit number 1111 1100 0000 0001 is thus written as FCOXhow that it is a
hexadecimal numbeBBC BASIC uses thé& sign, so the number becomes &FCThe
addresses used in the BBC microcomputer have sixteen bits giving a &b &6

30

Programming techniques

different locations (from &0000 to &FFFF). The contents or data in any location are eight
bit bytes with 256 possible different values (frof@@®o &FF). Converting such numbers
to and from decimal is easily accomplished.

PRINT &FCO1 produces the decimal number 64513
PRINT 32768 produces the hexadecimal number 8000

Talking directly to the memory

BASIC allows the user to be unaware of how the microcomputer works. This is usuall
advantageus but occasionally better results areasbéd if the peculiar characteristios

the machine are exploited to the full. Usually this prevents a program from bein
transportable to a different microcomputer, but this is not in itself a sufficient excuse fc
avoiding it. After all, each new micromputer soon has its own specific version of
‘Invaders' written for it and these are totally machine specific. Graphics are a particul
example of the advantages of machine dependent programming, so a little time will |
devoted to looking at BBC graphi®m the microcomputer's viewpoint.

The BBC microcomputer memory contains 65 536 locations each with its own address
The contents of any address (for example 65535) can be seen with the BASIC statemen
PRINT ?65535. The same can be done by writing address in hexadecimal PRINT
?&FFFF

New data can be sent to a particular memory location with the statement:

LET 765535 = 0 (or 765535 = 0, since 'LET" is optional).

In hexadecimal notation this becomes LET ?&FFRF =

With this particula address there will be no effect, &FFFF is in ROM and its contents
cannot be changed like this. Only RAM can be altered in this way. However, if you start
changing RAM indiscriminately, you may upset the operating system of the microcompute
Certain pats of RAM are reserved by the machine for its own use. If you change these tt
BBC microcomputer may get lost inside itself. The screen may ' freeze' or go blank and t
microcomputer may refuse to respond to the keyboard. Even the BREAK key may produ
the situation where everything appears normal, but unexplained error messages appear
listing your program,you find that it is now a 'bad program' or that someone has written
rubbish over parts of it.

None of this causes any permanent damage to the microcomputer. In computer jargor
you have causedaash. The remedy is very simple. Switch off the microcomputer, wait
a few seconds and then switch on again. The proper operating system will be @stiored
all will be well. The only casualty will be that your program has disappeared. This is your
own fault for not obeying the maxim:

ALWAYS SAVE A PROGRAM BEFORE YOU RUN IT

This is particularly sound advice when running machine code programs, when writing
directly to the memory or when external devices are connected to the microcomputer.
One very useful place to write is the screen memory. Certain parts of the meidory ho

31

The BBC microcomputer in science teachin

the information that is displayed on the screen. This RAM can be read and teniidmout
any fear odisaster. It also has the advantage that you can see what hapteniocation.
Let us try this now.
This investigation is designed for@®DE 4, hence type MODE 4 and predSTRIRN.
The screen will go blank. Each dot on the screen is now the visible representaion o
particular bit in the screen memory and can be turned on or off directly. For ex&yppl

LET ?30000=1

A single dot shold appear approximately in the middle of the screen, because bit 0 c
memory locatiorBO000has been turned on. Try

LET ?30000=16

to get a different dot. A good investigation now is to discover the positions of the dot
corresponding to each bit. Try this program:

10 FORi=0TO 255

20 LET 730000 = |

30 FOR t=1TO 1000:NEXT t
40 NEXT i

Line 30is a delay to slow everything down. You should observe that combinations of th
numbers 1, 2, 4, 8, 16, 32, 64 and 128 give different combinations of dots. In particular 2!
switches on all the bits and produces a line.

Now try different addresses,duas

LET ?30001=255 or
LET ?30010=255

To find out where the different memory addresses are located on the screen, run this
program:

10 FOR i =32767 TO 22528 STEP -1
20 LET ?i=255

30 FOR T=1 TO 50:NEXT T

40 NEXT i

You will soon discover onfact: the screen positions are not contiguous. That is, thefend
one line is not followed immediately by the start of the next. Each block of eight contiguoL
bytes is stacked vertically and is next to the following set of eight bytes. Thesialore
difficult to address the screen directly, but still far easier than with the APPLE or most oth
microcomputers.

BBC health warning!

The BBC microcomputer user guide is full of dire warnings about the evil effects of writing
directly to the memory. The is good reason for this. The BBC machine is expandable
numbersecondprocessors and other accessories is to be made availdab&future. The
manufacturers clearly wish to preserve this expandability and

32

Programming techniques

programs that write directly to the meny do not allow this to happen. The user guide
explains quite clearly (to those with the background knowledge) how programs should |
written, using the special OS calls that are provided. Some use of these is iGadpter

7.

| have only one objection to this advice; when written in this way my programs do not
work! Using the OS calls slows down machine code graphics by a factdrunidaed and
makes fast data acquisition impossible. In the future when all the extras foBtbe B
microcomputer are available, | may be able to revise this view (awdteethis book)but
for the moment there is still no other way to do many of the things | describe. Th
consequences of this position are that some programs will need takh#ea in the future.
| regard this as a small price to pay for having access to these programs now. In any ca
do not think that much reriting will be necessary. | believe it will be qufeasible to place
a machine code routing in the memory of the myaiocessor, which can be called by a
program in the second processor, and which can pass parameters back to that program
the proper OS calls. In this way we shall get the best of both worlds.

It is gratifying to know that | am not alone in thiew. The games programs published
by Acornsoft rely heavily upon direct addressing for their sophisticated graphics. ligheirs
the standard that science programs have to compete against for pupils' attention, then
had all better learn machine caqa®gramming!

BBC microcomputer graphics

There are two different ways of producing pictures on the video screen, which al
exemplified by MODE 4 and MODE 7 (the teletext mode). MODE 4 Haglaresolution
screen, meaning that any of its 81 920 dotddaixels) can be individually switched on

or off. We saw above how this can be done. The method is identical to that which will k
used in Chapter 4 to switch LEDs on and off. You can imagine the TV screen as a matrix
pixels each connected to a ditf@t memory location. Each bit at each address controls a
single pixel. Any combination of dots can be produced anywhere on the screen by turni
on the appropriate bits. You could theoretically paint a complete picture by specifying eas
individual dot ba in practice this is time consuming and impracticable.

The normal graphics commands of BBC BASIC are sufficiently fast for mogbses;
indeed they are its most valuable asset for creating pictures and animations. Althou
graphics characters aretravailable, they can be created by the programmer. It is possible
to define any desired shape by specifying which pixels @igim:by-eight matrix should
be on and which should be off. For example, a diamond shape could be defined as follov

VDU23,250,24,60,126,255,255,126,60,24

It is given an identifying number (250 in this example) so that diamonds can be placed ¢
the screen at the point (x,y) with the statement PRINT TAB(x,y);£25R. By varyinghe
x and y values the character can belen® move around the screen at will. @gating two
or three different versions of the same character, for example a man i

33

The BBC microcomputer in science teachin

different walking positions, very lifelike animations are possible. The tqukaiodrawing
pictures with usedefined graptus are well described in tlhiser gude andNTEGRATED
SCIENCE TEST has been specifically designetlustrate thedifferent methods that can
be used. Briefly, these are as follows. Once aplgicscharacter habeen defined (or is
already defined in MOB 7) it can be placed with PRINT CHR$250 or whatever. If the
picture to be drawn is at drgethough, this technique consumes far too much memory
(four bytes pecharactesinceCHRS$is stored as a single token). Some saving can be made
by defining stnng varablesthus, LETA$=CHR$240 or LET fly$ = CHR$250 + CHR$8 +
CHRS240. Fofargepictures it may be easier to store all the picture codes in a set of DATZ
statements, dling up each one in turn and placing it on the screen. This usually involve:
putting dank characters in too wherever they are needed, so there is rarely any saving
memorywith thistechniqueAll these methods are illustrated in INTEGRATED SCIENCE
TEST.

Anothertechniquds to redefine certairarely usedsymbols like 'q ' andt+'. Oncedone,
this allows a picture to be drawn with the actual graphics characters thensedivasit is
easier to see which ones to use and where to put them. Listipgotiam @ a printer
produces the original symbol ratltban the new graphics character #md makest easier
for someone reading éfprogram to type it into his or her machitnspect the listings for
LOGIC TUTOR (3) or 6502 SIMULATION (4) to see how this done in practice. In MODE
7 the following technige is recommended. Eaclumeric code normally represents an
alphanumeric symbol, for example CHR®1ig the*-character. If this is preceded by a
graphics conversion code, say CHR$151, then CHR$170 becomes a particular grapt
character instead. S@a whde picture can & drawn with the ‘normal’ symbol, which
becomes the corresponding graplsharactewhen the program is run. Look at the way
that the V, | and W symbols are made in DIGITAL MULTIMETER (16) to see this
technique in operation.

Another se of thehigh-resolutionscreen is for drawing graphs with the MOMERAW
and PLOT functions. This is described in detail in the next chapter. These commands :
sufficiently fast for most purposes, except for making waves. For thisatessario create
a machine code routine (as described in Chapter 7), but ttesniglicated and not easy to
understand.

Teletext graphics
The other method gbroducing pictures (called chunky graphics) is used in the teletexi
mode.Someof the possibleharacters that can be printed on the screen are shapes, calls
the graphics characters. A picture can be made up from different combinations of the
shges The simplestvay to use these is to treat them like letters in the PRINT statemen
so building pictures rather than words. Chap®& of the user guide describes the process
very well.

Anotherpossibleway of using chunky graphiaharacters is to write them individually
to the screen by number. The teletexesais memory mapgd as follows:

column no.0é é é é 39
Row O address 31744 31783
Row 24 address 32704 32743

34

Programming techniques

which is 1000 positions on a 40 by 25 grid. Note that this is only true immediately after
CLS or MODE 7 has been executed. After the screen has 'scrolled' the memory locatic
are in different places on the screen.

Each position occupies 64 pixelsranged in areightby-eight block. The character
displayed at any position is defined by the contents of a single byte that controls ea
position. This is why the teletext screen needs only an eighth of the memory requiremel
of MODE 4. Since each bytan have any of 256 values, there ought to be 256 different
characters that can be displayed at any one position (one of which is the 'blank’ charac
number 32). In practice some of the codes are repeated for the same character anel som
control cods to change the colour or format of the succeeding characters. Refdrenlte
be made to the user guide for details of what each code does. What the guide does not
Is that these codes can be written directly onto the screen. There is no advatitegm of
BASIC, but in machine code this technique produces very good animations. To try this, ty,

MODE 7
?32000 =42

which, will place the *character somewhere near the middle of the screen. Investigate th
by writing other characters to different parts of the screen.

The teletext method is good for animations, because it is then quite easy to remove th
-charater by overprinting it with a blank (232000 = 32) and to place it in the adjacen
position (732001 = 42). Carried out at speed, this gives the appearance of continuous mo
and is of great use for simulating objects in motion. Unfortunately, if themmare than
just a few objects, BASIC cannot perform this process fast enough and machine languz
becomes essential.

Motion

To make the *character move across the top of the screen, it must be written into eac
successive memory location in turn, ahdrt erased again after a short delay to give it time
to be observed. The-tharacter has the value 42 and the blank has the value 32.

5 MODE 7
10 FOR X =31744TO 3178
20 ?X=42:REM PLACE * ON SCREEN
30 FORT =1 TO 100:NEXT:REM DELAY
40 7?X=32:REM ERASE *
50 NEXT X

To move the character vertically 40 must be added to or subtracted from the current positi

5 MODE 7
10 FOR X =31744 TO 32704 STEP 40
20 ?X=42:REM PLACE * ON SCREEN
30 FORT =TO 100:NEXT:REM DELAY
40 ?X=32:REM ERASE *

35

The BBC microcomputer in science teachin

50
60
70
80
90
100

NEXT X

FOR X =32704 TO 31744 STEP -40
?X=42:REM PLACE * ON SCREEN
FORT =1 TO 100:NEXT:REM DELAY
?X=32:REM ERASE *

NEXT X

General motion is achied with the following numbers.

Value Direction

1
41
40
39

-1
-41
-40
-39

5
10
20
30
40
50
60
70
80
90

100

More usuallyit is smallpictures that are moved around the screen in this way (for exampls
thepiston in the cylinder of a motor car). Low resolution pictures can be moved about in tt
same way as defined characters onhilg&x-resolutionscreen. The direct method of screen
addressingan also be used, although it has no advantages in BASIGedimque isto

use two tables, one to hold the character and the other to hold the relative Place for t
character. This will be illustrated with a moving engine. This program also shows how tf
teletext sceenachieves its graphics characters with a 6€tH#R$(151) characters down the
left of the screen. The real advantage of this technique will become apparent later.

Engine
10
20
30
40

36

east
south-east
south
south-west
west
north-west
north
north-east

MODE 7

FOR X =31744 TO 32728 STEP 41
?X=42:REM PLACE * ON SCREEN
FORT =1 TO 100:NEXT:REM DELAY
?X=32:REM ERASE *

NEXT X

FOR X =32728 TO 31744 STEP -41
?X=42:REM PLACE* ON SCREEN
FORT =1 TO 100:NEXT:REM DELAY
?X=32:REM ERASE *

NEXT X

MODEY

REM SET UP SCREEN FOR GRAPHICS
CLS

FOR i=31744 TO 32703 STEP 40

Programming techniques

50 ?i=151
60 NEXT i
90 REM MOVE ENGINE
100 FOR offset = &7CC9 TO &7CE9
110 RESTORE
120 FORi=1TO 35
130 READ position
150 READ character
160 ?(position + offset) = character
170 NEXT i
180 NEXT offset
190 END
200 DATA 0,32,1,252,2,252,3,32,4,32,5,32,6,32
210 DATA 40,32,41,234,42,255,43,240,44,240,45,240,46,244
220 DATA 80,32,81,234,82,255,83,255,84,255,85,255,86,255
230 DATA 120,32,121,250,122,255,123,255,124,255,125,255,126,255
240 DATA 160,32,161,32,162,79,163,32,164,32,165,79,166,32

The position of each character is specified relative to its top left corner. This top left corn
IS moved across the screen with the variable offset. To avoid leaving parts of the engi
behind, its trailng edge is filled with blank characters (32). The picture can be moved ir
any direction, for example upwards, by addid@ to the next offset eatime, although in

this case it might be necessary to surround the whole picture with blanks. The reestt is m
unsatisfactory in BASIC. The point of doing it at all is to demonstrate the principle. Whel
we return to do the same thing in machine code, we shall obtain a much more pleasing res

Interaction

The most usual means of communication from the ro@rguter to the user is the display.
In this there are numerous pitfalls for those writing their own programs, which will now be
described.

The display of text
The statement PRINT 'PARIS IS THE CAPITAL OF FRAN@&probably the most easily
understood of all BASIC statements. The sentence is just written out on the video screer
the microcomputer. It is so easy to use, that some programmers fail to give any attentior
the result.

The use of capitals (uppease) makes for difficult reading at the best of times, and if
the programmer does not use doepacing either, it is doubly difficult to read. With
lower case letters and the use of dotgdgacing the result is more pleasant. The amount of
text preseted also needs to be adjusted to the level of the user: secondary pupils
particularly merely scan the text without reading it properly. Later they complain that they
‘don't know what to do!".

37

The BBC microcomputer in science teachin

VERTICAL HEIGHT

Acceleration Speed
=1y,
=16,
=10,
=10
=10

Plate 6 Motion against gravity showing tabulation

An automatidinefeedoccurs when there are forty characters in a line. The-fosty
character appears on the next line and the crime of-an@amnd is committed. There is
no excuse for this, it simply requires the programmer to read what the prognésnapth
a critical eye and not accept inferior presentation. If the same things were done on par
they would be glaringly obvious. BBC BASIC has the ability to display figures in neat
columns, so thers no excuse for not doing so (Plate 6). Thisasaidibed in the usguide.

In the days oteletypewriter output there was no way to prevent text from scrolling up
from the bottom. Pai$entences remained at the top of the screen, and these were mc
distracting. There is no need to continue with this practice today. The programms
should clear the screen before each new page of text.|@8désotext should be displayed at
one time, in which case the student will need to indicate when a new page isftb be
displayed.Thisis describedater.

Input from the keyboard

Somepublishedprograms limit interaction to 'press SPACE' at the foot of each page of
video text. This is a misuse of a powerful machine, especially if the opportunity toaeturn
previous page is denied. The microcomputer is more than an electronitupagand its
facility for interaction should be fully utilized. At the highest level an interactive

progam could determine the level of understanding attained by its useasljaistithe

38

Programming techniques

presentation to suit. At the lower levels the interaction will probably be confined tc
responding to questions.

There are several ways of managing the response situation. The simplest ifNfThe
statement. This needs cardfandlirg sincethe pupil can easily enter the wrong information
by pressing the wrong keys or sit in vain while the microcomputer waiteddRETURN
key to be pressed. Full instructions need to be given, especially to firsidere The first
INPUT in a progam might be to get the student to enter his or her own name, so that tt
microcomputer can appear more personal. Some instructions such as the following neec
be displayed, not only on the screen itself, but also oraatympanying documentation.

Hello!

| want to learn your name.

Please type your first name on the keyboard.

If you make a mistake, you can rub it out with the DELETE key.
This key is near the bottom-right corner of the keyboard.

When you have typed in your name correctly, press the key marked
RETURN.
Then | will know you have finished.

Begin typing now

Note the doublespacing between paragraphs, the use of lower case text and the use
capitals for emphasis. Also as mentioned above, the text should be preceded(bgr@nS
clear).

The BASIC program to PRINT this text would be followed by the INPUT statement.
Since a string response is required, this must be INPSTTAe student, who presses
RETURN before entering anything, returns the empty string, which could be detected if
Is important. (Often experienced users will be too impatient to type their name and wis
merelyto press RETURN anyway; they should be allowed to do so.)

A$=GET$ retrieves a single key entry, which may be any character on the keyboard.
Whole words can be entered with Gk Dne letter at a time, and the word can be
assembled from these letters. This avoids the problems of having to use the RETURN ke
but the possibility of erasing an error is then removed also. This facility can be restored
with yet more lines of programming and MASTERMIND illustrates the techrfmue
doing this.

A$=GETS causes the program to halt until something on the keyboard is presse
Keyboard entries are, however, stored in a buffer and there may be entriesbiaffens
from previous keypresses. Novice users particularly, press keydinely and theBBC
microcomputethen uses its autepeat facility. Spurious responses get storecpandiice
peculiar results later. There are ways round this problem. First, the buffee cdeared
immediately before the $=GET$ statement with *FX5,1. Secondly, the avi@peat
facility can be turned off completely with *F4,Q It is recommended that both of these
techniques be adopted$AGETS is most useful for accepting single letter inputs, such as
A, B, C or D in response toraultiple-choiceitem, or the inevitable 'press SPACE' at the
end of a page.

39

The BBC microcomputer in science teachin
L$ = INKEY$(800)

produces a delay of several seconds and may be used to pause to give a usexdiltiesto
text. While this is adequate for single words or sentences, readers diffarlsadlyin their
speed that no common time can be fixed for them all. The alternativegeeheguestthe
student to 'Hit a key' or better to 'Press SPACE to continbhe'SPACE can be detected
with the BASIC statements

100 IF INKEY$(0)<>" " THEN 100
or
100 REPEAT UNTIL GET$=""

This has the advantage that pressing a different key has no effect. Consecutivé fextjes o
can be turned by alternating between 'Press 3Afd 'Press RETURNhis latter being
detected by

100 REPEAT UNTIL GET$=CHR$(13)

Thereis then no danger that a hdisted pupil will rest a finger on a key for so long that
pages flash on and dffiescreen in rapid succession. A consciaaBon is reqired every
time.

A common use oA$=GETS$ is to select from a menu. The user is offered several
alternatives and invited to choose one. A typical menu in a tutorial might look like this

You are correct, the shutter speed must be as fast as possible, i.e.
1/1000th of a second.

What would you like to do now?

1 Try another problem on shutter speeds?
2 Try a problem on apertures?

3 Go on to study film speeds?

4 Finish the lesson for now?

Press one of these numbers to make your choice.
2540 LET A$=GET$

waits fora keypress and returns with its key 'face value'. The desired response can then
inspected with

2550 IF A$="1" THEN 5000:REM Next problem
2560 IF A$="2" THEN 6000:REM New problem set
2570 IF A$="3" THEN 8000:REM Next lesson
2580 IF A$="4" THEN 9000:REM Finish

2590 GOTO 2540:REM Incorrect response

If the usehasaccidenly pressed SHIFT-LOCK, then pressing keys 1 to 4 apparently has
no effect, since A$ will return with the shifted character. It may be necessary then to
convert the characters to ASClhde (X=ASC(A$)) or use X=GET and manipulate the
result.

40

Programming techniques
2545 IF ASC(A$)<48 THEN A$=CHR$(ASC(A$)+16)

converts the shifted symbols of the top row to their corresponding numeric character.
Similar problems occur if the CARISOCK or SHIFT-LOCK conditions are (or are
not) in operation and the program expects an alphabetic key:

100 REPEAT
110 A$=GET$
120 UNTIL INSTR("ABCD abcd",A$)<>0

Possible upper case entries can also be converteder case with
IF ASC(A$)<97 THEN A$=CHR$(ASC(A$)+32)

It may sometimes be necessary to impose a time limit on a pupil. If the pupil has failed
answer within say thirty seconds, the program could jump to a remedial loof
A$=INKEY$(n) will wait for n centiseconds (maximum 327 seconds) before continuing
automatically if no key is pressed.

Other techniques

Novices take ages to find a particular key on the keyboard. One way to overcome this is
use alternative methods of INPUT. These also rentlo@aneed for disabling keys and all
the other problems encountered above. The best of these devices is a light pen which ca
pointed at a particular part of the screen. These are available commercially and plug direc
into the analogue port at the kaaf the microcomputer.

For some responses switches can be connected to the user port and detected with fi
simple routines. One scheme is described in Chapter 4 to allow up to eight pupils to respc
independently. The first one to respond is rded and the others are locked out after the
first response. This is ideal for competitive quiz programs.

An alternative for the future is the soft or concept keyboard, which plugs into the
microcomputer, and where the number and function of the &aysbe changed by the
program itself. The keys can thus become letters, numbers, pictures or special symbc
characters as in BLISS. This is a far better way of communication with younger pupil:
avoiding all the above pitfalls and giving more freedortheoprogrammer. The discussion
of how to connect one of these to the BBC microcomputer is taken up in Chapter 4.

Crash protection
Ideally it should be impossible for a novice user to crash a program by indiscriminatel
pressing the wrong keys. This can be such an effort (as the above discussion shows) the
may take too much time. The best way is to put key entry checks intoasateep
PROCEDURE, which already contains the protection (see INTEGRATED SCIENCE
TEST). This can then be called whenever it is needed. Even then a determined pupil car
crash by pressing the ESCAPE or BREAK keys.

ESCAPE is relatively easy to handle. Begach program with

ON ERROR GOTO 9000 (or wherever)

41

The BBC microcomputer in science teachin

and at line 9000 put a routine to deal with the situation of the pupil havinggrines
ESCAPE key.

BREAK is dealt with by redefining that key so that the program restarts {@g&yefthe
user guide). This is far from ideal, since Hrums the program from the stanotfrom the
place where the BREAK key was pressed. Neither of teaggestionsthus solves the
problem by returning the pupil to his last exit point. My solution iseichpupls to be
careful and not to press all the keys in sight. The display shoulddaietxactly which keys
to press and if they press others, then they can jal/fmmd outhow to recover from the
crash themselvesA¢tually, it is quite amazing how quicklywen young children can learn
to use the machines properly; there is such a thilngesprotection.)

Processing the response

Once the response tife studenthas been collected, the microcomputer has to praicess

If the entryis thestudent's name, presumably this is so that a personal touch carelde add
to requests:

‘Now, Bob,
can you tell me

This is achieved by printing out the string variaiblat was used for the gihal input That
variable name must not be used again, or the microcomputerteillclaange thetudent's
name to PHOTOSYNTHESIS or whatever. Note also the need to leave a long space af
the student's name. If this is not dpyeu will find the computer responding to a long name
with:

‘Now, Stephanovanovitci, can you te
lmeé . 0

Wrap-around is unforgiveable in video text.

The response PHOTOSYNTHESIS might be the answer to a question see by ti
microcomputer.Once this response has been collected, the program has to decide
PHOTOSYNTHESISs the correct answer. A sequential list of questions can retain th
correct response in a DATA statement, which is then collected by REAEsdbnsebave
to beaccessedtrandom, then a betterayis to keep the correcesponses a stringarray,
thus:

100 R$(1)="PHOTOSYNTHESIS"

110 R$(2)="RESPIRATION"
120R$(3) =eet c.

500 PRINT "What name is given to é .

510 INPUTAS$
520 IFA$ = R$(1) THEN PRINT "CORRECT"
530 etc.

The unfortunate thing about checking responses by the method shown in lizae®20
is that misspelled inputs or evénings like PHOTGSYNTHESIS are considered

42

Programming techniques

incorrect. The program could contain a selectionasisgble responses and check each one
separately, but the range of possible correct responses could be enormous.

One solution is to use the LE&TRIGHT$ and MID$ functions to check that theajority
of a word is correct, but every word tends to beldifferently and about the best that can
be achieved is to disregard leading spaces and hyphens. The problem mentioned ab:
about the use afpper and lowercaseletters, can be overcome by thee of the ASC and
CHRS$ functions.

One desirable feate of tutorials is to give clues if the student has no idea. lcdke
above after the first wrong response, the microcomputer could prompt with

CLUE: PHOTO---------

LEFT$(word$(Q),5) is used to extract the initial letters, and this can be printed out on top
of
FOR | =1 TO LEN(word$(1)):PRINT"-";:NEXT |

ELEMENTS (34) demonstrates the way that this is achieved in practice.

Techniques like these are learned by studying teegisde, the programs of othensd
books specifically about BASIC and the BBC microcomputdrst?of suchbooks is given
in the Appendix.

Writing a program

This topic is a subject in its own right and at least one book has been eat#ivetged to it.
Thus, it is not possible to do more than indicate the overall principles. The whole proce:
can be subdivided into three parts:

Design
Coding
Debugging

Of these the most important, and the one most often neglected, is thestleagegThere is
always a great urge to begin coding, that is to write BASIC statements into th
microcomputer. This should be resisted as long as possible, because the faster one be
coding, the poorer the program will be.

An example of this is MISIM (4) which was never planned at all. This program began
on the PET as a diagram to illustrate the various registers in the 6502 microprocessor.
While it was being written, the thought occurred to me that it would be useful to load
different numbers ito the registers and see their effect. First the mnemonic instructions
LDA, LDX and LDY were added and then STA, STX and STY. Then it was decided to
include the main 8® instructions too and illustrate the different addressing modes. At
this point it was discovered that some addressing modes could not be implemented; the
program was beginning to creak.

After a great deal o#ffort, it finally worked to my satisfaction, but it was bedam
difficult to deal with new problems as they arose during tlauation. At one staga

43

The BBC microcomputer in science teachin

RENUMBER was implemented to create more space and this destroyackstige of
sensible numbering that had originally been incorporated. When the prmognaas
transferredo the BBC microcomputer, it was merely translated into B2GIC, although
some of the advantages of the latter were utilized. Further patchegecmfew more
problems andit this point | decided to make the simulation a dynaonie.As well as just
illustrating the instructions, | made it execute sequences of instrsittio. This addition
showed serious faults in the original idea and adsblutionswere introducedo solve each
problem as it arose. | finally abandoned the whole prajedtdecidedo leave thg@rogram
as it now is. It is full of errors, it is impossible even foe tointerpret, it is probably
incapable of improvement, but it works after a fashion@wnesa satisfactory introduction
to machine code programming.

Thepurposeof this tale is to warn of what can happen if the planning stage is neblecte
What | have just described is calledttom-up programming - starting from a simple idea
and adding refinements to it. A computer scientist would argue that | srendddsigned
the wholeprogram from the start and anticipated the problems that migatHnis is called
top-down programming and is what the rest of this chapteal®out. | do however, want
to give a note of caution.

It often happens that program® aleveloped by chance. For example, my firsfl)PE
programs on wave motion were the result of an accident. | had spent some time trying to
make waves that moved across the screen, but BASIC was much too slow. Then worki
on a routine to paint a pictuom the screen in machine code, | ased that thend of the
screen was in position 40 (in fact it runs from 0 to 39). The routine paint@icthee quite
happily but then scrolled it across the screen. | realized that a sine curve would becom
traveling wave and the solution to one of my problems heehbovercome. | was able to
use this accidental discovery to write several wave programs for the PET.

The point of this story is that planning by itself does not always provide a solltiere
nealy always has to be interaction between experimentation and pragegiopment. In
the commercial world program designers must specify accuratedythey want to do.
Poorly constructedorograms cost money, smp-down programming iS aneconomic
necessityThe educational world is not quite the same as this. Teachers are almost certail
writing programsin their own time, which is never costelso, they do not have all the
necessary programmingkills at their fingertips beforehand. For thesmict top-down
programming is not possible until they become more expert.

| shall therefore describe a technique that can be used bgxpents. To aid @
discussion we shalbok closelyat one particulaprogram RESONANCE INA TUBE
which islistedat the end of this chapter. This is not a program merely developldastoate
the principlesijt is a genuine onéelhus,it gives a better insight into the whgbeocess of
program development than any artificial example can provide. It also utdizssted
graphicsand sound and illustrates most of the techniques so far discusbkexldhapter.

| wanted a program to simulate the resonance tube experiment. In this expetumerg a
fork is held overthe mouth ofa long tube, whose other end is closed by a moyabten.

As thepiston ismoved,so the tube reaches its optimum length for the frequency

44

Programming techniques

of the tuning fork and a loud sound results. This is called resonance and the length of |
tube is a quarter ai wavelength at this point. From a knowledge of this length and the
frequency of the tuning fork it is then possible to determine the speed of sound in the tul
The experiment itself is difficult tperform sincestudents do not know what to look for.
The purpose of the simulation is to isolate the principles from the masesftitting details.
Once students know what they are expected to do, they can cating oeil experiment for
themselves. | cannot emphasize too strongly that this simulatemever intended to
replace the actual experiment, although | realize that some misuse it in that way. It will be
sad day if computers take over from laboratory wotkey simulate mathematics, not
science.

Design

There must be a diagram of a tuel a tuning fork with a movable piston that camiosed

in and out with the left and right cursor movement keys. These dbeshieysto use since
their arrow heads point in the correct directions. As the piston is moved, so the loudness
the soundcchanges, becoming a maximum at resonance. Then the useresdhge length

of the tube and plots the graph. This specification immediately threw up problems.

Should the user measure the length of the tube with a redt @desidering the different
sizes of screen that might be encountered, this idea might be difficult to implement. Tt
values obtained would be unlike the real situation, sBifEnm tube lengths are used in
practice. The program would need to use fairlyhHigquencies to fit the limited width of
some screens and the frequencies chosen would be different in each case too. It was dec
therefore, to use an artificial ruler measuring up to 330 mm, which allows tuning forks i
the range 256 Hz to 512 Hz te Belected.

Should it be possible to obtain the higher harmonics? This was considered to be one
the distracting details that | was trying to eliminate. By restricting the tube length an
choosing the frequency range as | did above, these harnaonnes exist.

Should the user plot real values or those chosen by the computer? The latter would mz
graphplotting much easier but might hide the purpose of the simuldtlorew how to do
the graph anyway so | was not afraid of this. | decidealtav pupils to enter their own
results, which could be wrong (within limits), but which could be altéatt if necessary.
One of the purposes of the simulation was the development of good experimental techniq
| therefore decided to plot the graphsasn as two readings had been taken. The plotting of
subsequent points then shows if any of them are in érabuays tell students to 'plot the
graph as you go along'; hopefully this simulatemtouragethe habit.

Should longitudinal waves be®lhin moving down the tube? They would indicate clearly
how resonance is produced. However, this is not the purpose of the experiment and
inclusion in the simulation would be a distraction. It is the same trap that teachers are alwz
falling into, trying to make experimental work verify theory instead of existing in its own
right.

Now that we have decided what we want to achieve, it is time to tsfgadown
programming. We do not go straight to the computer and start programming, that state

45

The BBC microcomputer in science teachin

is sill some way off. We begin by writing the program on papgdaudo ode-
meaningful statements that can later be turned into BASIC statememdged anyther
language). For this code we recognize three distinct processes:

Seqguence
Repetition
Choice

A seguence is a set wistructions that follow one another in strict order. THRAE
LIGHTS in Chapter 4 is a good example of this.

Turn on red traffic light

Long delay

Turn on red and amber traffic lights
Short delay

Turn on green traffic light

Long delay

Turn on amber traffic light

Short delay

Choiceis achieved by.. THEN..ELSE and readers will be very familiar with it (after all it
Is standard scientific jargon). The sequence branches into two or more separate rot
depending upon the conditions encountered initially.

Repetition is similarly obvious, butere there are different kinds. The traffic lights
sequence may need to be repeated forever. This can be achieved by a GOTO lmack tc
beginning. A pelican crossing has the green traffic light on until a pedestrian reqeests t
traffic to stop. This candachieved by a WHILE. .DO structure:

WHILE the pedestrian is not requesting traffic to stop,
DO keep the green traffic light on.

A pedestrian crossing at crossroads may be incorporated into the traffic lights sequer
itself, but this is wastefisince it makes traffic wait when there are no pedestrians. It is bette
if thepedestrian request switch interrupts the nosegilience to make it behave differently.
The normal sequence is repeated until an event occurs to dhaigeREPEAT..UNTIL
structure. Finally, it may be necessary to repeat some sequence a given number of tin
This uses the weknown FOR.. NEXT structure

In none oftheseprocesses are we concerned with BASkxactly how we implement
this pseudo code is irrelevant. BBASIC recognizes all of #m except "WHILEondition
DO loop', which is carried out by 'IF condition THEN GOTO start of Id8philarly, Apple
BASIC does not have REPEAT..UNTIL but all pseudo codes camipéementedn some
wayon all machines. For example FOR..NEXT can be carriedyantrementing a counter
(IF count = maxcount THEN finish ELSEarry on couting). Forour purposesat the
moment,t is the process that is important, not how laier turned into BASIC.

One way of designing a program (long taught in schools) is flowcharting. This has
sequaces (rectangular boxes), choices (diamond boxes) and repetitions (returning lines

46

Programming techniques

and junction boxes). To introduce the ideas of design flowcharting is a good methibd, bu
IS not popular with serious programmers. Programs of any size spill over onto several she
of paper and are difficult to followAlso, it is very difficult to plan a flowchart until all its
limbs are known. This results in the same chart being ssigleedrawn to accommodate
extra requirements. Most programmers draw the flowchart after the program has be
written!

Top-downprogramming allows the program to be developed from the general plan rigf
down to the level of coding in BASIC by a preseknown astepwise refinement This
cuts out a great deal of the redrawing (or rewriting in this case) of those elements that
already known. It also allows each step to be checked for error before it is turned into co
In this way any bugs in theéntal program will only require simple patches, not wholesale
rewriting. Now that we have an overall strategy for our program, let us begin this process

RESONANCE IN A TUBE

A Initialize mode, variables etc.

B Give instructions

C Draw tuning fork, tube, piston and ruler
D REPEAT

D1 Select tuning fork frequency

D2 REPEAT Compute sound intensity

D3 REPEAT Make sound

D4 UNTIL piston is moved

D5 UNTIL tube length has been measured
D6 Process the measured length

UNTIL ESC key is pressed.

The structure of the program is becoming obvious. A, B and C are sequential and ¢
executed once each time the program is run. D is executed repetitively until the pgogram
halted by pressing the ESC key. This is notyvelegant and for younger users would be
wrong but, considering our target users, this is acceptable. Within this REPEAT..UNTI
loop are other nested loops, each of which is terminated by a different condition. Thus t
sound is maintained until a cursakis pressed to move the piston. The sound is switched
off when the new length has been measured. Then the-glaiting routine (D6) runs
sequentially after which control returns td O'o make the pattern more obvious each of
the nested loops is indexat to show where liegins and ends.

The question raised now is where to go next. As a rule one should stick to the order
execution unless there are some processes that are not yet clearly défasedshoultbe
tackled first, because they may throw up problems that cause the original debign to
modified The earlier such modification takes place, the better. In ounvgabaveto ask
about D4, D5 and D6.

D4 tests whether the user wants to move the pigtemstated above this is to be done
with the left and right cursor movement keys. It should be possible to detect these with
INKEY$(0). But alternatively, the user might want to enter the measured length of the

47

The BBC microcomputer in science teachin

thetube (D5) and this requires INPUT. Ttweo can be combined by using INKEY$(0) for
both types of information. The RETURN key could be used to confirm the entere
measuremenfr the DEL key could be used to delete some or all of it. So D4 and D5 ar:
further refined thus:

Note which key pressed
D4 IF key is cursor shift left
THEN move piston left
IF key is cursor shift right
THEN move piston right
D5 IF key is numeric
THEN keep it as a number
IF key is DEL
THEN remove last numeral entered
IF key is RETURN
D6 THEN process the result

We must still ask what is meant by 'keep it as a number'. If the user wishes to enter |
number 345say, the first numeral entered will be 3. This needs to be pramdede screen
to let the user see it. Then the user presses 4, so the first numeral must be multiplied by
and added to the secorfénally, the numeral 5 is added and the process is repeated. W
want to stop the user entering numbers greater than32ayand numbers equal tpsihce
these are clearly wrong. Shall we tell the user they are wrong or just ignoreBeanmiy
in mind our target users, | adopted the latter strategy. When RETURN is pressed the num
entered is accepted as the measwergth and D6 begins. If DEL is pressed the last numeral
entered is deleted by removing the last digit from the assembled nutabbkrofthe simple
choices in D4/5 is mutually exclusive, since a single key can onbheeharacter. If this
had not been thcase, a series of nested IF.. THEN..ELSE processes would have been us
Simple IF..THEN processes are always to be preferred for readability. This produces t
further refinement:

Set measurement to zero
Note which key pressed

D5 IF key is numeric
THEN measurement = 10*measurement + numeral
IF key is DEL
THEN measurement = measurement DIV 10
PRINT measurement

The whole structure can be searched and refined further until it all ends up as simple
statements, each of which can be converted into code without problems. If there are
that not known, (and neexperts will find plenty of these) then ttap-downtechnque
has to be modified as | shall show shortly.

Before coding begins it is necessary to check that all the likely problems have been
foreseen and allowed for. The programmer should make a dry run through the program
with imaginary data to see what Ipgms (as we did with 345 above). In this dry run we

48

Programming techniques

should notice that 345 should not be acceptable since it exceeds 329. However, if a usel
enters 34 we cannot tell if another numeral is intended to folowye have to accept this.
We can, however, ject any further numerals if the existing value of measurement
exceeds 32. Dry runs of this type usually lead to modifications in the program.

The user knows when too large a number has been entered, because it is printed on
screen. Do we want toipt the initial value of zero? Clearly this is a distraction and, in any
case, we do not accept zero as a measure®enmless the measurement is zero, we print
it. If the user has entered 34 and meant to enter 240, he or she delete back to zerb and
again. How will the program know whether the user has deleted back to zero or has not
started? If the latter, the program prints nothing, if the former, the program must delete wt
was there previously. So 'nothing' will have to be a blank toalal®y previously printed
value. Likewise, when a measurement is reduced from three digits to two, or two digits
one, the previous end digit must be erased. This can be done by following the print
'measurement’ with a blank character. What do we tthe ifiser presses nommeric keys?
| decided to ignore these, without telling the user wirggrams for younger users might
include such messages. There are also other pitfalls, like pressing RETURN or DEL wh
there is no measurement. \&fall have taallow for all these.

Such a dry run through the program reveals several problems to be overcome. Hav
discovered them, we build their solutions into the program at the planning stage.

Set measurement to zero
Note which key is pressed

D5 IF key is numeric AND measurement <
THEN measurement = measurement + numeral
IF key is DEL AND measurement <> 0
THEN measurement = measurement DIV 10
IF measurement <> 0
THEN PRINT measurement + blank
ELSE PRINT blank
IF key is RETURN AND 0
THEN process the measurement

To determine when the RETURN kbgsbeenlegitimatelypressedwe set aflag, whichis
initially FALSE, but is set to TRUE at the right point. The flag is caledasured'. In this
way almost the whole program can be written and tested in pseudo code before going n
the computer itself.

This is the theory! In practice the strict patterntaf-down programming breaks down
whenever a problem is encountered for which the programmer can see no solution. |
example,| need to know how to move the piston under of the control of the cursor keys
This is where the advice of computer scientists has tgbered- no amount of stepwise
refinement will tell me how to do this, only experimentation, thatb@&tomup
programming. | used to feel guilty at ignoring the advice of expert computer scientists, un
| realized that they are dealing with differendlplems. They already know how handle
their machinesso they do not need to break off to find out. | have not yet reached

49

The BBC microcomputer in science teachin

this stage and | am sure that few other science teachers have either. The problem v
bottomup programming is the restrictiortamight impose on later tegown refinements.
It is advisable to discard any code created during the experimengteitsion might force
the programmer into a predetermined mould and lead todiedblems.

It is difficult to follow this advice becae of lack of time. Having developed some code
that works we tend to want to keep it. If it is a procedure then that is fairly eesiiporated
at a later stage, but if it is part of the main progriamay be necessary RENUMBER it
and merge it witlthe rest of the program later. For example, | knewthapiston would
have to be moved inside the tube, so the graphics for the latter haddondbeicted too. |
developed lines 3020 to 3480 to draw the tuning fork, tube, pistorubardOriginallythis
was done in MODE 2, giving four colours. Logical colour 3 wasle into flashing black
and white and the repetition rate was speeded up to make it appear to vibrate. Later it v
found that the program had exceeded the meraeaylable in this modeso the program
was changed to MODE 4. The reason for choosihgghresolution mode was to make use
of the VDUS statement to move the pistemoothly in and out in the manner described
earlier in this chapter. The routine to move the piston was devebgpdkde procedure
PROCpiston(position) with the position of the piston in the tube passed as the parame
‘position’. This is converted into ancoordinate and drawn as a line. Prior to this the
previous line is erased by drawing over it in black(GKCOLO,0).

Coding
Having refined each process until | was sure how to do it, | was then in a position to bec
turning it into a BASIC program. | did this linearly from the beginning. With the
fundamental structure developed this was quite an easySolme problems were
encountered and needed ad hoc solutions (see later), but the structure remained in
throughout. Even so, a structure alone does not necessarily lead to a readable program.
There are some ground rules for structured programming thaldsbe borne in mind

One oftquoted is 'avoid GOTO and GOSUB'. | agree with this up to a p8Smhe
programs are such a masscohvoluted GOSUBs and GOTOs that it is impossible to see
what different conditions are doing. MICSIM is a particularlyanimius example. But this
advice can be carried to ridiculous extremes. Where a routine is only called once (f
example in setting up arrays or graphics characters) then a GOSUB is ne&sagful
than a procedure. Which of these conveys the most sense?

GOSUB 20000:REM define graphics characters
or

PROCgraphics
Given that it is much easier to find line 20000 in the listing than to find a procedure

definition, GOSUB is clearly better. Similarly, to repeat a process indefinitely (as in D of
our program), which of these is more meaningful?

50

Programming techniques

3000 REM Start of main program

etcee.

etcee.

etcee. .

9000 GOTO 3000: REM Restart main program
or

3000 REM Start of main program

3010 finished = FALSE

3020 REPEAT

etcee.

etcee.

etcéé. .

9000 UNTIL finished:REM Restart main program

Whether a prog@m uses procedures subroutines, these should be located in high line
numbers at the end of the program (unless speed is at a premium, in which case GOSLI
are faster and the closer they are to the current line the better). In RESONANCE IN
TUBE, | kept procedures in line®B00 upwards and subroutines in 20000 upwards. Apart
from moving the piston, speed of execution was not important in this prograas |
therefore able to be very liberal with REM statements, using them to mark off the differel
sections and to explain wheach was doing. Another help in this respect is the facility for
using long variable names. Where these were used for holding integers, then intec
variables were used to increase speed. A further aid to readability was to declare const:
at the begining of the program, rather than just use numbers. For example,

IF INKEY(-26) THEN ¢é é
is less meaningful than
IF INKEY (cursor left) THEN ¢é é

Debugging
As mentioned above, correcting any errors in the program is not something that can be |
until last. Each step should be checked with dummy data to ensure that nothing has b
overlooked. Even so there will be errors in the program once it has been coded. Simples
eliminate are syntax errors (or mistakes) since BASIC contains error detectimesand
obligingly tells the programmer where the error has occurred. More difficult to determin
are errors in the logic. Hopefully these should not exist, but that is a counsel of perfectic
In my case several such problems arose, which were deteittedummy data as soon as
the code had been written

For example, | wanted to move the piston with the cursor movement keys and, during t
design phase, | assumed that these could be detected with B{&EMhus carried on with
stepwiserefinement in the proper way. When checking the coding stage found that th
method | had chosen did not work, INKEY) returned the null value whichever cursor
key was pressed. | then tried GETGET and INKEYQ) in vain and even resorted

51

The BBC microcomputer in science teachin

to reading the &yboard directly from memory (see Chapter 7). The latter was rejected &
breaking the rules; | wanted to make the final program usable with the second proces:
added. In the end | used a combination of INKEDy$¢r RETURN, DEL and theumeric
keys and INKEY(-26) or INKEY(-22) for the cursor keys. This is inelegant and | am still
hoping for a better solution. By the time | had discovered this | had gorfiarttmchange
the structure (I could have separated off the piston movement with separate statement
INPUT the measured lengthBottomup programming at this point wouldave saved
trouble later. The fault lay in not being an expert in BBC BASIC beforehand.

The problem with producing the sound was how to keep it playing indefinitely until the
piston was movedigain,no difficulty wasanticipateduntil the relevant part of therogram
was tested. Eventually the solution was found in the user guide with a tecforiguaing
off the previous sound when a new one is reached (SOUND &11 indt&£altND 1).

The graph plotting routines were also developed by trial and error. | used th
VDU5:MOVEX,y:PRINT"+" method to plot crosses on the screen, but found theétiee
of the cross did not coincide with the point x,y. Some adjustment of #redxy was
necessary to overcome this. Drawing the line wdisear regression technique already
known to me. But after writing this section (line 5000 onwards) | spent some time enterin
dummy data to see its effect. | hope this will be rewarded by haargashes in future.
One problem was that the linear regression routine can only work with at least two point
so | had to develop a method of counting how many points the user had measured so
and to distinguish this from one point measureide. The variable 'numreadings' wased
for this and the ensuing code is clumsy. All measurements of the tube length farsagh
fork are set to zero initially. Each time a new measurement is entered, all thirtee
measurements are checked and ohly honzero ones are counted. This produces an
undesirable GOTO in line 5490. | have yet to find a more eleganbfatagkling this.

After the program had been debugged by me, | gave it to teachers for evaliatiost.
immediately one had causadrash. As stated before in this chapter auterepeat facility
IS a nuisance and is one reason for avoiding the INPUT statemeraniyn@&PUT left in
the program is to determine which tuning fork is to be used. Onesntred F blank and
found tha this was not acceptable. She could not see why, sinshaltould see on the
screen was 'F'. Lines 12092 and 12094 were thus adddohnioate leading and trailing
blanks from the input string.

The full listing of the program now follows. Doubsis there are further bugs, buthe
time-honoured method of all lecturers, | leave them as an exercise for the student.

52

Programming techniques

RESONANCE IN A TUBE - PROGRAMMING EXAMPLE
LIST
1 REM RESONANCE IN A TUBE
2 REM BY R.A.SPARKES
3
4 REM 30/3/83
5
1000 MODE 4
1010 LET cursorleft=" - 26
1011 LET cursorright= - 122
1012 LET returnkey$=CHR$13
1013 LET deletekey$=CHR$127
1014 LET space$=CHR$32
1030 LET endcorrection=20
1040 LET top=860:bottom=704:REM top and bottom walls of tube
1050 LET place=1000:REM x - coordinate of piston
1060 LET length=280:REM INITIAL LENGTH OF TUBE
1070 LET forever=255:REM LENGTH OF NOTE
1080 GOSUB 21000:REM SET UP ARRAYS FOR TUNING FORK
1090 GOSUB 20000:REM DEFINE GRAPHICS
1200
1500 REM***************************
1510 REM
1520 REM INSTRUCTIONS
1530 REM
1540 REM***************************
2000 CLS:PRINT TAB(8,0);"RESONANCE IN A TUBE"
2010 PRINT TAB(0,5);"This program simulates the resonance"
2020 PRINT TAB(0, 7);"tube experiment.”
2030 PRINT TAB(0,9);"A tuning fork held at the mouth of"
2040 PRINT TAB(0,11);"the tube causes the air to vibrate."
2050 PRINT TAB(0,13);"The sound produced is loudest when the"
2060 PRINT TAB(0,15);"length of the tube is closest to the"
2070 PRINT TAB(0,17);"resonant length."
2080 PRINT TAB(0,20);"First choose your tuning fork."
2090 PRINT :PRINT"Enter one of the following values: -
2100
2500 REM***************************
2510 REM
2520 REM REPEAT UNTIL ESC KEY
2530 REM
2540 REM***************************
2550
2560 PROCchoose
2600 LET measurement%=0
2700 REM***************************
2800 REM
3000 REM DRAW PICTURES
3005 REM
3006 REM***************************
3010 CLS
3020 PRINT TAB(8,0);"RESONANCE IN A TUBE"
3024 REM***************************
3025 REM
3026 REM DRAW TUNING FORK
3027 REM
3028 REM***************************
3040 PRINT TAB(0,5) CHR$243;SPC (2);CHR%$248
3050 PRINT TAB(0,6) CHR$243;SPC(2);CHR$248
3060 PRINT TAB(0,7) CHR$243;SPC(2);CHR$248

53

The BBC microcomputer in science teachin

3070 PRINT TAB(0,8) CHR$243;SPC(2);CHR$248

3090 PRINT TAB(0,9) CHR$244;CHR$245;CHR$246;CHR$247
3100 PRINT TAB(1,10) CHR$249;CHR$250

3110 PRINT TAB(1,11) CHR$249;CHR$250

3120 PRINT TAB(1,12) CHR$249;CHR$250

3130 PRINT TAB(1,13) CHR$249;CHR$250

3140 PRINT TAB(1,3);tone$(tuningfork%)

3150

3200 REM***************************

3210 REM

3220 REM DRAW TUBE

3230 REM

3240 REM*************** Fekekededkkekkkkkk

3250 FOR X=5 TO 39:PRINT TAB(X,4) CHR$240:NEXT X
3260 FOR X=5 TO 39:PRINT TAB(X,10) CHR$242:NEXT X
3270 REM***************************

3280 REM

3290 REM DRAW PISTON

3300 REM

3 3 10 R E M***************************

3315 PROCpiston(length)

3320 REM***************************

3330 REM

3340 REM DRAW RULER

3350 REM

3360 REM***************************

3370 MOVE 130,684

3380 DRAW 1279,684

3390 DRAW 1279,620

3400 DRAW 130,620

3410 DRAW 130,684

3420 VDU5

3430 FOR value=0 TO 33

3440 LET x=129+value*32:MOVE x,684

3450 IF value MOD 5<>0 THEN PRINT CHR$251

3460 IF value MOD 5=0 THEN PRINT CHR$252

3470 IF value MOD 5=0 THEN MOVE x+4,660:PRINT;value*10
3480 NEXT value

3490 VDU4

3500 PRINT TAB(0,15)"Use the left - right cursor keys"
3510 PRINT TAB(0,17)"to move the piston in and out."
3520 PRINT TAB(0,19)"When you have found the resonance"
3530 PRINT TAB(0,21)"position, measure the length of the"
3540 PRINT TAB(0,23)"tube up to the piston in millimetres."
3550 PRINT TAB(0,25)"Enter this length as a whole number and"
3560 PRINT TAB(0,27)"confirm this value with RETURN"
3570 PRINT TAB(0,29)"(the DELETE key works normally)."
3580 PRINT TAB(0,31)"Press ESCAPE to finish.";

3590

3600 REPEAT

3605 VDU 23,1,0;0;0;0;:REM TURN CURSOR OFF

3610 REM*** ok

3620 REM

3630 REM MAKE SOUND

3640 REM

36 50 R E M*************** *kkkkkkkk

3660 LET resonantlength%=80000 DIV freq%(tuningfork%o)

3670 LET comparison%=ABS(resonantlength% - length - endcorrection) DIV 3
3680 LET loudness= -2

3690 IF comparison%<12 THEN LET loudness=comparison% -15

54

3700 SOUND &11,loudness,note%(tuningforkd),forever

3710

4000 REM*** il i

4010 REM

4020 REM GET KEY FROM KEYBOARD
4030 REM

4040 REM*** il i

4050

4060 measured = FALSE
4070 REPEA T:LET key$=INKEY$(0)

4080 UNTIL key$<>"" OR INKEY (cursorleft) OR INKEY (cursorright)

4090 IF INKEY (cursorleft) THEN PROCmoveleft
4100 IF INKEY (cursorright) THEN PROCmoveright

Programming techniques

4105 IF key$=deletekey $ AND measurement%<>0 THEN measurement%=measurement% DIV 10

4110 IF key$=returnkey$ AND measurement%<>0 THEN measured =TRUE
4120 IF key$<="9" AND key$>="0"

measurement%=10*measurement%+VAL(key$)

AND measurement%<33 THEN LET

4130 IF measurement%<>0 THEN PRINT TAB(31,31);measurement%,;space$;

4140 IF measurement%=0 THEN PRINT TAB(31,31);space$;

4150 UNTIL measured

4 160 R E M*************************

4170 REM

4180 REM PROCESS MEASUREMENT
4190 REM

4200 REM******* *kkkkkkkkkkkkkkkkk
4240 REM

4250 LET measurement%/(tuningfork%)=measurement%
4260 SOUND&11,0,0,0:REM TURN OFF SOUND

4500 VDU 23,1,1;0,0;0;:REM TURN CORSOR BACK ON

4800

4900

5000 REM***************************

5010 REM

5020 REM PLOT GRAP H

5030 REM

5040 REM***************************

5050 CLS

5060 MOVE 128,256:DRAW 128,960
5070 MOVE 96,256:DRAW 1279,256

5080 PRINT TAB(12,0)"RESONANCE IN A TUBE"
5090 PRINT TAB(0,1)"length/mm"

5100 VDU5

5110 FOR y=0 TO 3.5 STEP 0.5

5120 MOVE 0,(268+192*y):PRINT;100*y
5130 MOVE 116,(268+192*y):PRINT;" - "
5140 NEXT y

5150 MOVE 100,256

5160 PRINT CHR$251;SPC(3):CHR$251:SPC(3);CHR$251;SPC(3):CHR$251:SPC(3):
CHR$251;SPC(3):CHR$251;SPC(3);CHR$251;SPC(3):CHR$251;SPC(3):CHR$251

5170 M OVE 112,230

5180 PRINT"0 0.51.01.52.02.53.03.54.0"
5190 MOVE 300,192

5200 PRINT TAB(10,26)"1/frequency /ms"
5210

5220 REM**********************

5230 REM

5240 REM LINEAR REGRESSION

5250 REM

5260 R EM******************** *%

5270 LET xtotal=0

55

The BBC microcomputer in science teachin

5280 LET ytotal=0
5290 LET sumxsquares=0
5300 LET numreadings=0
5310 LET sumxyproduct=0
5320 FOR tuningfork%=0 TO 12
5330 LET x%=111+1024*256/freq%(tuningfork%o)
5340 LET y%=268+1.92*measurement%(tuningfork%)
5350 IF measurement%(tuningfork%)=0 THEN 5420:REM next tuningfork%
5360 LET xtotal=xtotal + x%
5370 LET ytotal=ytotal + y%
5380 LET sumxsquares=sumxsquares + x%"2
5390 LET sumxyproduct=sumxyproduct + x % * y%
5400 MOVE x%,y%:PRINT;"+"
5410 LET numreadings=numreadings + 1
5420 NEXT tuningfork%
5430 REM***************************
5440 REM
5450 REM CALCULATE SLOPE AND INTERCEPT
5460 REM
5470 REM***************************
5480 REM
5490 IF numreadings<2 THEN 9000:REM IGNORE PLOT ROUTINE FOR A SINGLE READING
5500 LET slope=(nhumreadings * sumxyproduct - xtotal * ytotal) / (numreadings * sumxsquares
xtotal"2)
5510 LET intercept = (ytotal - slope * xtotal) / numreadings
5520 REM***************************
5530 REM
5540 REM PLOT LINE
5550 REM
5560 REM***************************
5570 REM
5580 REM plot minimum x - value
5590 LET x%=111:y%=intercept + slope*x%
5600 MOVE x%+12 ,y% 12
5610 REM plot maximum x - value
5620 LET x%=1135:y%=intercept + slope*x%
5630 DRAW x%+12,y%- 12
5640 VDU4
5650 REM***************************
5660 REM
5670 REM DISPLAY SPEED OF SOUND
5680 REM
5690 REM***************************
5700 LET speed = slope*1024*256*4/1000/1.92
5710 @%=&20105:REM ONE DECIMAL PLACE
5720 PRINT TAB(6,3);"Speed of sound = ";speed;" m/s"
5730 @%=&A0A:REM NORMAL PRINT FORMAT
5750
9000 VDU4:PRINT TAB(0,26):REM RESTORE TEXT MODE
9010 GOTO 2500:REM REPEAT FOREVER
9999
10000 REM*#*#riikiciiii
10010 REM
10020 REM PROCEDURES
10030 REM
10040 REM**ikkdibcickiokick
10050 REM
10060 DEF PROCmoveleft
10070 IF length>0 THEN length=Ilength -2
10080 PROCpiston(length)

56

Programming techniques

10090 ENDPROC

10100 DEF PROCmoveright

10110 IF length<330 THEN length=length+2

10120 PROCpiston(length)

10130 ENDPROC

10140 DEF PROCpiston(position)

10150 REM This procedure draws the pistion in the place specified by 'position'
10160 REM Delete old piston

10170 GCOLO0,0:MOVE place,bottom:MOVE place+16,bottom:PLOT85,place,top:PLOT85,place+16,top
10180 LET place=159+position*3.2

10190 REM Put piston in new position

10200 GCOLO0,1:MOVE place,bottom:MOVE place+16,bottom:PLOT85,place,top:PLOT85,place+16,top
10210 ENDPROC

12000 DEF PROCchoose

12010 REM****************************

12020 REM

12030 REM CHOOSE TUNING FORK

12040 REM

12050 REM**¥iikabickiokick *

12060 PRINT:PRINT"C C# D D# E F F# G G# A A# B"

12070 PRINT:PRINT"or UC (whic h means upper C) *“;

12080 REPEAT :tuningfork%=13

12090 INPUT tuningfork$

12092 IF LEFT$(tuningfork$,1)=CHR$32 THEN LET tuningfork$=RIGHT$(tuningfork$,LEN(tuningfork$) -
1):GOTO 12092

12094 IF RIGHT$(tuningfork$,1)=CHR$32 THEN LET tuningfork$=LEFT$(tuningf ork$,LEN(tuningfork$) -
1):GOTO 12094

12100 IF tuningfork$="C" THEN tuningfork%=0

12110 IF tuningfork$="C#" THEN tuningfork%=1

12120 IF tuningfork$="D" THEN tuningfork%=2

12130 IF tuningfork$="D#" THEN tuningfork%=3

12140 IF tuningfork$="E" THE N tuningfork%=4

12150 IF tuningfork$="F" THEN tuningfork%=5

12160 IF tuningfork$="F#" THEN tuningfork%=6

12170 IF tuningfork$="G" THEN tuningfork%=7

12180 IF tuningfork$="G#" THEN tuningfork%=38

12190 IF tuningfork$="A" THEN tuningfork%=9

12200 IF tuningfork$="A#" THEN tuningfork%=10

12210 IF tuningfork$="B" THEN tuningfork%=11

12220 IF tuningfork$="UC" THEN tuningfork%=12

12230 IF tuningfork%=13 THEN PRINT:PRINT"This value is not listed. Try again.”
12240 UNTIL tuningfork%<>13

12250 ENDPROC

20000 REM DEFINE GRAPHICS CHARACTERS

20010 VDU23,240,0,0,0,0,0,255,255,255

20020 VDU23,242,255,255,255,0,0,0,0,0

20030 vDU23,243,7,7,7,7,7,7,7,7

20040 vDU23,244,7,7,3,1,0,0,0,0

20050 vDU23,245,0,128,192,240,124,63,15,3

20060 vDU23,246,0,1,3,15,62,252, 240,192

20070 vVDU23,247,224,224,192,128,0,0,0,0

20080 VDU23,248,224,224,224,224,224,224,224,224

20090 VDU23,249,3,3,3,3,3,3,3,3

20100 vDU23,250,192,192,192,192,192,192,192,192

20110 vDU23,251,1,1,1,1,0,0,0,0

20120 vDU23,252,1,1,1,1,1,1,1,0

20200 RETURN

20300

21000 REM SET UP FREQUENCIES FOR TUNING FORKS

21004 DIM measurement%(12)

57

The BBC microcomputer in science teachin

21005 DIM tone$(12)

21010 DIM freq%(12)

21020 DIM note%(12)

21030 FOR tuningfork% = 0 TO 12

21040 READ tonsolfa$, frequency%, soundvalue%
21045 LET tone$(tuningfork%)=t onsolfa$
21050 LET freq%(tuningfork%)=frequency%
21060 LET note%(tuningfork%)=soundvalue%
21065 LET measurement%(tuningfork%)=0
21070 NEXT tuningfork%

21080 RETURN

21100 DATA C,256,53

21110 DATA C#,271,57

21120 DATA D,288,61

21130 DATA D#,304,65

21140 DATA E,320,69

21150 DATA F,341,73

21160 DATA F#,362,77

21170 DATA G,384,81

21180 DATA G#,406,85

21190 DATA A 427,89

21200 DATA A#,456,93

21210 DATA B,480,97

21220 DATA UC,512,101

58

3 Computation and mathematical modelling

'‘She can't do sums a bit!' the Queens said
together, with great emphasis.
(Lewis Carroll, Through the Looking Glays

This chapter explores the uses of the BBC microcomputer as a mathematical tool, includi
calculations, graphical display of functions, plotting experimental data, simulations usin
the random number generator and problem solving by iterative methods.

The super calculator

Calculation is the traditional domain of the computer (as its name implies). There are ma
books that deal exhaustively with this aspect of computing, with many illustrative example
In fact, there may even be too many! Why do soyrawoks of programs include one on
the solution of quadratic equations? It is not because there are many problems that req
its solution, in fact, hardly anyone uses it after leaving school. | suspect the real reasor
that it has become a standardrapée upon which mathematical programmers cut their teeth
(while physicists do radioactive decay and the rest write programs on sorting). The real val
of writing such programs is the insight they give the programmer into the nature of th
problem. Try wriing your own quadratic equations program and you will see what | mean
How do you interpret 'too big' or 'syntax error'? Perhaps you forgot about equal or imagine
roots. If this is true, then one way to teach students about LCR circuits might béhtenget

to write their own LCR circuit analysis program.

There is no point in just using a computer to carry out the often meaningless exercises
in school physics and chemistry examinations. For example, we would not want a stude
to enter a set ofada into some previously prepared program on, say, Newton's rings, th:
then automatically calculates the wavelength of sodium light. In this case the process is m
important than the produetwe are trying to get the student to appreciate the propeartie
the equations being used.

The microcomputer can aid this understanding of equations and concepts in two wa
One of these, the iterative method, is left till last. The other is the shadgmer technique
of getting he computer to solve an equation many times over while varying one of th
parameters. As an example, consider the motion of a stone being thrown vertically agai
gravity (GRAVITY, program 28). By entering different starting speeds a pupil should be
ableto discover the relation between the vertical height reached and the initial speed. Tl
technique may be used with almost any other standard equation in science. It would be m
better though if the graphics capabilities of the microcomputer were usesllas

60

Computation and mathematical modelling

Producing a table of results used to be a nightmare but the excellent tabulation faciliti
of the BBC microcomputer have changed that (Plate 6). Practice changing the paramet
of the @% variable until you appreciate how it works and youh&We no more problems
(page 70 of th&BC Microcomputer SystemdérGuide).

Graph plotting

Thehigh-resolutionscreen is particularly useful for sketching functions. MOVE and DRAW
are easily used and some very sophisticated graphs can be drawn. The process is a little -
for complex functions, but this is not necessarily a disadvantage. One can ask the stude
to predict 'What will happen next? '. For those whose coordinate geometry is a little rust
the following discussion may be of assistance.

The most useful screen of the BBC Model B microcomputer is MODE 1. This gives
normal 40 columns of text, sugfently high-resolutionfor most purposes and three colours
at any one time (plus a background colour). This mode is similar to MODE 4, which is th
alternative for Model A users. VDU19 and GCOLO should be used to select the differe
colours of the lineand the baajround as described in the guide. If you do not have access
to a colour monitor, then use MODE 4 to get the extra memory.

The statement to plot a single dot is

PLOT69,0,512

You may just be able to see the small dot on the lefteo$tineen and halfay up, which is
the point you have just plotted. Now type

PLOT69,10,512

which gives a point nearer to the right, but at the same height as the other point. The fi
number in the PLOT69 command tells how far the point is from the left edge. Type

PLOT69,10,200

to get a point below the ones plotted before. This showistlteasecond number in the
PLOT69 command gives the vertical position of the point. The smaller the number, tf
nearer it is to the bottom. The largest value for the horizontal position is 1279 (extreme rigl
and the smallest is O (extreme left). The émtgvalue for the vertical position is 1023 (top)
and the smallest is 0 (bottom). Any attempt to plot points outside these limits will be ignore

Clear the screen with CLS and prove for yourself the positions of the extreme corners
the screen a®fiows:

TOP-LEFT : PLOT69,0,1023
TOP-RIGHT : PLOT69,1279,1023
BOTTOM-LEFT : PLOTG69,0,0
BOTTOM-RIGHT: PLOT69,1279,0

Occasionally it is necessary to visit a point without plotting a dot; the MOVE statement

61

The BBC microcomputer in science teaching

can be used for this purpose. MOVEX,y refers to the same point as except that the dot is
plotted.

Lines

We get lines by drawing a set of dots close together using the DRAW statement. This a i
from the previous point visited (PLOT69 or MOVE or aypbus DRAW) to the new point
specified in the DRAW statement. For example:

MOVEO,0
DRAW1000,512
DRAWO,1023
DRAWO,0

The points on the screen have the coordinate@s,y coordinate geometry). To plot graphs
there must be some relationship between x and y, which must be included in the progre
Here is a simple example:

100 MODE 1

110 GCOLO,3

120 FOR x=0TO 1279
130 LET y =x/2

140 PLOTG9,x,y

150 NEXT x

Note how the program plots the equation given in line 130. Any equation connecting X al
y can be used, provided the equation is of the form y = function of x only. Try this fo
yourself, with different equations in line 130. For example:

130y = 800-x/2
130 y = x*x/1000
130 y =500 - x + x*x/1000

You will see that only values ofwithin the range 0 to 1023 are plotted. To fill in any gaps
between the different points the DRAW statement may be used instead of PLOT6
Unfortunately this causes problems because the program also draws a line from the oric
to the first point plotteddeally,we want to PLOT the first point and only DRAW thereafter.
This can be done by noting that PLOT4 is exactly equivalent to MOVE and PLOTS i
exactly equivalent to DRAW. The program thus becomes

100 MODE 1

110 GCOLO,3

115 LET n=4

120 FOR x=0 T0O 1280
130 LET y = 800-x/2
140 PLOTn,x,y

145 LET n=b

150 NEXT x

The first time that the PLOTn statement is reached, n has the value of 4, so it is the

62

Computation and mathematical modelling

equivalent of MOVE. Subsequently n is 5, so all the remaining PLOTn statements a
equivalent to DRAW.

Different origins

The methods used so far only allow us to plot graphs in one quadrant, for positive values
x and y. Some graphs, particularly sines and cosines produce negative values too. To |
these requires us to move the axes with the VDU29 command. To keemthebthe x

axis at the left of the screen (x = 0) and put the y axis in the middle (y = 512) we write

VDU29,0;512; (Note the semi-colons!)

The graph will now show points in the range 0 to 1279 (x coordinate) as befoigl bub
+ 511 (y coordhate). For some purposes it is better not to redefine the screen in this wa
but to add the required displacement to the x or the y value with statements like

PLOT69,x,(y+512)

The range of plottable values for y will now be freb2 to + 511 as abe. In both methods
axes are drawn with MOVE and DRAW statements.

Another problem with sine and cosine graphs is that they are functions of angles
radians. To get at least two cycles on the screen, the range for the angle must be from
4*P| radans (0 to 12.566). The range for x is 0 to 1279, so a conversion factor has to |
included to make 1279 equivalent to 12.566. It is better to define a conversion fact
(confag to carry out this operation at the start of the program and to do thishirasuay
that it is obvious what is happening.

LET cycles =2
LET confac = 2* PI * cycles / 1280

The value of any sine function goes freirto + 1, so it must be multiplied by an amplitude
(maximum of 511 to get the full range on the vertical axis). Here is the program for the sir
function (Plate 7):

100 MODE 1

110 VDU29,0;512;

120 GCOLO,3

130 MOVE 0,0

140 DRAW 1279,0

150 MOVE 0, -512

160 DRAW 0,511

200 LET cycles =2

210 LET confac =2 * PI * cycles / 1280

220 LET amplitude = 300

230 LET n=4

240 FOR x=0TO 1280

250 LET y = amplitude * SIN(x * confac)

260 PLOTnN,x,y

270LET n=5

280 NEXT x

63

The BBC microcomputer in science teaching

Plate 7 Sine curve

The speed of plotting can be dramatically increased by plotting every tenth point thus:
240 FOR x=0TO 120 STEP 10

This makes little difference to the appearance of the final graph. Note that this can only
done with the DRAW statement.

A program to plot the cosine function involves changing line 250 to
250 y = amplitude * COS(x*confac)

A program to plotwo functions at the same time requires two FRIRXT loops. Let us
plot three cycles of the sine function and two of the colsinetionsat the same time. The
use of DRAW now becomes awkward and it is better to revert to PLOT69 again. This allov
the two gaphs to be drawn in different colours.

100 MODE 1

110 VDU29,0;512;
120 GCOLO,3

130 MOVE 0,0
140 DRAW 1279,0
150 MOVE 0,-512
160 DRAW 0,511

64

Computation and mathematical modelling

Plate 8 Sum of two waves

200 LET sincolour =1

210 LET coscolour = 2

220 LET sincycles = 3

230 LET coscycles =2

240 LET sinconfac = 2 * PI * sincycles / 1280
250 LET cosconfac = 2 * Pl * coscycles / 1280
260 LET sinamplitude = 300

270 LET cosamplitude = 400

280 FOR x=0TO 1280

290 LET siny = sinamplitude * SIN(x * sinconfac)
300 GCOLO,sincolour

310 PLOT69,x,siny

320 LET cosy = cosamplitude * COS(x * cosconfac)
330 GCOLO,coscolour

340 PLOT69,x,cosy

380 NEXT x

With other trigonometrical functions although it does not cause an error mestage if
plotted point is not within the range of the screen, it is useful to ensure that the graph can
seen. The function plotted should be checked for its maximum snchim values

65

The BBC microcomputer in science teaching

and the amplitude adjusted. An example is the function 300sin(3A) + 400cos(2A), whic
can have a value of 700, so the amplitude should be reduced accordingly. To plot ti
function as well as the functions that go to produce it, add tives® to the previous
program:

350 GCOLO,3
360 LET sumy = (siny + cosy)/2
370 PLOT69,x,sumy

Sometimes, however, the use of a range check is unavoidable. For example, the funct
tan(A) goes to infinity when A is ninety degrees producing arre@dl ERROR GOTO

will detect this condition and avoid crashing the program. This program plots tan(A) for tw
cycles and to get as muchtbie function as possible on the screen the amplitude is made
quite low (Plate 9).

100 MODE 1

110 VDU29,0;512;

120 GCOLO,3

130 MOVEDO,0

140 DRAW 1279,0

150 MOVEO,-512

160 DRAWO,511

200 GCOLO,3

210 LET cycles =2

220 LET confac = 2 * Pl * cycles/ 1280
230 LET amplitude = 10

240 LET n=4

250 FORx=0 TO 1280

260 ON ERROR LET x=x+1:GOTO 270
270 LETy = amplitude * TAN(x * confac)
275 IF y>1000 OR y<-500 THEN LET n =4
280 PLOTn,x,y

290 LET n=5

300 NEXTx

This use of ON ERROR prevents the normal function of the ESCAPE key to exit th
program. To do this, perform a BREAHfollowed by OLD <RETURN> to recover the
program). Line 275 is a 'buk' to prevent + infinity being joined up tanfinity. Try
removing it to see its effect.
Some functions still cause problems. Consider the equation of the circle

X2 + Y? = radius?

where the maximum value for the radius is 511. BASIC cannot handle the equatic
as it is, it must be transformed to get a single value of y (or x) on the left of the equation.

y = SQR(radius*radius - x*x)

66

Computation and mathematical modelling

Plate 9 Tangent curve

Care must now be taken to prevent the absolute value of x from exceeding the radil
otherwise y becomes imaginary. Also the square root is automatically positive, so we sh
only get the whole circle by separately including the negatee.

100 MODE 1

110 VDU29,640;512;

120 LET radius = 400

130 FOR x = -radius TO radius
140 y = SQR(radius*radius - x*x)
150 PLOT69,x,y

160 PLOT69,x,-y

170 NEXT x

This gives uneven spacing between the plotted points and a maefactaty way, which
makes use of a separate parameter is preferred. For circular functions angle is the most us

parameter.

100 MODE 1

110 VDU29,640;512;

120 LET amplitude = 300

200 FOR angle =0 TO 360

210 LET x = 1.1 * amplitude * COS(RAD(angle))
220 LET y = amplitude * SIN (RAD(angle))

67

The BBC microcomputer in science teaching

230 PLOT69,x,y
240 NEXT angle

Here the x amplitude is made larger than the y amplitude to make the circle more circular
the display. The factor 1.1 in line 210 will need to be changed for different monitors.

The parametric method is widely applicable to most conic sectionllijee is given
by

100 MODE 1

110 VDUZ29,640;512;

120 LET xamplitude = 400

130 LET yamplitude = 200

200 FOR angle =0 TO 360

210 LET x = xamplitude * COS (RAD(angle))
220 LET y = yamplitude * SIN (RAD(angle))
230 PLOT69,x,y

240 NEXT angle

The parabola is given by

X = 2*a*t
y = a*t*t

For example,

100 MODE 1

110 VDU29,640;512;

200 FOR t =-500 TO 500
210 LET x =20 * t*t
220LETy=1t*t

230 PLOT69,x,y

240 NEXT t

The hyperbola has an awkward parametric equation

x = a/COS(RAD(angle))
y = b*TAN(RAD(angle))

This can produce infinite values, so the ON ERROR technique is used here too.

100 MODE 1

110 VDU29,640;512;

120 GCOLO,3

130 ON ERROR LET angle=angle + 1:GOTO210
200 FOR angle =0 TO 360

210 x = 100/COS(RAD(angle))

220 y = 200*TAN(RAD(angle))

230 PLOT69,x,y

240 NEXT angle

68

Computation and mathematical modelling

Phase Angle = 68

Frequency Ratio

Plate 10 Lissajous figures
Particularly pleasing to the physics teacher is the production of Lissajoussfigsing
sine equations with different frequencies and phase angles (Plate 10).

100 MODE 1

110 VDU29,640;512;

120 GCOLO,3

130 INPUT "Phase Angle = "phase

140 INPUT "Frequency Ratio =" fregratio
150 LET amplitude = 300

160 LETn=4

200 FOR angle =0 TO 100000

210 LET x = amplitude * SIN(RAD(angle*freqratio + phase))
220 LET y = amplitude * SIN(RAD(angle))
230 PLOTn,x,y

240 LET n=5

250 NEXT angle

If non-integral values of t frequency ratio are desired, it can be many cycles before the
pattern repeats itself, hence the need for the large number of cycles in line 200.

69

The BBC microcomputer in science teaching
EVAL

The BBC BASIC function EVAL allows equations to be entered from the keylhostehd

of the user hamg to stop the program to try out a different function. In some cases this i
useful and you can see one application of it in PROGRAMMABLE OSCILLATOR (13).
Usually, however, the necessity to enter the function with BASIC syntax means that the us
has tohave some familiarity with programming anyway. In this case it is no more difficult
to halt the program and alter the line numbers. Program 3 (LOGIC MAKER) uses thi
technique since a particular Boolean function may spread over several lines
programming

Applications

These ideas can be turned to practical classroom use in a number of ways. Once
principles are appreciated, a few hours at the keyboard will tell students more about t
behaviour of functions than a whole series of lectures.

Simple functions

If a phenomenon can be described by a siragleationthen it can be plotted in the ways
just described. Foexample the distancgime graph of a body that falls from rest can be
plotted with the equation

s=g*t*t/2
This translates into a program as follows:

100 MODE 1

110 VDUZ29,0;900;

120 GCOLO,3

150 PRINT TAB(0,0);"Enter the acceleration due to gravity"
160 INPUT g

170 LET acc = -g

180 LET n=4

200 FORt=0TO 1280
210 LETs=acc*t*t/2
220 PLOTn,t,s/1000
230LET n=5

240 NEXT t

250 GOTO 150

Different values for gravity may be entered and their effects noted. In this program valu
between 0 and 10 give the best results.

Wherever there are more than two variables, the others can be held constant dur
each scan of the screen and altered later by entering new values in precisely the same
as this. This process fits most equations experiencedendd physics and chentrg.

70

Computation and mathematical modelling

Coefficient of friction (8 to 8.1) B8.883

Plate 11 Damped oscillationsvia mathematics

Typical examples are as follows:

V=I*R
W=I1*I*R
P *V =const 0.

v+ 1/u =1/
F=k*m*M/(r*r)

Trigonometrical functions allow some of the properties of vibrations and waves to b
investigated. The superposition of two waves to give interference, beats and modulat
waves was demonstrated above. Here is another example: a program for arxebjgctge
damped oscillations. This includes a plot of the wave envelope too, so that the student ¢
appreciate which part of the equation causes the different shaftes grfaph (Plate 11).
This program is actually an oversimplification, since no acchasbeen taken of the effect
of damping on the frequency of the oscillations. A much better way of doing the whole thin
is discussed later in this chapter.

10 REM DAMPED OSCILLATIONS
100 MODE 1

110 VDU29,0;512;

120 GCOLO,3

130 MOVE 0,0

71

The BBC microcomputer in science teaching

140 DRAW 1279,0

150 MOVE 0, -512

160 DRAW 0,511

190 INPUT TAB(0,0) "Coefficient of friction (0 to 0.1) " friction
200 LET cycles =4

210 LET confac = 2 * Pl * cycles/1280

220 LET amplitude = 300

230 MOVE 0,amplitude

240 FORt=0TO 1280 STEP 5

250 LET angle =t * confac

260 LET displacement = amplitude * EXP(-t * friction) * COS(angle)
270 GCOLO,3

300 DRAW t,displacement

310 NEXT t

320 REM DRAW PEAK ENVELOPE

350 MOVE 0,amplitude

360 GCOLO,1

370 FORt=0TO 1280 STEP 5

380 LET envelope = amplitude * EXP(-t * friction)
390 DRAW t,envelope

400 NEXT t

410 GOTO 190

A particularly satisfactory demonstration of the Fourier synthesis of a square wave
obtained with the following program:

10 REM FOURIER SYNTHESIS

100 MODE 1

110 VDU29,0;512;

120 GCOLO,3

130 MOVE 0,0

140 DRAW 1279,0

150 MOVE 0,-512

160 DRAW 0,511

200 LET cycles =2

210 LET confac = 2 * PI * cycles / 1280
220 LET amplitude = 300

230 LET n=4

240 FOR x=0TO 1280

250 LET angle = x * confac

260 LET y1 = amplitude * SIN(angle)

270 LET y2 = amplitude / 3 * SIN(3 * angle)
280 LET y3 = amplitude / 5 * SIN(5 * angle)
290 LET y4 = amplitude / 7 * SIN(7 * angle)
300 LET y5 = amplitude / 9 * SIN(9 * angle)

72

Computation and mathematical modelling

310 LET y = y1+y2+y3+y4+y5
320 PLOTn,x,y
330LETn=5

340 NEXT x

Provided you are prepared to wait this process Ineagontinued for as many harmonass
you wish.

Complicated functions

Many functions cannot easily be rearranged to make one variable into the subject of t
equation. There is usually no necessity for this in any case as the microcomputer is gt
capable of carrying out the calculation in parts. A good example of this is the voltage acrc
a capacitor in an LCR circuit (Figure 3.1). If this is plotted against frequency a resonan:
curve is produced. The input voltage is assumed to be constamdEhia produces a
current in the circuit (1).

© "

C

.

Figure 3.1 LCR circuit

| is given by E/Z, where Z is the impedance of the circuit at the given frequency (f). Th
voltage across the capacitor (C) is thus 2. The value for Z is obtaineddim the formula

Z2=R2+ (2-1/Z L2 fC)

RESONANCE (29) plots the desired curve (Plate 12). The values of L and C should be
chosen to make the resonant frequency come near the middle of the screen (frequency :
500). Assuming inductances in fifienries and capacitors in microfarads, this gives L =
100 mH and C = 250 BF. (Strictly, this frequency is the angular frequency, but this is not
apparent in the final plot, so it is ignored here. If required it is simple enough to allow for
it.) Here isthe essential part of the program.

INPUT "Inductance =" L
INPUT "Capacitance =" C
INPUT "Resistance =" R

73

The BBC microcomputer in science teaching
nductance H Z

Capacitance (microfaradpd)| 7288

Plate 12 LCR resonance curves

LET E = 50:REM APPLIED VOLTAGE
FOR frequency =1 TO 1280

LET XL = frequency * L

LET XC = 1/(frequency * C)

LET X =XL - XC

LET Z = SQR(R*R + X*X)

LETI=E/Z

LETVC =1*XC

PLOT frequency,VC

NEXT frequency

It can be seen how the final capacitor voltage is obtained after several separate calculati
each of which should be familiar to the student. By showing each step of the calculation lil
this, it is easier to keep sight of the physics. The value of thikprigram is that students
can vary one parameter at a time and observe the effects. ERIDES (30) also shows
this technique.

Graph plotting with experimental data
Probably the most useful application of graphs in science is the plotting of experiment
data. This is usually carried out to obtain the slope or interceptacdightline graph,

74

Computation and mathematical modelling

where the best line is obtained from the data by guesswork. The computer can be a g
help in teaching students to do this, since the 'best' line can then be obtained by the met
of least squares. The technique was used in Chapter 2 to deawest line for
RESONANCE IN A TUBE. This program also demonstrates one method of plotting
crosses, by printing them in the position of the graphics cursor.

VDU5S
MOVE x-12,y+12
PRINT"+"

This plots a cross at the point x,y. It is necessary to reduce the x coordinate and increase
y coordinate as shown in order to get the centre of the cross as near to the point x,y
possible. The + sign is far from ideal for this purpose, since iteaepart is actually two
lines wide. A better way is to use a uslefined cross as follows:

VDU23,255,16,16,16,254,16,16,16,0
VDU5

MOVE x-12,y+12

PRINT CHR$255

Better still is a procedure (PROCplot(x,y)) that draws a cross exactly@itie,y without
the hassle of changing these values first. The procedure is defined by:

DEF PROCplot(x,y)
MOVE x-16,y
DRAW x+16,y
MOVE x,y-16
DRAW x,Y+16
ENDPROC

A complete program to accept students' data and to process it isynibtleasiata can have

all possible values. The following program works within limits and may easily be adapte
to suit any particular application. RESONANCE IN A TUBE demonstrated one sucl
adaptation.

LEAST SQUARES FIT
100 MODE4
200 @% = &AOA: REM Restore normal format
300 vDU23,250,8,8,8,8,8,8,0,0

1000 REM*****kkkkkkkkrkkskkkkkonkk

1010 REM

1020 REM COLLECT DATA
1030 REM

1040 REM****sxskhkskkhxkkkkikkixk
1050 CLS

1060 PRINT:PRINT"Enter the number of data pairs."
1070 PRINT:INPUT numreadings

75

The BBC microcomputer in science teaching

76

1080 DIM x(numreadings),y(numreadings)

1090 PRINT:PRINT "Enter each pair of readings"

1100 PRINT:PRINT "in the order x-coord.,y-coord."
1110 PRINT:PRINT "for example 56.3,89.75"

1120 FOR n =1 TO numreadings

1130 PRINT

1140 INPUT x(n),y(n)

1150 PRINT x(n),y(n)

1160 NEXTn

1170 CLS:PROCIlist

1180 PRINT:PRINT "Do you wish to change any readings?"
1190 PRINT:PRINT "Answer Y or N."

1200 PRINT:INPUT answer$

1210 IF answer$<>"Y" AND answer$<>"N" THEN 1180
1220 IF answer$="N" THEN 2000

1230 PRINT:PRINT "Enter the reference number for the"
1240 PRINT:PRINT "data pair you wish to change."
1250 PRINT:INPUT m%

1260 IF m%>numreadings THEN PRINT:PRINT"You did not enter this
reading.":GOTO 1170

1270 PRINT:PRINT"Enter the new pair of readings"
1280 PRINT:INPUT x(m),y(m)

1290 PRINT

1300 PROClist

1310 GOTO 1170

1320

2000 R E M kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

2010 REM

2020 REM DETERMINE AXES

2030 REM

2040 R E M kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

2050 CLS

2060 PRINT:PRINT"Enter the maximum x-coordinate"
2070 PRINT:INPUT xmax

2080 PRINT:PRINT"Enter the maximum y-coordinate"
2090 PRINT:INPUT ymax

2100 LET xscale=xmax/1000

2110 LET yscale = ymax/ 1000

2120

5000 REM****kkskkrkskskrkskkrks
5010 REM

5020 REM DRAW AXES
5030 REM

5040 R E M kkkkkkkkkkkkkkkkkkkkkk

Computation and mathematical modelling

5050 CLS

5060 REM Move origin

5070 VDU29,128;64;

5080 MOVE 0, -32:DRAW 0, 1000

5090 MOVE -32,0:DRAW 1200,0

5095 @% = &202: REM short format

5100 VDU5

5110 FORy=0TO 10

5120 MOVE -128,12+100*y:PRINT;100*y*yscale
5130 MOVE -28,12+100*y:PRINT;"-"

5140 NEXT y

5150

5160 FOR x=0 TO 10

5170 MOVE -16+100*x,0:PRINT CHR$250
5180 MOVE -48+100*x,-32:PRINT;100*x*xscale
5190 NEXT x

5200

5 2 10 R E M kkkkkkkkkkkkkkkkkkkkkkkk

5220 REM

5230 REM LINEAR REGRESSION

5240 REM

5 2 50 R E M kkkkkkkkkkkkkkkkkkkkkkkk

5260

5270 LET xtotal =0

5280 LET ytotal =0

5290 LET sumxsquares =0

5300 LET sumxyproduct = 0

5320 FOR n =1 TO numreadings

5330 LET x = x(n)/xscale

5340 LET y = y(n)/yscale

5360 LET xtotal = xtotal + x

5370 LET ytotal = ytotal +y

5380 LET sumxsquares=sumxsquares + x*x
5390 LET sumxyproduct=sumxyproduct + x*y
5400 PROCplot(x,y)

5410 NEXT n

5420

5 4 30 R E M kkkkkkkkkkkkkkkkkkkkkkkk

5440 REM

5450 REM CALCULATE SLOPE AND INTERCEPT
5460 REM

5470 R E M************************

5480

5490

77

The BBC microcomputer in science teaching

5500 LET slope = (numreadings * sumxyproduct - xtotal *
ytotal)/(numreadings * sumxsquares - xtotal * xtotal)

5510 LET intercept = (ytotal - slope * xtotal) / numreadings
5 520 R E M*********************

5530 REM

5540 REM PLOT LINE
5550 REM

5560 REM****rktkikikshsrkrksk
5570

5580 REM Plot minimum x-value
5590 LET x% = 0:y% = intercept + slope * x%
5600 MOVE x%,y%

5610 REM Plot maximum x-value
5620 LET x% = 1200:y% = intercept + slope * x%
5630 DRAW x%,y%

5640 VDU4

5650 END

5660

10000 DEF PROClist

10010 PRINT TAB(19,2);"x , y"
10020 PRINT

10030 FOR n = 1 TO numreadings
10040 PRINT n,x(n),y(n)

10050 NEXT n

10060 ENDPROC

10070

11000 DEF PROCplot(X,Y)

11010 MOVE X-16,Y

11020 DRAW X+16,Y

11030 MOVE X,Y-16

11040 DRAW X,Y+16

11050 ENDPROC

For statistical data a bar chart is preferred. In this case the x coordinate is probably
discontinuous, but whether it increases in steps of one, two or five, etc. is a matter of
choice in each case. Hence again a single program w#lufitice for all occasions and
one like the following will need to be adapted for each particular case. The procedure to
plot a bar of length y at the position x is:

DEF PROCvbar(x,y)
MOVE x,0

MOVE x+48,0
PLOT85,x,y
PLOT85,x+48.y
ENDPROC

78

Computation and mathematical modelling
Oneprogram to handle the data input for bar charts is as follows:

BAR CHART
100 MODE 4
200 @% = &AOA:REM Restore normal format
300 vDU23,250,8,8,8,8,8,8,0,0

1000 REM*****kkkkkrkksksrkkkkkkx

1010 REM
1020 REM COLLECT DATA
1030 REM
1040 REMF**rtrkskkrk sk ikkkkkkhk
1050 CLS

1060 PRINT:PRINT "Enter the number of data readings."
1070 PRINT:INPUT numreadings

1080 DIM y(numreadings)

1090 PRINT:PRINT "Enter each reading in ascending order"
1100 PRINT:PRINT "of the x-coordinate."

1120 FOR n =1 TO numreadings

1130 PRINT TAB(5);n;" ";:INPUT y(n)

1160 NEXT n

1170 CLS:PROClist

1180 PRINT:PRINT "Do you wish to change any readings?"
1190 PRINT:PRINT "Answer Y or N."

1200 PRINT:INPUT answer$

1210 IF answer$<>"Y" AND answer$<>"N" THEN 1180
1220 IF answer$="N" THEN 2000

1230 PRINT:PRINT "Enter the reference number for the"
1240 PRINT:PRINT "data you wish to change."

1250 PRINT:INPUT m%

1260 IF m%>numreadings THEN PRINT:PRINT"You did not enter this
reading.":GOTO 1170

1270 PRINT:PRINT" Enter the data."

1280 PRINT:INPUT y(m%)

1290 PRINT

1300 PROClist

1310 GOTO 1170

1320

2000 R E M kkkkkkkkkkkkkkkkkkkkkkkk

2010 REM

2020 REM DETERMINE AXES

2030 REM

2040 R E M *kkkkkkkkkkkkkkkkkkkkkkkx

2050 CLS

2080 PRINT:PRINT"Enter the maximum y-coordinate"

79

The BBC microcomputer in science teaching

2090 PRINT: INPUT ymax

2100 LET xscale = numreadings/1000
2110 LET yscale = ymax/1000

2120

5000 R E M**************************
5010 REM

5020 REM DRAW AXES

5030 REM

5040 R E M**************************
5050 CLS

5060 REM Move origin

5070 VDU29,128;64;

5080 MOVE 0,-32:DRAWO0,1000
5090 MOVE-32,0:DRAW 1200,0
5095 @%=&202:REM short format
5100 VDU5

5110 FORy=0TO 10

5120 MOVE -128,12+100*y:PRINT;100*y*yscale
5130 MOVE -28,12+100*y:PRINT;"-"
5140 NEXT y

5150

5160 FOR x=0 TO 10

5170 MOVE -16+100*x,0:PRINT CHR$250
5180 MOVE -48+100*x,-32:PRINT;100*x*xscale
5190 NEXT x

5200

52 10 R E M**************************
5220 REM

5230 REM BAR CHART

5240 REM

5250 R E M**************************
5260

5320 FOR n =1 TO numreadings
5360 LET x=n/xscale

5340 LET y=y(n)/yscale

5400 PROCvbar(x,y)

5410 NEXT n

5500

5640 VDU4

5650 END

5660

10000 DEF PROClist

10010 PRINT TAB(9,2);"x,y"

10020 PRINT

80

10030
10040
10050
10060
10070
11000
11010
11020
11030
11040
11050

Computation and mathematical modelling

FOR n =1 TO numreadings
PRINT n,y(n)

NEXT n

ENDPROC

DEF PROCvbar(X,Y)
MOVE X,0

MOVE X+48,0
PLOT85,X,Y
PLOT85,X+48,Y
ENDPROC

Another example of the plotting bar charts is given in SUM OF TWO DICE (22).
Horizontal bar charts are just as easy to achieve thus:

11000
11010
11020
11030
11040
11050
11000
11010
11020
11030
11040
11050

DEF PROChbar(X,Y)
MOVE 0,Y

MOVE 0,Y+48
PLOTS85,X,Y
PLOT85,X,Y+48
ENDPROC

DEF PROCvbar(X,Y)
MOVE X,0

MOVE X+48,0
PLOT85,X,Y
PLOT85,X+48,Y
ENDPROC

Pie charts are obtained with the circle drawing technique already shown. The filled circ

uses the tria

ngtélling PLOTS85 instruction too. To ensure that the pie is closed each amoun

Is converted to its nearest whole number of degrees (line 1320)sEetchn is added onto
the previous one and hopefully the total angle reaches exactly 30 degrees. MODE 2 allc
the seven colours to be used (line 1370), but if there are exactly eight sectors this will ne
to be modified or two adjacent colours will be g#zne.

PIE CHART
100 MODE 7
200 DIM amount(100)

1000
1010
1020
1030
1040
1050
1060
1070

R E M************************

REM

REM COLLECT DATA

REM

R E M************************

CLS

PRINT:PRINT"Enter the amounts for each sector"
PRINT:PRINT "of the pie chart."

81

The BBC microcomputer in science teaching

1080 PRINT:PRINT "Enter O to obtain the pie chart."
1090 LET n=0:total =0

1100 REPEAT

1110 LETn=n+1

1120 PRINT:INPUT amount(n)

1130 LET total = total + amount(n)

1140 UNTIL amount(n) =0

1150 LET numreadings = n-1

1160

1 200 R E M**************************

1210 REM

1220 REM DETERMINE AXES

1230 REM

1 2 40 R E M**************************

1250

1260 MODE2

1270 REM Move origin

1280 VDUZ29,600;500;

1290 LET totalangle% =1

1300 MOVE 400,0

1310 FOR n =1 TO numreadings

1320 LET angle% = 360 * amount(n)/total + 0.5
1330 FOR totalangle% = (totalangle%-1) TO (totalangle% + angle%o)
1340 LET X = 400*COS(RAD(totalangle%))
1350 LET Y =400*SIN(RAD(totalangle%))
1360 MOVE 0,0

1370 GCOL0,(nMOD 7) +1

1380 PLOTS85,X,Y

1390 NEXT totalangle%

1400 NEXT n

82

Computation and mathematical modelling

The use of RND

The random number function of BASIC is not provided only for computer games! It ic
invaluable for carrying out statistical experiments, particularly where the results can &
displayed graphically. RADIOACTIVE DECAY (21) illustrates the use of this fundion
decide which nucleus should decay next. Since the position of this next nucleus is decic
at random, the chance of choosing a position with an undecayed nucleus depends upon
number of such nuclei remaining. This therefore simulates radioactiay dedte well
(Plate 13). The use of SOUND to simulate a Geiger counter is an idea suggested by
Jeffries at a conference in Jordanhill College of Education in June 1982.

kkkkkkkkkkkhkkkkkhkkkkkkkk k[kkkkkkkkkkik
DDk kkhkkk[)Jhkkkkkkkkkkkkk
JIEE RS SRS E S RS E S S S EE IR S S R S 2 FIE S 3 0
kR kk k[khk kb khkkkkkkkkkkkkkkikkik
3 ok ok ok ok ok ok ok ok ok ok ok ok ok ok [3k ok ok o ok ke ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok
o ok o ok ok ok ([2 ok ol ok ok ol ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok) ok ok ok ok ok ok ok ok
PR EAIEE SRS S S RAIEE S SR S S S EAIMIEE S 2 2 2 & 3 3 &
E A EE RS RS EEAIEE SRR SR E R RINMER SR 2 E IR £ 3
EEEEAIEE SAIEE S S S SRS S S S S S E QIR EAIE S 3 3 2
Ak kkkkkkkkkkhkkkhkkhkkhkkkhkkkkkk[Jhkkkkkkkkk

44\ RANDOM DECAY PLOT

a
N
\\\
N,

I\
L\
l

3

2
1

Plate 13 Radioactive decay

If one of the variables is discontinuous, then the bar chart is an obvious means of disp
as SUM OF TWO DICE (22) illustrates. This is a standard experiment, but few studen
could do it more than a few times as a practical exercise, so the microcoogiutezip to
make the pattern more obvious. In the space of a few minutes the experiment is perforn
hundreds of times (Plate 14).

The use of RND is patrticularly valuable in biology for simulating genetic linkage and
there are very many programs dahble for this. It is also used in the simulation of Geiger
and Marsden's experiment discussed later RUTHERFORD, 32).

83

The BBC microcomputer in science teaching

THE SUM OF THWO DICE
N TOTAL HUMBER OF THROMWS = 1889
1608

Plate 14 Probability distribution the sum of two dice

lterative Methods

The Nuffield Advanced Physics originators were-gghted in noting probable trends
towards more and cheaper calculators. They describe several experiments which run v
nicely on a microcomputeBasically,they suggest that as well as the traditional algebraic
(usually integral calculus) analysis of plog phenomena, teachers should explore
numerical solutions. A good example is the discharge of a capacitor through a resistor. T
can be solved algebraically by noting that the current flowing through the resistor is tr
differential of the charge on drihence the voltage across the capacitor. Since this current i
directly proportional to voltage, all that has to be done is integrate a reciprocal and end
with an exponential logarithm. The mathematics so obscures the physics that it is better
seeka stepby-step solution to the problem.

The voltage (V) across the capacitor is related to the charge (Q) in the capacitor by
Q=V*C (Eq.1)

84

Computation and mathematical modelling

This voltage causes a current (1) to flow through the resistor according to thlenoeith
formula

V=1*R (EQ.2)

If a current of one ampere flows for one second, the capacitor will lose one coulomb
charge, so in one millisecond, say, it will lose one millicoulomb of charge. Thus th
remaining voltage on the capacitor after one millisecond is a bit less thanbéfeas, and

we can use Eq.1 to calculate exactly how much less. This gives us a new value for V, w
which to begin the next millisecond. By hand it could take some time to see how tr
capacitor voltage is falling, but the microcomputer makes very shork of the
calculations. The exponential curve is obtained with only the three fundamental equatior
The actual program is listed below, but any student, particularly one able to comprehend-
calculus approach, could write such a program.

The maindifficulty is ensuring that the chosen values give results that fit the screen. Th
time axis (x axis) goes from 50 to 1279 unifsheseare seconds, then a time constant of
about 300 seconds is needed for th€ Bircuit. This is somewhat unrealistsn we pretend
that our time scale is in microseconds instead. The value for R can thus be a few thous
ohms and the value for C between 1 and 10 microfarads. The increntane between
each successive calculation (timgimefixed at 5 units in this program. It can be changed
to give a finer line (which is slower) or a more chunky line which is faster. Since

Capacitance (microfarad) 718

Resistance 728

Plate 15 Capacitor discharge by formula

85

The BBC microcomputer in science teaching

different values for R and C can be entered, students can éx tastliscover how the rate
of decay depends upon R and C (Plate 15), In so doing, they learn a great deal about
decay curve, which should transfer to their understanding of, say, radioactive decay too.

100 MODE1

110 GCOLO,3

120 MOVE 0,50:DRAW 1279,50

130 MOVE 50,0:DRAW 50,1023

140 PRINT TAB(0,0);" !

150 PRINT TAB(0,2);" "

160 PRINT TAB(0,0);"Capacitance (microfarad) ";:INPUT capacitance
165 PRINT TAB(0,2);"Resistance (ohms) ";:INPUT resistance
170 PRINT TAB(0,14);"V"

180 PRINT TAB(20,31);"time";

185 IF resistance=0 THEN resistance=0.001

190 REM INITIAL VALUES

200 LET E=800:REM INITIAL VOLTAGE

210 MOVE 50,E

220 time =50

230 LET charge= E * capacitance:REM microcoulomb
240 LET voltage=E

250 LET timeinc=5

260

300 REPEAT

310 LET current=voltage/resistance

320 LET charge=charge-current*timeinc

330 LET voltage=charge/capacitance

340 LET time=time+timeinc

350 DRAW time,voltage+50

360 UNTIL time>1279 OR voltage<5

370 GOTO 140

This approach to the analysis of phenomena is callettettadive method. It is applicable

in very many areagand not just physics). Programs 30 to 32 show how it may also be
applied to motion. Plate 16 shows the sort of results obtained with PROJECTILES (30), T
basic algorithm is as follows:

1 Assume initial position, velocity and acceleration.

2 Assume amall increment of time,

3 Determine the new velocity after this time interval.

4 Determine the distance travelled at this velocity during this time interval,
5 Calculate the new position,

6 Return to step 1, with new values of velocity and acatbe.

86

Computation and mathematical modelling

This gves a delightful way of tackling simple (and damped) harmonic motion, without
recourse to differential equations.

10 REM DAMPED OSCILLATIONS
20 REM BY THE ITERATIVE METHOD
100 MODE 1
110 VDU29,0;512;
120 GCOLO,3
125 MOVE 0,0
130 DRAW 1279,0
140 MOVE 0,-512
150 DRAW 0,512
160 INPUT TAB(0,0) "Coefficient of friction (O to 0.1) " friction
170 INPUT "Spring constant (0 to 10) " springconstant
180 INPUT "Mass of body (0 to 10) " mass
190 LET amplitude=300
200 LET displacement=amplitude
210 LET speed=0:REM INITIAL SPEED
220 MOVE 0,displacement
230 LET time=0
240 LET timeinc=5
250 REPEAT
260 LET restoringforce=-springconstant*displacement/10000
270 LET frictionalforce=-friction*speed
280 LET totalforce=restoringforce+frictionalforce
290 LET acceleration=totalforce/mass
300 LET speed=speed+acceleration*timeinc
310 LET displacement=displacement+speed*timeinc
320 LET time=time+timeinc
330 DRAW time,displacement
340 UNTIL time>1279

On each run different values can be entered to discover the role that each variable play
the overall motion. If this is coupled with actual experimental work with masses on the er
of a spring, | believe the approach to be much more truly physicsthleatraditional
mathematical approach.

For projectiles there are two directions (x and y) to consider, However, these can |
considered entirely independently, so the only complication is that there are twice as ma
calculations in each cycle. PROJHCES (30) illustrates this: the motion in the x direction
is constant velocity, while that in the y direction is constant acceleration (Plate 16). Th
program also shows how easy it now is to include more difficult ideas. The usual treatme
of projectiles ignores friction and leads to the ideal case of 45 degrees as the angle
maximum range. PROJECTILES incorporates a frictional drag, proportional to the spee
which reduces the speed and leads to the idea of terminal velocity. The resulting motion
not unlike that predicted by Bacon's impetus theory. The acceleration

87

The BBC microcomputer in science teaching

Enter new angle of projection in degrees

range 18 to 88. 7608_

Plate 16 Projectiles

due to gravity and the friction (dragcoeff) can be altered for different effects (projectiles
in treacle?).

Motion under a central force is rarely unsteod. NEWTON (31) is a game that any
student should be able to solve, but it often fools physics graduates. The objective is to |
a rocket into moon orbit from outside. Try it and see if you understand Newton's law
yourself (Plate 17). The programdircalculates the distance between the rocket and the
centre of the moon. This is converted into two forces, one which affects the acceleration
the x direction, the other the y direction. This in turn leads to predictions of where the rock
will be after the next unit of time (timeinc) and the process reiterates until the rocket crash
on the moon's surface or disappears off the screen. The value of 'timeinc' can be altere
before to achieve smoother if slower motion.

Alpha particle scatteriny a gold nucleus provides a classic derivation for university
undergraduates. | understand that the mathematics of this was too difficult for Rutherfo
and was handed over to a mathematician. | imagine that Rutherford would have loved t
iterative methd. The essential part of RUTHERFORD (32) is very similar to its equivalent
in NEWTON, except that the force acting is reversed to produce repulsion instead
attraction. The motion is also speeded up (with a loss in resolution) to allow a large numk
of particles to be observed. These are fired at random at the gold nucleus and only a 1
pass close enough to be deflected (Plate 18). So the mathematics is reduced to the |
where any sixth former can understand it. |

88

Computation and mathematical modelling

Space station

Plate 17 Satellite motion

Plate 18 Rutherford alpha particle scattering simulation

The BBC microcomputer in science teaching

am not sure that many teachers, particularlghofsics, have yet realized the implications

of this. If, as | suspect it will, computer programming becomes the fourth R, the traditione
dependence of advanced science subjects upon mathematics could be allowed to declin
thus opening them up to more édéunts than hitherto.

Modelling the environment

The iterative process has wider applications than those above and it was used by the
Huntingdon Project, which produced the wiatlown simulations in biology and

chemistry. One athese, POLLUT, analysesdleffect of certain types of pollutant upon
water life and another, HABER, looks at the effects of changing the temperature and
pressure etc. of the reactants in an industrial process. Practically anything that can be
guantified, can be mathematically méidd, although the accuracy of the predicted
outcomes is not necessarily reliable. It depends upon whether all the important factors
have been taken into account.

To illustrate the principles, fox and rabbit populations can be modelled to predict how
they change with time. It is assumed that the rabbits' food is infinite so that they can
reproduce without restriction. Although the increment of time is assumed to be one week
it is possible to enter an arbitrary rate of growth for the rabbit popula¢itveen 0 and 5
per cent.

The growth in the fox population is dependent upon the supply of rabbits. If foxes only

Press R to repeat.
weeks = 1288

Fox population

Plate 19 Fox and rabbit population simulation

90

Computation and mathematical modelling

eat rabbits, then they will begin to die if their population exceeds some fadha @bbit
population. Foxes with abundant food reproduce at a constant rate, which is also cho:t
before the start of the iteration. It is assumed that the starvation rate of foxes depends u
the ratio of foxes to rabbits, which seems reasonableulttieer assumed that the death rate
of rabbits is proportional to the product of rabbits and foxes. This assumes that one fox w
1000 rabbits will still eat twice as much as the same fox with 500 rabbits. (I greatly suspe
the model at this point.) Theumber of rabbits that are eaten depends upon the number c
foxes and the number of foxes depends upon the number of rabbits. This classic probl
can only be solved by an iterative process, since the equations generated have no analy
solution (Platel9).

10 REM FOX AND RABBIT SIMULATION
100 MODE4
110 ON ERROR GOTO 500
200 CLS
300 INPUT "FOX GROWTH RATE (range 0 to 5%) "foxgrowthrate
310 INPUT "RABBIT GROWTH RATE (range 0 to 5%) "rabbitgrowthrate
320 PROCpopulation
500 PRINT TAB(0,0);"Press R to repeat. "
510 IF INKEY$(255)<>"R" THEN 510
520 GOTO 200
1000
2000 DEF PROCpopulation
2010 CLS
2020 LET
weeks=0:rabbitgrowthrate=rabbitgrowthrate/100:foxgrowthrate=foxgrowthrat
e/100
2030 PRINT TAB(0,0);"Press ESCAPE to stop."
2040 PRINT TAB(12,2);"weeks ="
2050 LET rabbits=3000
2060 LET foxes=20
2070 PRINT TAB(12,30);"Fox population”
2080 PRINT TAB(10,20);"Rabbit population™
2100 REPEAT
2200 LET babyrabbits=rabbits*rabbitgrowthrate
2210 LET deadrabbits=0.001*foxes*rabbits
2220 LET rabbits=rabbits+babyrabbits-deadrabbits
2230 LET babyfoxes=foxes*foxgrowthrate
2240 LET deadfoxes=5*foxes/rabbits
2250 LET foxes=foxes+babyfoxes-deadfoxes
2260 weeks=weeks+1
2270 PRINT TAB(20,2);weeks
2280 GCOLO,1:PLOT69,weeks,2*foxes+100
2290 GCOLO,3:PLOT69,weeks,rabbits/20+400

91

The BBC microcomputer in science teaching

2300 UNTIL weeks>1279 OR rabbits>25000
2400 ENDPROC

As a physicist | find this much less satisfying than the same approach applied to phys
because | can justify some of the values entered into the equations of motion. | am not at
sure about the constants entered into the fox and rabbits progrdrasél them to get the
right result!) However, | am sure that biologists will be able to do it properly once the
essential idea has been appreciated.

92

4 Microcomputer timing and control

‘The question is," said Humpty Dumpty, 'which
Is to be Master that's all.'
(Lewis Carroll, Through the Looking Glags

Interfacing a microcomputer

Most control applications use twatate devices. An electric light switch can be up or down.
An electromagnetic relay can be on or off. A valve can be open or closed. Digital electror
systems are used to switch such devices on or off. Although quitdeocgmpnicrocomputer
is still only another digital system, so it is possible to use a microcomputer to control tr
above devices. It can switch lamps, relays, motors and valves on or off.

This is not a normal function of a microcomputer and it habeenh designed specifically
to do this. Consequently the current needed to switch on these devices may be larger t
that provided by the microcomputer output. There has to be some interface between
microcomputer and the device being switched, to bit@sswitching current to the correct
levels.

A microcomputer can also be used to detect whether any particulstdteodevice is in
its on or its off state. Here, the switching voltages involved may be different for each devic
so some interfacenust be used to change the voltage levels of the device to the leve
acceptable to the microcomputer.

In digital electronics we are only concerned with {state devices, ones that can be
switched on or off. Generally, to switch a device on, we seHHiGH voltage to its input.
To turn it off, we send a LOW voltage. HIGH and LOW are obviously not the same fo
different devices, here are a few examples:

Device On Off
light emitting diode 1.2V 0.5V
torch bulb 3.0v 1.5V
electromagnetic relay 5.0V 2.0V
silicon transistor 0.7v. 0.5V

TTL integrated circuit 2.4V 0.4V

To remove this uncertainty about what is 'HIGH' and what is 'LOW', engineers use TT
logic levels. TTL stands foFransistofTransistorLogic; it is a particular standard used in
the electronics industry. A TTL HIGH voltage is between 2.4 and 5.5 \¢hywhs you can
see, will switch on all the above devices. A TTL LOW voltage is between 0.4 and 0 V
which will switch all these devices off. A HIGH voltage is also called logic level 1 and &
LOW voltage is called logic level O.

Connections to the BBC microcomputer are made through its user port. This is

93

The BBC microcomputer in science teaching
described in detail later in this chapter, but to begin with we shall just use it withou
explaining how it works. A logic board or a twaput board may be connected to thser
port and all investigations in this chapter will be done with these. The design of these boal
and the methodf connectinghem to the user port are described at the end of this chaptel
The power supply for these logic boards comes from the naiorpater itself.

The tweainput board (Figure 4.1) consists of two input sockets and a transistor drive
LED to indicate the logic state of the output. It can be used by the microcomputer to

17

to microcomputer

0 ®
Bl ———

Y

A O.__ output

O O

Figure 4.1 The twoeinput board
LOGIC GATES

SELECT DESIRED GATE BY PRESSING ONE

OF THE FOLLOWING NUMBERS.
1 AND

OR
NOT
EXCLUSIVE-OR
EQUIVALENCE
NAND
NOR

Plate 20 LOGIC GATES
94

Microcomputer timing and control

simulate each of the standard logic gates. Once the board has been connected to
microcomputer in the manner discussed in the Appendix, LOGIC GATES (1) should b
loaded and run. It works in the following way.

The twoinput board has two inputs ldkel A and B. When the program is run it asks
which logic gate is to be simulated (the choice is AND, OR, NOT, NAND, NOR,
EXCLUSIVE-OR or EQUIVALENCE) (Plate 20). After the selection is made (by pressing
one of the keys 1 to 7) the screen displays a diagrfathe board (Plate 21), indicates the
current logic states of the inputs and the output, displays the appropriate truth table a
highlights the particular line of this truth table which is currently being implemented.

The input logic levels can be changed by connecting them to the 5 V terminals (rec
which makes them go HIGH, or they may be connected to the black 0 V terminals, whic
makes them go LOW. Unconnected inputs float HIGH; the normal condition for TTL
devces. When the logic level of either input is changed, the display also change
accordingly.

This program has been found to give a good introduction to the principles of logic gate
It also illustrates the way that a programmable device, like a caigrputer, can be used to
produce different Boolean functions under the control of a program. Program 1A is
variation on the above called LOGIC TEST. This illustrates the capability of the
microcomputer to assess practical ability as well as just knowléddgmittedly in a
specialized area). This program uses the samenmwd logic board, but this time it is the
program that selects the type of gate being implemented. The student hi

(0> OUTPUT

Plate 21 Simulation of logic gates

95

The BBC microcomputer in science teaching

to send the inputs HIGH ®wOW and look at the output logic level each time. From the truth
table is constructed and the student guesses which of ten possible gates is being produ
After three guesses the student is informed of the correct answer and its truth table
displayed.The student may verify this before proceeding with another gate.

Four-bit logic
The logic board (Figure 4.2) has four input terminals labelled A, B, C and D and four outpi
terminals labelled W, X, Y and Z. All terminals are connected to LED indicadoshow

their logic state. When a terminal is HIGH, its LED is on, when a terminal is
to user port

ol i
O)+5v e
ol ® ® Oz
clO ® ® QY
BO (034 X Ox
A0 ® Q@ [Ow
Olov oviO

Figure 4.2 The logic board

+5V

1k0

Q
wlofofo

©)

logic board

Figure 4.3 Switch inputs
96

Microcomputer timing and control

LOW, its LED is off. The LEDs connected to A, B, C and D indicate the state of the input:
These stas are determined by the voltages at the input terminals, usually from son
external device like a switch. The LEDs connected to W, X, Y and Z show the output log
levels. These are the levels chosen by the microcomputer. They do not depend upon
devices connected to the output terminals.

Logic inputs

The easiest way to create HIGH and LOW logic inputs is with switches. When a switch

to the left, its output is connected to the 0 V line (also c@ltednd), so it will be LOW,

or at logic 0. When the switch is to the right, the output is connectld fovolt line through

the 1 kilohm resistor, so it will be HIGH, or at logic 1. Connect the outputs from the four
switch unit to the logic board inputs as in Figure 4.3. Make sure that the 5V and 0 V line
of each board are connected too. When thechest are operated, the LEDs should go on

and off.

Logic gates

With integrated circuits different Boolean functions can be made by connecting NANL
gates together. Each function is made by combining the gates in a different way, as descri
in Chapter 2 of Microelectronics. The advantage of a programmable systentiseteame
circuit can be used to produce these different functions, under the control of the progra
This can be demonstrated with LOGIC GATES, but the more powerful version of thi
program, called LOGIC TUTOR (2) enables several different gates timdated at the
same time. This program uses the logic board and makes each of the four

outputs into different Boolean functions of the inputs. For example, in Figure 4.4, output \
has been set up as the AND combination of inputs A and B. The progravs gta to set

up any output as a particular logical combination of any inputs. The best way of explainir
it is to do this example.

[0 ®
clQ) Q
8[OF-- 4 Ol
NoRS W Se

Figure 4.4 Simulating an AND gate
97

The BBC microcomputer in science teaching
When the program is run, it asks which Boolean function is required, thus:

BOOLEAN FUNCTIONS
SELECT ONE OF THESE FUNCTIONS BY TYPING ITS NUMBER THEN
PRESS <RETURN>

AND

OR

NOT
EXCLUSIVE-OR
EQUIVALENCE
NAND

NOR

~No ok, WNE

Select the AND function by pressing key 1 followed by the RETURN key. The progran
will then ask which output you want to provide this function:

WHICH OUTPUT ?
ENTER ONE OF W, X, Y OR Z
THEN PRESS <RETURN>

Select output W by pressing key W followed by the RETURN key. The program now ask

HOW MANY INPUTS ?
ENTER 1, 2, 3 OR 4 AND THEN PRESS

Select two inputs by pressing key 2 followed by RETURN. Finally the program asks

WHICH INPUTS ?
ENTER TWO OF A,B,CORD
THEN PRESS <RETURN>

Select inputs A and B, by typing A followed by RETURN and then B followed by
RETURN.

The screen clears to display a symbol for the AND gate, indicating your chosen inpu
and outputs. At the same time the logaard is set up to behave in the same way. Output
W will become the AND combination of inputs A and B. The display will show the logic
state of the inputs and the outputs as a 1 or as a 0.

Connect the logic board to the switches as in Figure 4.3hemdinvestigate this AND
combination by switching inputs A and B HIGH and LOW. Note what happens to the LED
associated with W and with A and B. First make both inputs LOW and check on the \
output. Then make input B HIGH and input A LOW. Then make inpttl&H and input
B LOW. Finally make both inputs HIGH. Note that the screen display also shows the log
state of these inputs and outputs (although there is a short delay after they are chang
because the program is in BASIC and is rather slow).

98

Microcomputer timing and control
It is possible to summarize all the information about the AND gate with its truth table:

Input A Input B Output
LOW LOW LOW
LOW HIGH LOW
HIGH LOW LOW
HIGH HIGH HIGH

The 'HIGH' and 'LOW' in this table are voltages. Note that the output from the AND gate
only HIGH if both of its inputs are HIGH. If only one or neither inputs are HIGH, then the
output is LOW. The reason for calling this an AND gate is now clear. Uitpaibis HIGH

only if both input A AND input B are HIGH.

This program allows all the standard gates to be investigated as before, but with t
advantage of being able to compare different gates. For example it is easy to show that
EQUIVALENCE gateis the inverse of the EXCLUSIVMDR gate by giving them the same
inputs and two adjacent outputs.

For later reference, the truth tables that can be investigated with these two programs \
now be discussed. First, note that there are two other Way#iag truth tables, as follows:

A B Output A B Output
0 0 0 L L L
0 1 0 L H L
1 0 0 H L L
1 1 1 H H H

The 'H' and 'L' stand for HIGH and LOW voltages as before, and the '1' and '0' have t
same meaning: they are called logic 1 and logic 0 to avoid confusion with the integers 0 a
1.

The NOT gate
Select the NOT function by entering key 3 when the mewdisplayed. Make W the output
for this function in the way described above. A NOT gate only has one input, so make tf
input A, by entering A as the required input.

A switch can be used to make this input HIGH or LOW and the LED can be used to s
if the output is HIGH or LOW. The NOT gate produces this truth table.

Input Output
LOW HIGH
HIGH LOW

You will notice that the output is always the exact opposite or inverse of the input, whic
gives this function its other name: the INVERTER.

The NAND gate

Create the NAND function by selecting 6 on the menu. Set up W as the output and A ant
B as themputs, exactly as for the AND function above. Two switches are needed to

99

The BBC microcomputer in science teaching

provide the inputs to this NAND gate, called input A and input B. The LED indicators shov
the logic level of these inputs and of the NAND gate output. Try different combinations c
inputs A and B and note the effect on the output each time.

Input A Input B Output
LOW LOW HIGH
LOW HIGH HIGH
HIGH LOW HIGH
HIGH HIGH LOW

The OR gate
The OR function can be investigated after being selected with key 2.

Input A Input B Output
LOW LOW LOW
LOW HIGH HIGH
HIGH LOW HIGH
HIGH HIGH HIGH

The NOR gate
Select and investigate the NOR function with key 7.

Input A Input B Output
LOW LOW HIGH
LOW HIGH LOW
HIGH LOW LOW
HIGH HIGH LOW

The EXCLUSIVE -OR gate
Select the EXCLUSIVEOR gate by entering key 4 from the menu.

Input A Input B Output
LOW LOW LOW
LOW HIGH HIGH
HIGH LOW HIGH
HIGH HIGH LOW

The EQUIVALENCE gate
select the EQUIVALENCE gate with key S and continue as before.

Input A Input B Output
LOW LOW HIGH
LOW HIGH LOW
HIGH LOW LOW
HIGH HIGH HIGH

100

Microcomputer timing and control

Boolean algebra

The language of Boolean algebra is used to describe the functions produced by differ
logic gates. In this algebra only three relationships are used: AND, OR and NOT. 'NO
refers to the INVERTER. If the input to an INVERTER is called A then its oufppNOT

A. The words AND, OR and NOT have particular meanings not to be confused with the
normal English usage. Let us therefore digress for a moment to study the meaning of th
terms as used by BBC BASIC. This will help to explain how AND, OR and NOJ brea
used for controlling and monitoring external equipment.

From the point of view of the microprocessor, data is processed ashibiites. Each
byte has eight separate logic levels giving 2 x 2 x 2 X2 X2 X 2 X 2 X 2 or 256 possib
combinatiors of 1 s and Os. Every piece of information, whether instructions like add o
AND or numbers like 99, are sent to the microprocessor as different combinations of byte
We have already seen how eight bits can be used to represent numbers in the birary coc
different alphabetic and graphics characters in the ASCII code. Interpreted as a decimr
each byte can represent any one of the 256 integers from 0 to 255.

When using Boolean expressions BBC BASIC interprets these bytes in yet another
different way. A number in a BASIC Boolean expression is regarded as a twos
complement integer, with a value betwegB8 and 127, according to the following
table:

Binary Twos complement Decimal
0000 0000 0 0
0000 0001 1 1
0000 0010 2 2
0000 0011 3 3
0000 0100 4 4
€. ée. é e
€. ée. é e
0111 1100 124 124
01111101 125 125
01111110 126 126
01111111 127 127
1000 0000 -128 128
1000 0001 -127 129
1000 0010 -126 130
1000 0011 -125 131
1000 0100 -124 132
e. e. é e
e. e. é e
1111 1100 -4 252
11111101 -3 253
1111 1110 -2 254
11111111 -1 255

It can be seen that adding 1 to any of these representations increases it by 1. When 1 is
101

The BBC microcomputer in science teaching

added tol , the binary number becom&30000000 as its decimal equivalent goes frdm
to 0, but the register can only hold eight bits, so this ninth bit is lost and the result is zero
The only exception for twos complement coding is when 127 is increased by 1 to becor
-128. This repres#ation is often used at machine code level to represent negative integer
For example, in Chapter 2, to make -altaracter move backwards across the screen, we
subtracted 1 from its current screen address. In the equivalent machine code progran
Chapte 8, we achieve the same end by adding 255.
Just to complicate matters, BBC BASIC uses four bytes to store integers, so that it actue
interprets the binary number

111111711 11111111 1117121171 11111111

as-1. However, since we only deal with eight input and output devices, | shall igeor
this and pretend that the table above is the valid one. It makes no difference to the discus:
at all.

BASIC and the logic board

The logic operations of BBC BASIC follow straightforward rules, which seem to be
nonsense until these rules are una®dt The BASIC statement Z = A AND B, performs
the AND operation between each bit of the number A and the number B. The correspondi
bits of Z are set or cleared accordingly. If A is 6 and B is 5, then the AND combination ¢
the two binary numbers is fus:

Ais 00 O0O0OT110
Bis 00O0OOT1O01
Zis 00 O0OO0OOT1O00

The AND truth table is applied to each corresponding pair of bits in A and B. There is a
in Z wherever there is a 1 in the same bit position of both A and B. Thus the BASI(
command PRINT 6 AND 5, gives the result 4.

AND is a very useful expressioarfturning a logic board output off without altering other
outputs. The logic board outputs share the same output address. Output Z is connected t
7 of the output port and has the decimal value of 128. Similarly, output Y is 64, output X |
32 and oytut W is 16. The statement ?outputs = 240 switches all outputs on and tf
statement ?outputs = 0 switches them all off. To switch one particular output off, we ANI
all the other outputs with logic 1 and the chosen output with logic 0. For example, to tut
off output Z, use

?outputs = (?outputs AND 112).
112 in binary is 0111 0000, so if output Z is already on (1), it will go off (1 AND O). If Z is

already off, it will stay off (0 AND 0). Output X will be unaffected since it is ANDed with
l. If X is on, it stays on (1 AND I). If X is off, it stays off (OMD I).

102

Microcomputer timing and control

The BASIC statement OR behaves in a similar way. A 1 is placed in the result fdr each
in either A OR B at that bit position:

Ais 00 O0O0OOT110
Bis 00O0OOT1O01
Zis 00 O0OO0O0O0T111

Thusthe BASIC command PRINT 6 OR 5, gives the result 7.
OR is useful for turning a logic board output on, without altering the other outputs.

?outputs = (?outputs OR 128)

will turn output Z on, irrespective of whether it is already on or off, yet the other output bit
are being ORed with O, so they are unaffected.

The NOT operation is the most difficult to understand, since it is here that negative valu
occur. Decimbzero is actually 0000 0000 in binary, so NOT 0 is thenlde complement
of this 1111 1111. BASIC interprets this a&. This also explains why the BBC
microcomputer gives such funny results when asked to do comparisons between numbe

PRINT (1>0) which is TRUE and gives the result -1
PRINT (0>1) which is FALSE and gives the result 0
PRINT (X=X) which is TRUE and gives the result -1
Oddest of all is the following:

PRINT 1 AND -1 which gives the value 1.

The Boolean constants TRUE andLlE2E can be converted to single bits by using the AND
operation above. This is because true is 1111 11111111 1111, which it priitediaas
get TRUE = 1 it (or the result of any logical expression) should either be ANDed with 1 c
alternatively the SSOLUTE value can be taken.

PRINT gives the value 1
PRINT (0<1) AND 1 gives the value 1

If Ais 1 then NOT A will have the value.

A s 00 00 0110
NOTA is 00 0 0 0 101

It can be seen that the twos complement code interprets H2isvalsich is the result that is
printed.

To overcome such problems when using BASIC with inputs and outputs, it is necesse
to ensure that all input variables are single bits to begin with. The BASIC operations ANL
OR and NOT can then be used as required. Then, before the final resalied, pr should
again be ANDed with 1, to remove all the other bits. An inspection of the listing for LOGIC
TUTOR will show how this is actuallgichieved.

The BASIC statement EOR behaves in the same way as EXCLUSR/Hiscussed
above; a 0 is placead the result for each corresponding bit position where A and B are the
same. A 1 is placed in the result if the A and B bits are different.

103

The BBC microcomputer in science teaching

Ais 0 0 0 0 0 1 1 0
Bis 0 0 0 0 0 1 0 1

same same same same same same diff. diff.
Result 0 0 0 0 0 0 1 1

Thus the BASIC command PRINT 6 EOR 5, gives the result 3.

This operation is also useful for manipulating an output. EORIing it with logic 1 will make
it change state, since | EOR 1is 0 and 0 EOR 1 is 1. So the statement ?output = (?ouf
EOR 128) wvill turn output Z on if it is off and off if it is on. The four outputs of the logic
board could thus be toggled in this way by EORing each of them with their correspondir
bit value.

Before the invention of the microprocessor, in order to make afestronic system an
engineer would have to design a new circuit. It was most unlikely that new componen
could just be added on to a previous circuit, so the whole system would have 1nddere
from the beginning. This is how digital systems were huilthe 1960s and 70s, from
combinations of separate integrated circuits. They were all wired together in the correct w
to produce the desired function. Even if the system was sold in large numbers, each one
still to be built up separately on a pedtcircuit board, so that the different gates could be
correctly wired together.

The microprocessor changes this, because the same hardware can be made to do diffe
things merely by changing its program. The same microprocessor can thus be ohade to
many different things, from shearing sheep to controlling a power station, making a tedc
bear speak or running a microcomputer or even space invaders. Because it is the s:
microprocessor in each case, a very large number of them can be producsteaety.

Program 3 (called LOGIC MAKER) shows this flexibility, allowing you to create your
own Boolean functions. In order to do this the required function must be entered as part
the program. Begin by connecting the logic board to the BBC microcomputgrarsand
then load LOGIC MAKER. This can be run, to produce the logic function A AND B, which
will appear at gate Z. On the screen the inputs and outputs of the logic board will |
displayed.

To change the function, press key E, which will end tlogram, leaving lines 5000 to
5100 of the program displayed on the screen. You may now create any function of yo
own, provided it conforms to the syntax rules of BASIC and the ways we have alreac
described for writing out Boolean functions.

Changethe function in line 5010 to any other function (and remember to pres:s
<RETURN> to enter the new function). Thenrum the program and it will now execute
with your new function. For example,

5010 Z = (NOT A OR B)
or 5010 Z = NOT(NOT A AND NOT B)
or 5010 Z = AEOR B

The variables should be A, B, C or D but you will not have to declare beforehand which yc
have used. The final outputs should be W, X, Y or Z. It is possible to use other variable
although you will not be able to find out whatwes they take. For example,

104

Microcomputer timing and control

5010 T=NOT AAND B
5020 S = NOT B AND A
5030Z=TOR S

This example also shows that it is possible to put in more than one line for the functio
provided it does not have to work backwards. That is, you cannot put

5010Z=NOTT
5020 T=NOTBORA

because T does not have its correct value in line 50tliGatter line 5020 has been executed.
This causes a 'no such variable' message to appear. A few more examples are given be
but the fun in this program is to create your own functions and then see what you ha
produced. Do this by stepping througte ttruth table with the switches and noting the
outputs in each case.

5010 Z = NOT (A OR B)

5010 Z = NOT (NOT A AND NOT B)

5010 Z = NOT (A AND B)

5010 Z = NOT (A EOR B)

5010 Z = (NOT A AND B) OR (A AND NOT B)
5010 Z = (A AND B) OR (NOT A AND NOT B)

The BBC microcomputer user port

The microcomputer communicates to humans in the outside world through its keyboard a
TV display. It communicates with electronic control systems through its user port. Thi
consists of eight lines through which digigignals can pass in either direction. These
signals are voltage levels on each of the eight lines, that are either HIGH or LOW. The
lines are connected to\dA (versatile interface adapter), which is a special input/output
chip inside each BBC Model Biotocomputer. The eight lines can be set up so that they
are all outputs, or so that they are all inputs or any combination of the two. The VIA is tol
which lines are inputs and which are outputs througlata direction register (DDR).

This is an eighbit register with each bit corresponding to one of the user port lines. If a bi
of the DDR is turned on (logic 1), then the corresponding line of the user port becomes
output. If that bit is turned off, then the same corresponding line of the usdreggomes

an input. The decimal values of each bit are as follows:

Line number Bit Decimal value
7 1000 0000 128
6 0100 0000 64
5 0010 0000 32
4 0001 0000 16
3 0000 1000 8
2 0000 0100 4
1 0000 0010 2
0 0000 0001 1

105

The BBC microcomputer in science teaching

The individual bits of the DDR are changed from BASIC by writing to its memory location
with the decimal equivalent of the bits. The addresses used are as follows:

DDR = 65122 (DATA DIRECTION REGISTER)
PRT = 65120 (USER PORT)

data direction
240 —| 1 1 1 1 ¢ ¢ ¢ ? | register 65122

user port 65120

R

outputs inputs

Figure 4.5 Configuring the VIA

?DDR=4 will turn bit 2 of the DDR on and all other bits off. the user port will turn line

2 into an output, whereas the other seven lines become inputs. By adding these decil
values together different combinations of input and output lines can be achieved (Figu
4.5). Thus ?DDR=240 (which is 128 + 64 + 32 + W@) make the lines corresponding to
bits 7, 6, 5 and 4 into outputs and the lines corresponding to bits 3, 2, 1 and 0 into inputs

Outputs

After beingconfigured in the required way, the user port can then be used. Data can only
be sent out from arle if it has previously been configured for output. Since ?DDR = 255
will set up all eight lines for output, let us assume that this has been done. Now the user
port can be told which of its output lines are to be on (or HIGH) and which are to be off
(or LOW). A line goes HIGH if the corresponding bit of the user port (PRT) is a 1; the
line is LOW if the corresponding bit is a 0. Thus ?PRI'will switch on line 0 and will
switch all other lines off. The decimal values of each line are as in theataile.
Combinations of lines may thus be made by adding these decimal values together, for
example,

?PRT=0 (in binary: 0000 0000) sends all lines LOW.

?PRT=53 (0011 1111) sends lines 0 to 5 HIGH and 6 and 7 LOW.
?PRT=127 (0111 1111) send lines 0 to 6 HIGH and line 7 LOW.,
?PRT=255 (1111 1111) sends all lines HIGH

106

Microcomputer timing and control

Inputs
If lines have been configured for input (by executing ?DHR), then their voltage levels
can be read from the PRT address with

LET X=?PRT or X=?PRT

If any line to the user port is connected to a voltage between 2.4 and 5.5 volts, the user |
interprets this as a HIGH (or logic) level. If the voltage applied to the line is between 0.
and 0 volts, the interface interprets this as a LOW (or loglev@l. This range, 0 to 5.5
volts represents the maximum and minimum voltages that can be applied to the user p
Voltages outside this range can damage it, so care must be taken to keep input volta
below 6 V and above 0 V. This implies that alteirmgtvoltages should not be input to the
user port without protective buffering circuits.

Sensing and controlling the environment

Increasingly in industry, the solution of problems in electronics is becoming one of adaptir
a general purpose circuit tepecific application, rather than designing a special circuit each
time. Traditional control technology in schools has laid emphasis upon the second of the
approaches: the hardware solution. The user port of the microcomputer can be usec
demonstratehe more modern software approach. The first programs described belo
demonstrate how the unit can be used to control the LEDs of the logic board. Note that
each case, the electronic circuit remains the same, it is only the programs that are chancg

Switching outputs

This investigation enables you to switch the outputs on or off in any sequence. The fil
example shows how any outputs can be switched on in any order. For this program it
assumed that the top three LEDs on the right side of the bogird (Z, Y and X) represent
the red, amber and green traffic lights. The program shows how these lights can
controlled by writing the numbers 128, 64 and 32 (and combinations of them) into th
correct address for the logic board. The data direcggrster in line 100 is used to set up
the lines of the user port (bits 4, 5, 6 and 7) as outputs.

1 REM CONTROL EXAMPLE 1 - TRAFFIC LIGHTS
10 DDR=65122:REM DATA DIRECTION REGISTER
20 PRT=65120:REM USER PORT

100 7?DDR=240:REM SET UP INPUTS AND OUTPUTS
110 ?PRT=128:REM SWITCH ON RED

120 FOR T=1 TO 8000:NEXT T:REM LONG DELAY

130 ?PRT=128+64:REM SWITCH ON RED AND AMBER
140 FOR T=1 TO 1500:NEXT T:REM SHORT DELAY
150 ?PRT=32:REM SWITCH ON GREEN

160 FOR T=1 TO 8000:NEXT T:REM LONG DELAY

170 ?PRT=64:REM SWITCH ON AMBER

180 FOR T=1 TO 1500:NEXT T:REM SHORT DELAY
200 GOTO 110:REM REPEAT SEQUENCE

107

The BBC microcomputer in science teaching

Now try switching on the output LEDs in a different sequence with different delays. Tt
satisfy those critics of example 1, who say that they can do traffic lights just as well withot
a microcomputer, example 2 is almost impossible to emulate with traitt@rdware;
switching the LEDs on and off in random sequence. For this purpose a random numt
betweerD and 255 is sent to the user port address. You may observe that this also switcl
the bits corresponding to the input lines too, but that the ingislare not affected. A line
configured for input will not respond to outputs from the microcomputer.

1 REM CONTROL EXAMPLE 2 - RANDOM LIGHTS
10 DDR = 65122:REM DATA DIRECTION REGISTER
20 PRT =65120: REM USER PORT
100 ?DDR = 240:REM SETUP INPUTS AND OUTPUTS
110 R=RND(256-1)

120 ?PRT=R:REM SWITCH LIGHTS AT RANDOM
130 FORT=1 TO 500:NEXT T:REM SHORT DELAY
140 GOTO 110

The next program switches on the LEDs in a more orderly way, by adding sixteen to the
number written to the user poddress each time. The LEDs thus count up in binary.

1 REM CONTROL EXAMPLE 3 - BINARY COUNTER
10 DDR =65122:REM DATA DIRECTION REGISTER
20 PRT =65120: REM USER PORT

100 ?DDR = 240:REM SETUP INPUTS AND OUTPUTS
110 FOR R=0 TO 240 STEP 16

120 ?PRT=R

130 FOR T=1 TO 1000:NEXT T:REM SHORT DELAY
140 NEXTR

150 GOTO 110

Can you discover how to make the LEDs count down in binary instead?

A common chip used in microelectronics is the shift register, which is simungtiils
example. It is particularly useful for convertiagrial data, where the eight bits are sent
one after the other along a single pair of lines, paxallel data, where all eight bits are
sent simultaneously along a set of eight separate linescgversa).

1 REM CONTROL EXAMPLE 4 - SHIFT REGISTER
10 DDR =65122:REM DATA DIRECTION REGISTER
20 PRT = 65120:REM USER PORT

100 ?DDR=24:REM SET UP INPUTS AND OUTPUTS
110 R%=4

120 R%=R%+R%

130 ?PRT=R%

140 FOR T=1 TO 1000:NEXT T:REM SHORT DELAY
150 IF R%<200 THEN 120

160 GOTO 110

108

Microcomputer timing and control

Pulse output

The simplest way of producing output pulses is by switching lines of the user port alternate
off and on, relying on delay loops to control the timing. In BASIK& maximum rate at
which an output can be switched on and off is about 50 Hz. This is sufficient for .
metronome but not for much else. The program used is relatively simple as follows.
produces pulses on bit 7 of the logic board (output Z), which beagonnected to an
amplifier and loudspeaker if required. The sound could, more sensibly, be produced by t
BBC microcomputer's own SOUND statements. Here we are demonstrating the use of |
user port:

1 REM CONTROL EXAMPLE 5 - METRONOME
10 DDR =65122:REM DATA DIRECTION REGISTER
20 PRT =65120:REM USER PORT
50 CLS

100 INPUT "NUMBER OF BEATS PER MINUTE" N
110 LET limit = 6000/N

120 7DDR =128:REM BIT 7 AS OUTPUT

130 TIME=0

140 7?PRT=128:REM BIT 7 HIGH

150 FOR T=1TO 10:NEXT T

160 ?PRT=0:REM BIT 7 LOW

170 RET UNTIL TIME>limit

180 GOTO 130

Using these principlegou should now be able to control any system you wish. For
example, the logic board outputs could be connected via relays to a mobile crane to shi
load. One output might be connected to switch a motor in the forward direction to lower &
electromagnetAnother output could switch the power to the motor in reverse to raise i
again. Another might drive the crane forwards and the fourth could drive it backwards. T}
distances travelled could be controlled by the length of time that the motor is swatched

If such a system is tried out, you will discover one problem. A motor switched on for, sa
ten seconds, in the forward direction might cause the crane to travel say fifty centimetre
Ten seconds in the reverse direction produces a movementfoftyafjve centimetres. So
each sequence results in the crane ending up in a different place. What is missing
feedback. The microcomputer needs to know exactly where the crane has got to at a
instant. This is one reason for providing the microcompuiir inputs.

Using the inputs

The state of the user port is read from its address with the LET X = ?PRT statement. Ol
bits O to 3 of the logic board can be inputs. The number read will, however, include the sta
of the outputs too. It must be deenldto determine which particular inputs are HIGH and
which are LOW. If more than one line is HIGH, the value returned in X will be a
combination of the corresponding numbers above. Thus if the X value is 12, this means tl
inputs C and D are HIGH and téhers are LOW. Similarly if X = ?PRT vyields the value
3, this means that inputs A and B are HIGH and the others are LOW.

109

The BBC microcomputer in science teaching
Individual inputs can be monitored with the AND statement.

LET X =?PRT AND 1

will look at input A only. If A is HIGH then X wilbecome 1, otherwise it will be 0.
Similarly

LET x = ?PRT AND 2 monitors input B,

LET x = ?PRT AND 4 monitors input C
and

LET x = ?PRT AND 8 monitors input D.

The inputs can be connected to different devices, such as photocells, trip Sywitater
level indicators, temperature switches and the like. The outputs can be connected to la
indicators, heaters, water valves and pumps. It is thus possible to operate an autom
washing machine with the logic board, given the necessary 'buffeodtain sufficient
power. For present purposes though, the different input devices can be simulated w
switches and the output devices represented by LEDs. The next example shows how
state of each input can be echoed to the output LEDs. Wherrdigiap is run, the input
and output LEDs will always show the same state, depending on the setting of the switch

1 REM CONTROL INPUT PORT INDICATOR
10 DDR =65122:REM DATA DIRECTION REGISTER
20 PRT =65120: REM USER PORT
100 ?DDR=240:REM LAST FOUR LINES AS OUTPUTS, FIRST
FOUR AS INPUTS
110 X = (?PRT AND 15) * 16
120 7?PRT=X
130 GOTO 110

Burglar alarm

A traditional electronic circuit is the burglar alarm. This can nowhbde far more versatile.
The simple hardvired version of this does not allow the owner to get out of the house
without setting off the alarm. This program introduces a delay, during which the alarm wi
not operate. The owner has about ten seconds besmatehing on the system (i.e. starting
the program) and the system's being active. The presence of a burglar can be simulated
a switch. The switch will have no effect for about ten seconds after the program is starte

1 REM CONTROL EXAMPLE 7 - BURGLAR ALARM
10 DDR =65122:REM DATA DIRECTION REGISTER
20 PRT =65120:REM USER PORT
100 ?DDR=240:REM LAST FOUR LINES AS OUTPUTS, FIRST
FOUR AS INPUTS
105 ?PRT=0:REM ALL LEDS OFF
110 FOR T=1 TO 10000:NEXT T:REM DELAY

110

Microcomputer timing and control

120 N =?PRT

130 IF N =7?PRT THEN 130:REM WAIT FOR BURGLAR
140 FORI=1TO 20

150 7?PRT=240:REM ALL ALARM LIGHTS ON

160 FOR T =1 TO 200:NEXT T:REM DELAY

170 ?PRT=0:REM ALL LIGHTS OFF

180 FOR T=1TO 200:NEXT T

190 NEXT |

Time measurement

The principle of measuring time intervals is as follows. The user port is read and stored i
memory location called status. The current state of the user port is then monitort
continuously and compared with status. Normally it will be the same, butitvkelifferent,

this is because an input has been activated. The microcomputer's internal clock is tt
started and the new status of the user port is saved in status. When the user port a
changes its status, the current contents of the clock aé.ridte time interval involved can
then be calculated and displayed. The BBC microcomputer has a centisecond timer, wh
is available from BASIC with the variable called TIME.

Time intervals exceeding a few tenths of a second are measured quieteaiis in this
way. This simple timer can replace the centisecond timers used in school laboratories
most instances. The usual problems over ‘'make to start', 'break to stop', are avoided, s
the routine detects any change at the input. Accuratidi of short intervals must be
achieved by other means, since BASIC is too slow.

1 REM CONTROL EXAMPLE 8 - A SIMPLE TIMER
10 DDR =65122:REM DATA DIRECTION REGISTER
20 PRT =65120:REM USER PORT

100 ?DDR = 240:REM LAST FOUR LINES AS OUTPUTS, FIRST
FOUR AS INPUTS

110 LET status = ?PRT

120 IF status = ?PRT THEN 120

130 LET status = ?PRT:REM INPUT HAS CHANGED

140 TIME = 0:REM START CLOCK

150 |IF status = ?PRT THEN 150

160 REM INPUT HAS CHANGED AGAIN

170 PRINT "ELAPSED TIME = ";TIME/100;" SECONDS"

Counting

The next example shows how the microcomputer can be used to count closures of a sw
connected to input A. It is possible to use hardware to prevent ctwtawte, but in this
case we shall overcome such problems with a software solution. The program sense
switch closure, waits for a while, and then checks to make sure that the switch is still close
If not, then no count is made. If the switch is siitised, the program records the count and
then waits until the switch is released again.

111

The BBC microcomputer in science teaching

1 REM CONTROL EXAMPLE 9 - AN INPUT COUNTER
10 DDR =65122:REM DATA DIRECTION REGISTER
20 PRT =65120:REM USER PORT
50 CLS
60 PRINT TAB(5,5)"CURRENT COUNT = 0"
100 ?DDR=240:REM LAST FOUR LINES AS OUTPUTS, FIRST
FOUR AS INPUTS
110 LET status = ?PRT:REM INITIALIZE SWITCH STATUS
120 LET count = 0: REM INITIALIZE COUNTER
130 |IF status=?PRT THEN 130
140 REM INPUT HAS CHANGED
150 FORT=1TO 100:NEXT T:REM DELAY TO DEBOUNCE
SWITCH
160 IF status=?PRT THEN 130:REM CHANGE IS NOT VALID
170 LET count = count + 1:REM CHANGE IS GENUINE
180 PRINT TAB(5,5)"CURRENT COUNT = ";count
190 IF status<>?PRT THEN 190:REM WAIT FOR SWITCH TO BE
RELEASED
200 GOTO 130

Interfacing the user port

Sofar, we have not considered how different external devices can be switched off and c
Certainly,this cannot be done just by connecting the user port to the external device. Tl
output current from the user port is very small, just a few milliamps, so ibtaman drive

a lamp directly. It will drive the electronic units of thiduffield Advanced Physics
‘Electronics and reactive circuits', because these contain the necessary power amplificat
We shall now consider the methods of driving other devices also

User port interfaces are readily available. Some manufacturers make equipment whi
connects directly into the user port and input and output lines are then accessed via soc
on the front panel. Griffin and George Ltd have produced a digitafasteunit, which has
been specifically designed for use in the school environment. It is fully isolated, so that ev
if you inadvertently connect 250 V to the input terminals, the VIA should not be damage
Most of the programs given as examples in tiesk will run with the Griffin digital
interface directly. Other interfaces may need a few program changes, it just depends wh
lines are configured as inputs and which as outputs.

Another interface specially designed for use with the BBC microctengaithe Unilab
interface. This has relay outputs, so it is capable of switching quite large currents on and ¢
for example to small heaters and motors. More details of available interfaces for the BE
microcomputer are given in the Appendix.

DIY int erfaces

To make your own interfacing equipment there are several ways of buffering the outputs
the VIA for driving external devices. In Figure 4.6 each output buffer consists of a pair c
SN7404 INVERTERS, one of which drives the LED indicator The wufpom this is
sufficient to sink up to 16 mA, although it will source less than 1 mA.

112

Microcomputer timing and control

+5V
270 R
S
from user port
}_ N O output
SN 7404 SN 7404

Figure 4.6 7404 buffers

load

from user port

Darlington
driver array

Figure 4.7 Darlington driver

Figure 4.7 shows a Darlington driver, which is ideal for sinking the currents from LEDs
relays, lampsnd small motors. The integrated circuit version contains seven (R8I307
or eight (RS 30-422) drivers and is thus an ideal buffer for the user port. The power suppl
for some motors and relays may have to be more than the 5 V indicated but tmgtbarli
driver device will handle voltages up to 50 V, provided the power handling capacity of th
whole chip (I W) is not exceeded. Note that this device contains diodes, which protect
when inductive loads (relays and motors) are being switched onfand of

A suitable relay is the RS Components-soibiature device (RS Components 3336)
which can operate from the 5 V supply of the user port. A suitable amplifier circuit for larg
currents can be made from a power transistor, itself driven by a smaatigistor in voltage
follower mode (Figure 4.8). This may be used with any output from the user port includin
the CB2 output, which is described later. An 8 ohm speaker may be connected as
amplifier load if sound output is required.

Similar probems occur with inputs; different devices switch between different levels,

113

The BBC microcomputer in science teaching

from user port
) 2N 3055

€ load

Figure 4.8 Power amplifier

so there has to be some buffer between the user port and the external device to adjus
inputs to TTL levels. Ideally such an input buffer would also protect the user port fron
voltages outwith its allowable range, for example, negative voltages, whitheasily
destroy the VIA.

Input buffers are easily provided. The most useful are those that respond to eithel
voltage change or to a change in resistance such as the ld@22dpcircuit of Figure 4.9.
One of the problems with inputs is that thitage might rise rather slowly. For example,
the input might be a sine wave voltage, whose frequency is being measured. This could
a logic gate into its indeterminate state where it is neither HIGH nor LOW and (since it |
then in its amplifying regin) this could result in unwanted oscillations. Tpeampcircuit
allows for this by having a feedback resistor that forces the input either HIGH or LOW.

This means that the external input voltage has to push a little harder to overcome tl
feedbackvoltage and cause the op. amp. to switch over. The voltage at which it switches
will therefore be slightly higher than the voltage at which it switches off. This effect is calle
hysteresis. In some cases too much hysteresis is a disadvantage. Foe @damnpusing a
photocell to make measurements of the speed and acceleration of trolleys, a card is fixet
the trolley which then passes in front of the photocell. If the light level needed to switch tf
photocell on is too different from that neededuotch it off, then the apparent length of the
card will be different from its actual length. This will cause serious errors in the
measuren@s. The larger the feedback resistor in theaomp circuit, the less hysteresis
there is and the less serioushsterror.

An alternative transistor circuit is shown in Figure 4.10. The transistor drives an LEL
indicator and is followed by a Schmidt trigger, part of an SN7414 integrated circuit. This i
an INVERTER, which also provides the necessary hystd@sstowly changing inputs.

With either of these circuits, if the input terminal is grounded through a resistance of le:
than about 2000 ohms or if a voltage below about 2 V is applied to it, then the output

114

Microcomputer timing and control

* - +5V
100 k
LM 324 » to user port
10k
O =t
input terminals [J100 k 330 k

O ! _I_ >0V

4 e +t5V
270 R
o
BC 109 SN 7414

1k0
input terminals

- 1

Figure 4.10 Transistorinput buffer

v

output goes LOW. If the input is left unconnected or if a voltage above about 2 V i
connected to it, then the line becomes HIGH. The state of the input is shown by tt
associated LED indicator. The connection betwéenground and the input can be a light
sensitive resistor, a photodiode, a thermistor, a temperature sensitive switch or a foot swit
etc.

Switch inputs

One problem with simple switches like that of Figure 4.3 , is the contact bounce produc
when theswitch is closed. This can create several pulses which cause problems in counti
circuits. Earlier we showed a way of debouncing the switch by adding a few lines of BASI
to the program. The hardware solution to this problem is to use-awayswitch ad a
bistable, made either from two NAND gates or from-K bistable (Figure 4.11). A
particularly useful device is the DM8833 line transceiver, which is used in the logic boarc
In Figure 4.12 just one of these is shown connected to bit 7 of the usdf gt

115

The BBC microcomputer in science teaching
+5V

» to user port

=0V :
+5V

Figure 4.11 A debounced switch

to user port
A

input enable output enable

input O- --- --- JO output
/ DM 8833 70 R

N o /}

1k0

O :

Figure 4.12 Transceiver buffer

Y

chip contains four of these with common disable and power supply lines. Each output c
sink or source up to ten milliamps, so it can drive LEDs directly. Either the input buffer o
the output driver can be disabled by taking their disable lines HIGHIrlase of this circuit
both the input buffers and the output drivers of chip 1 are permanently enabled by tying t
disable inputs to the 0 V line. The input buffers of chip 2 are not needed so they are disab
by tying the disable input to the 5 V linkn alternative arrangement with the enable lines
connected to switches would allow all eight lines to be inputs or outputs as well as allowir
four of each. A point to point diagram for the logic board is given at the end of this chapt
(Figure 4.26).

116

Microcomputer timing and control

Isolation

Sometimes it is necessary to accept inputs from devices that run at voltages greater the
V. To protect the microcomputer and its user port it is a common practice to isolate the inf
by using an optical communication link (RS Components@®%. The high voltage device

Is connected to an LED (through a suitable series resistor to limit the current). When tl
device goes HIGH the LED comes on. Next to the LED (inside the same chip) is
phototransistor, which can be used to provide correct [EVe&ls for the user port (Figure
4.13). When the LED comes on, it causes this phototransistor to conduct, so that a LC
output is produced for the user port. Since there is no electrical connection between the L
and the phototransistor, even several haddolts applied to the input will not damage the
user port.

The same device can be used to isolate the user port from devices connected to its out
The user port will not drive the LED directly, so one of the output buffers mentioned abov
shouldbe used too. Isolation of this type should be used whenever large voltages are be
sensed or switched. For switching alternating voltages, particularly the mains voltage,
optically coupled triac (RS Components 3036) is more useful. This can be cected
directly to the device being switched provided this does not need too much current. F
larger currents the triac itself can be used to switch on a p@er (silicon controlled
rectifier) (RS Components 36801) (Figure 4.14).

,@ -
from switch N

to user port
SN 7404
270 R l
opto-isolator =
suitable
transistor buffer
Figure 4.13 Optical isolation
—/—+5V
load
from @:
user port A\
270 R X °
SN 7404 mains

triac

Figure 4.14 Optical triac
117

The BBC microcomputer in science teaching

Sensors

Sofar,we have only looked at photocells and thermistors as input sensing devices, but the
iIs much more that can be done. Mechanical switches include push button switches, flc
switches for determining a liquid level, foot switches, tilt switches for deterqiti
something is being moved (useful for an d@h#&ft system), rotary and edge switches (for
choosing one of several options), pressure pads (for automatic door opening) and, of cou
keyboards. Electronic switches are even more numerous. The nefst are proximity
detectors that react to the presence of metalsymagals, liquids and animals (human or
otherwise). An interesting device is the Hall effect switch which detects the nearness of
magnet. The magnet could be fixed to a model traihaats presence could be determined
whenever it passed the switch mounted on the track. For temperature sensing the thermi
needs some sort of buffering, but complete temperature switches are available for dir
connection to the user port.

For <hool purposes the most useful input device is a photocell. This is a photodiode (F
Components 30846) or LDR (light dependent resistor) (RS Components 30520),
which may be connected to the-app or transistor input buffers. When light falls upon the
photocell, its resistance is low, so the input is at logic O and the LED indicator will be off
If the light is interrupted, the photocell resistance rises and the input goes to logic 1. T
LED indicator on the input should be used to check that this lieggsen. If not, then one
or more of the following may be true:

)] The light source is not powerful enough, move it closer or increase its intensity.

i) The photocell is polarized the wrong way, swap over its connections to the input ar
ground.

lii) The photocell is unsuitable for this application.

Note that the light dependent resistor (LDR) will do the job of a photocell quite well unles
it is required to respond quickly. LDRs should not be used for time intervals of less than
few millisecondsFaster switching is obtained with photodiodes connected to high spee
op-amps (RS Components 3346, data sheet R/ 2135 Dec 81).

The 6522 versatile interface adapter

The BBC microcomputer user port is connected to a most remarkable device, the Rockw
6522versatile interface adapteror VIA for short. At the end of this chapter we will look
at a way of connecting another VIA to the | MHz bus of the BBC microcompliter.
present description applies equally well to either VIA, but the emphasis is upon the one
the user port. Those wishing to use the programs in this book for a VIA connected otherwi:
will need to rewrite them for the different addresses ohthe VIA.

The 6522 VIA contains sixteen eighit registers, each with an address: two input/output
ports (the A-port and the Bport), twodata direction registers (DDRA and DDRB) to
control the flow of data in thed#O Ports, two sixteeiit timers, timer land

118

Microcomputer timing and control

timer 2 and the peripheral control register (PCR) and the auxiliary control register (ACF
for selecting the VIA modes of operation.

In the BBC microcomputer the-port of the VIA is used for the printer interface, and the
B-port goes to the us@ort connector (together with + 5V and 0 V lines). Connection to
the user port is best made with a ribbon connector cable and an RS Com@peedfoc
PCB 20way plug (Stock no. 46970). The timers and the-ort control lines are all
accessible. Th¥lA is memorymapped meaning that it can be read and written to just like
any other memory location. Its addresses in the BBC microcomputer are as follows:

Name Function Decimal Hexadecimal
BPRT B-port 65120 &FEGO
APRT A-port (+ handshake) 65121 &FE6G1
DDRB Data direction reg B 65122 &FEG2
DDRA Data direction reg A 65123 &FE6G3
TILLO Low-byte Timer 1- latch 65124 &FE64
TILHI High-byte Timer | - latch 65125 &FE65
TICLO Low-byte Timer | - count 65126 &FE66
TICHI High-byte Timer | - count 65127 &FEG67
T2LO Low-byte Timer 2 - latch 65128 &FE68
T2HI High-byte Timer2 - latch 65129 &FE69
SR Serial register 65130 &FEGA
ACR Auxiliary control reg 65131 &FEGB
PCR Peripheral control reg 65132 &FEGC
FLAG Interrupt flag reg 65133 &FEGD
IER Interrupt enable reg 65134 &FEGE
APRT A-port (no-handshake) 65135 &FEGF

Both the Aport and the Bport registers may be configured for input or for output. The
number written into the corresponding data direction register determines this (as descrik
earlier). However, the Aort is connected to output drivers (for use asitgroutput) so
there is little point in configuring it as an input. If necessary, it may be used as an outpl
with the advantage of already being buffered by an SN74L.S244 device. This is capable
sinking 8 mA and sourcing 0.4 mA, enough for transsstorDarlington drivers.

To read the user port after it has been configured for input is simply a matter of loadir
the contents of the correct address, exactly the equivaléme 6f = ?PRT' used earlier.

Control lines

There are four controliies available, two for each port of the VIA, a CA1, CA2, CB1 and
a CB2 line. They are provided for a variety of functions, which are chosen by two Othe
VIA registers, the peripheral control register (PCR) and the auxiliary control register (ACR
On the BBC microcomputer user port only tli#B1 and CB2 control lines are available.
One of their functions is like that of the linesman at a football match, to wave a flag to catc
the attention of the referee. Of course this could be done by simply

119

The BBC microcomputer in science teaching
having the ncrocomputer watch one of the user port lines until it changes. For example,

100 IF (?PRT AND 4)=0 THEN 100

will cause the microcomputer to wait until line 2 of thep@t goes HIGH. But even in
machine code it takes several microseconds for the microprocessor to loop round and r
the B-port again and a quickly changing input signal could come and go in #aime
and so be missed.
This problem is solved by getting the VIA to set a particular bit ifldtsregister to catch
the attention of the microprocessor when it notices a change at its CA1 or CB1 input. The
are seven such bits (flags) in this flagjister. Bit 1 is affected by changes to CA1 and bit 4
is affected by changes @B1. Changes to the CAL or CB1 logic levels can be produced by
an external device to tell the microcomputer that it is ready for something. A printe
connected to the BBC mmcomputer printer port, has one of its output lines connected to
the CAl input. When it changes this line from HIGH to LOW, the VIA interprets this as a
request for attention, so it flags the microprocessor accordingly. This is necessary beca
the printe only prints about ten characters per second and the microcomputer is capable
sending characters very much faster than this. The printer therefore tells the microcompt
when it is ready for the next character by sending an appropriate signal a@®lthne,
called theacknowledge input (ACK).

A signal from an external device is often callestrabe and it may be a HIGH to LOW
| transition(negative strobe)or a LOW to HIGH transitiorfpositive strobe).The PCR, at
the address 65132, has dnefor controlling CA1 and one bit for CB1. Either control line
can be used in two ways, chosen by the setting of its corresponding bit in the PCR. If tl
bit is HIGH, the control line will set its flag whenever it receives a positive strobe. If the
PCRbit is LOW, the control line will set its flag for a negative strobe.

?65132=0 or ?&FE6C=0 will select HIGH to LOW transitions
?65132=16 or ?&FE6C=16 will select LOW to HIGH transitions

After being configured, the flag in the flag register ¢bibr the CB1 flag, bit 1 for the CAl
flag) can be cleared by reading or writing the correspondipgior B-port. Thus or LET
X=?BPRT will clear the CB1 flag, and ?APRJ=r LET X=?APRT will clear the CAl
flag.
These flags remain LOW until the CA1 GB1 lines receive their correct transition, upon
which the corresponding flag will be raised. Like the football referee the microprocessc
does not immediately heed the flag but may wait for a more opportune momen
Neverthelesghe flag remains up untlome attention is paid to it, even when the strobe has
gone. This explains the advantage of this system over the simpler one of just watching
user port until it changes.

Consider one particular application of this idea, the classic problem ofi wbitestant
in a quiz was the first to press his or her switch. It is no good just getting the microcomput
to look occasionally at the individual switches, the time interval between two differen
people pressing their switch might be too short to beridinated. To solve this problem
we use the latching facility of the VIA to capture data into the user port as

120

Microcomputer timing and control

soon as it is received. This mode is selected by the auxiliary control register (ACR)
address 65131. When bit 1 of this register is LOWkgh® no latching othe input data to

the B-port, but when bit 1 is HIGH, the latching facility is enabled. When thpoiB is
latched, any data on its lines is captured so that even if the original input signals are remov
their logic levels will remai. The same is true for the-port, except that it is bit O of the
ACR that has to be set HIGH. This is no use for the VIA in the BBC microcomputer, sinc
the A-port cannot be made into an input anyway.

The latching of the data at the user port oceuren the corresponding CA1 or CBL1 line
gets its expected HIGHOW or LOW-HIGH transition (as determined by the PCR). Figure
4.15 gives the circuit diagram for solving the quiz problem. The eight push button switche
are normally HIGH. They are connectedthe lines of the user port and also to an eight
input NAND gate (SN7430). The output from the NAND gate is thus LOW and is connecte
to the CBL1 line.

10 REM INPUT DATA LATCHING

20 BPRT =65120:REM USER PORT

30 DDRB =65122:REM DATA DIRECTION REGISTER

40 ACR =65131 :REM AUXILIARY CONTROL REGISTER

50 PCR =65132:REM PERIPHERAL CONTROL REGISTER

60 FLAG = 65133:REM FLAG REGISTER

100 ?DDRB = 0:REM B-PORT IS INPUT

110 ?ACR =2:REM ACR SET TO ENABLE B-PORT LATCH

120 ?PCR =16:REM PCR SET TO LATCH ON LOW-HIGH
TRANSITION

130 IF(?FLAG AND 16)=0 THEN 130

140 X = ?BPRT:REM READ B-PORT AND RESET LATCH

Now, whenever any of the switches is pressed, it goes momentarily LOW, so the outf
from the NAND gate will go HIGH, thus activating the CBL1 line. The state of all switches
will then be latched into the user port and held there indefinitely. The micratengan

read them at its own convenience, thus discovering which one was activated first (unless

+5V
S = N M ¢ 1D © ~
© mM m oo o m o o CB1
|] i‘_ I AR S B R TR B I | f
push-button B 1
switch
i B2
B3
B 4
B5 SN 7430
B6
B7

Figure 4.15 Input latching
121

The BBC microcomputer in science teaching

of course, there were simultaneous switch closures). On reading the user port, the flag
again lowered and th@B1 latching facility is reset ready for the next time. Alternatively,
the flag can be deliberately lowered by writing its decimal value to the flag register. Anothe
application of this latching facility is the connection of a concept keyboard to &
microcomputer. fis keyboard has pressure sensitive pads, the function of which can &
changed with suitable overlays. When pressed each keypad places-aisbyéenof data

on its parallel port and signals this by sending a negative strobe ©Bthéne of the
microcomputer user port. The VIA has to be set up so that whe@Bidine goes LOW
(indicating a key press), the number on the data lines is latched into the user port. This ¢
then be read at leisure by the microcomputer, upon which the latch is automadisat|
ready for the next key closure. If tikB1 line is pulled LOW, bit 4 of the flag register in
the VIA is set, so the program simply waits for this flag to go HIGH and then it reads th
contents of the user port.

Interrupts

In several instancesosfar we have been content to let the microcomputer sit arounc
watching the user port or the flag register waiting for something to happen. In the pa
computers cost so much that nobody could afford to waste computer time in this way a
the special teatique of thanterrupt was developed. This is similar to when | am reading
a book and the telephone rings. | immediately place a marker into the book and attend to
call. When | have finished | return to the task | was doing when interrupted, using th
bookmark to find out which page | was on.

The microprocessor has a similar facility. When it receives an interrupt signal, it finishe
its current instruction andervicesthe interrupt. Afterwards it returns to its original task
from where it left of. An interrupt request can be sent to the microprocessor wiidia
or CBlline gets its correct strobe. There are also five other ways in which an interrupt ce
be generated by the VIA; by the CA2 or CB2 control lines, tmts by either of the timers
and shiftouts by the shift register, each controlled by a flag in the flag register. If any flag
goes up, an interrupt request could be sent to the microprocessor along its IRQ line. We
not always want this to happen, so it is possible to preventatintarrupt facility is only
enabled if one of the bits in thaterrupt enable register (IER) is HIGH, the bit
corresponding to the flag concerned.

Bit 6 5 4 3 2 1 0
Flag T1 T2 CBl1 CB2 SR CAl CA2
IER T1 T2 CB1 CB2 SR CAl1 CA2

In the BBC microcomputer the interrupt facility is used a great deal by the
microprocessor, for example, to deal with inputs from the keyboard, which occur at vel
irregular intervals. It is not, therefore, possible in BASIC for the user to make iigemf
nor is it actually necessary in machine code routines. The main reason for mentioning it
so that you will be aware of what can happen during timing routines, etc. You may careful
calculate that a timing loop should last one hundred microgdsammiy to find that it is some
five per cent longer than this. The reason is that the microprocessor is being interrupted
a timer every hundredth of a second to update the

122

Microcomputer timing and control

clock in the microcomputer. There is a simple solution; to switch off the interrupt facility
completely before starting the machine code timing loop. This is done with the instructic
SEI (set the interrupt mask). The interrupt facility is restored with éhnstructionCLI
(clear the interrupt mask). These instructions occur quite often in succeeding programs.

To prevent individual interrupts from occurring without disabling the whole facility, the
requisite bits of the IER can be cleared.

CA2 and CB2 control lines

The CA2 and CB2 lines can be used as inputs just like the CA1 and CBL1 lines by configuri
the PCR and ACR correctly. They can therefore also be used for sending interrupt reque
to the microprocessor. They have many more functions@ dhand CB1 and are more
versatile. Their particular advantage is that they can also be turned into output lines. Th
are switched HIGH or LOW by setting the correct bits of the PCR. Bits |, 2 and 3 contrc
CAZ2 and if bits 2 and 3 are both set, this dsléiee direct output mode. Thereatfter if bit 1
is set, CA2 will be HIGH and if bit | is cleared then CA2 will be LOW. CB2 is controlled
in the same way by bits 5, 6 and 7 of the PCR.

?PCR = 12:REM SET CA2 LOW
?PCR = 14:REM SET CA2 HIGH
?PCR = 192:REM SET CB2 LOW
?PCR = 224:REM SET CB2 HIGH

This facility effectively increases the number of available output lines, although thos
already there are usually enough. The CA2 line is available as a strobe at the prin
connector.

The 'concept' keyboard

This soft keyboard can be used for inputting data without using the standard QWERT
keyboard and all its attendant problems. As described in Chapter 1 a soft keyboard can h
its keys altered (or disabled) to suit each particular application. The coregdmbakd
(available from Star Microsystems) is one particular board that is easily fitted to the BB!

microcomputer (Figure 4.16).
®» = m
m N m O
111
I l
3

- +5YV

—t+—»RBO0

concept
keyboard plug

11
11

——B4

link for LED
Figure 4.16 Connecting the concept keyboard

123

The BBC microcomputer in science teaching

o |1 [2 |3 } 5 13 [14 |15
16 (17 |18 |19 3 29 [30 [31
32 (33 |34 3535 47
48 |49 |[50 51}3 63
64 |65 |66 675§ 79
80 (81 (82 83}% 95
96 |97 |98 |99 ig 111
112 [113 [114 1152% 127

Figure 4.17 'Concept' key arrangement

The keyboard consists of a washable surface beneath which are 128 pressure sens
keys (Figure 4.17). When pressed, each key sends a number along seven parallel lines, w
can be connected to bits 0 to 6 of the user port. A separate 'strobe’ bma@ested to the
CB1line and configured inside the connecting cable such that it goes LOW, when a key
pressed. The data on the lines is then latched into 4#AerBand the flag set in the flag
register. It is necessary to use the latching facilityesiifao key is being pressed, the data
lines are open circuit and present a random number. Finally bit 7 is grounded ft
convenience, the keys thus providirggadnumbers from 0 to 127. The keys are ASCII coded
but this is only for ease of reference.

The procedure for reading the keyboard waits for the flag to go HIGH, whereupon th
data is read, thus resetting the flag ready for the next keypress.

1000 DEF PROCreadconceptkeyboard
1010 REPEAT

1020 UNTIL

1030 LET Q%=7?BPRT

1040 ENDPROC

Q% returns with the data for the key pressed since the last time PROCreadconceptkeybc
was called. Initially the VIA must be configured as follows:

REM CONCEPT KEYBOARD CONFIGURATION
BPRT=65120:REM USER PORT

DDRB = 65122:REM DATA DIRECTION REGISTER
ACR = 65131:REM AUXILIARY CONTROL REGISTER
PCR = 65132:REM PERIPHERAL CONTROL REGISTER
FLAG = 65133:REM FLAG REGISTER

IER = 65134:REM INTERRUPT REGISTER

~NOoO ok, WNE

124

Microcomputer timing and control

10 7?DDRB = 0:REM B-PORT IS INPUT

11 ?ACR =2:REM ACR SET TO ENABLE B-PORT LATCH

12 ?PCR = O:REM PCR SET TO LATCH ON HIGH-LOW TRANSITION
13 ?FLAG = 24:REM RESET CB1 and CB2 FLAGS

14 ?IER = 24:REM DISABLE INTERRUPTS FROM CB1 and CB2

15 LET Q% = BPRT:REM CLEAR FLAG INITIALLY

The waythat the keyboard routine is used within the body of the program depends upc
the requirements of the program. For example, suppose the program was training a chilc
recognize colours. The board could be divided into four parts, each differently coloure:
The program would proceed as follows:

560 PROCreadconceptkeyboard
570 LET N =1 + AND 8) + AND 64)
580 ON N GOTOw, X, Y, z

N will end up with the values 1, 2, 3 or 4 depending on which quadrant of the board is beil
pressed. Alternatively, for finer discrimination, adjacent keys could be distinguished b
checking on bit 0 of the value in Individual keys may, of course, sito@lghecked by
number directly.

Handshaking
One useful purpose of the Cl and C2 lines is for handshaking. When data is sent from ¢
machine to another, the sender needs to tell the receiver when the data is available. Simil
the receiver needs to signal the sender to indicate that the datadmasebeived. As an
example of this procedure a technique for transferring data from one BBC microcomput
to another is now described. The two machines are connected as shown in Figure 4.18.
After configuring the registers the receiver toggles it2UBe to send a negative pulse
to the CBL1 line of the sender. The CB1 line sets its flag, telling the sender that the recei
is nowready for data (RFD). The sender responds by collecting the byte of data to be ser
and writing it into the user port. €sender then signalata available (DAV) by toggling
its CB2 line, sending a negative strobe to the CB1 line of the receiver. Upon receiving tr
strobe (or more accurately the negative transition of the strobe) the CBL1 line sets its flag ¢
at the saméme latches the data into the user port. The receiver notes that the flag is

B ¢ > B¢
\
sender B 7 d B receiver
CB2 > CB1
CB1 { CB2
GND GND

Figure 4.18 Parallel data transfer

125

The BBC microcomputer in science teaching

raised and reads the data, thus resetting the flag serhlding the latch for the next byte.

In this program the byte to berd@s merely input to the sender from the keyboard and is
on the receiver's screen. This allows the user to type on one machine and have
characters appear on the other at the same time. The end of a line of text is signalled
sending a caiage return (character 13) and this is sensed in line 230 of the sender's progra
It is, however, necessary to precede this with a line feed (character 10), which is the purp
of the subroutine at line 500. These ideas can be extended to any commrtieatieen
the two microcomputers. Clearly one very important application is the transfer of progral
and data files from one microcomputer to another. | used a routine like this to transf
from a PET to the BBC microcomputer. Unfortunately, tbeegs was not
particularly valuable in most instances. For example, MASTERMIND prints everything ir
upper case letters (as in the original PET program) so it would have been better to he

displayed

programs

rewritten the program from the beginning on the BBC microcomputer.

10
20
30
40
50
60
70
100
110
120
130
140
150
160
200
210
220
230
240
250
260
270
500
510
520
530

126

REM PARALLEL TRANSFER-SENDER ROUTINE
BPRT = &FEGO

DDRB = &FEG2

ACR = &FEGB

PCR = &FEGC

FLAG = &FEGD

IER = &FEGE

REM INITIALIZE REGISTERS

?IER = 16:REM DISABLE CB1 INTERRUPT
?DDRB=255:REM USER PORT AS OUTPUT
?ACR = 0:REM DISABLE LATCH
?PCR=236:REM SET CB2 HIGH

X =7?BPRT:REM RESET CB1 FLAG

REM SEND BYTE

IF(?FLAG AND 16) = 0 THEN 210:REM WAIT FOR RFD
A$=GET$:REM GET BYTE TO SEND

IFA$=CHR$(13) THEN 500:REM SEND LINE FEED
?BPRT=ASC(A%$):REM SEND VALUE OF CHARACTER
?PCR = 192:REM SET LOW

?PCR = 224:REM HIGH AGAIN

GOTO 200:REM DO NEXT CHARACTER

REM SEND CARRIAGE RETURN

?BPRT = 13:REM SEND Ascii VALUE OF CARRIAGE RETURN
?PCR = 192:REM SET CB2 LOW

?PCR = 224:REM SET CB2 HIGH AGAIN

Microcomputer timing and control

540 IF(?FLAG AND 16) = 0 THEN 540:REM WAIT FOR RFD
550 ?BPRT = 10:REM NOW SEND LINE FEED
560 GOTO 250

1 REM PARALLEL TRANSFER-RECEIVER ROUTINE

10 BPRT = &FEGO

20 DDRB = &FEG2

30 ACR = &FEGB

40 PCR = &FE6C

50 FLAG = &FE6D

60 |ER =&FEGE

70

100 REM INITIALIZE REGISTERS

110 ?IER = 16:REM DISABLE CBI INTERRUPT

120 ?DDRB = 0:REM USER PORT AS INPUT

130 ?ACR = 2:REM ENABLE LATCHING FACILITY

140 ?PCR =224:REM SET CB2 HIGH, HIGH-LOW TRANSITION ON CB1
200 REM RECEIVE BYTE

210 ?PCR = 192:REM SET CB2 LOW FOR 'READY TO RECEIVE'
220 IF (?FLAG AND 16) = 0 THEN 220:REM WAIT FOR FLAG
230 X =7?BPRT:REM GET BYTE AND RESET LATCH AND FLAG
240 PRINT CHR$(X);:REM DISPLAY RECEIVED CHARACTER
250 ?PCR =224:REM SET CB2 HIGH AGAIN

260 GOTO 200:REM GET NEXT BYTE

Timer 1

The VIA possesses two sixtebit counter/timers with a variety of modes. These provide a
great facility for measuring time intervals and for counting pulses. Note that, although tf
clock rate of the BBC microcomputer is 2 MHz, the Vimers run at MHz. The different
modes of the timers are selected by sending a particupatvérn to the ACR.

Bit 7 6 5 4 3 2 1 0
Timer 1l Timer2 Shift register B-latch A-latch
Auxiliary control register functions

Bits 6 and 7 control timer 1 and bit 5 controls timer 2, but the modes available for each tim
are very different. Not all modes are equally useful either, so only a few will be
described.

As a sixteerbit counter each is capable of counting to 65 536, or rather counting dow
from 65 535 to zero, which is the way they work. Upon reaching zero eotitngignal is
sent to the flag register (FLAG) in the VIA. Tiroeits on timer 1 affect b6 of FLAG and
time-outs on timer 2 affect bit 5. These bits can be inspected and if one is set, then a tin
out has occurred. Alternatively, the interrupt enable bits can be set, thus generating
interrupt request upon tinaut.

127

The BBC microcomputer in science teaching

There are two pastto each timer, the counter itself and its input latches. These ar
necessary because in some modes the counters automatically restart upon reaching :
Thus timer 1 can be set to count down from, say, 1000 to zero and on reaching zero
number 10009 reloaded into the timer from the latches and the countdown repeats. Th
produces a series of tinmaits, at intervals of about one millisecond.

In addition to the timeuts a digital signal can be made to appear at bit 7 of {herB
(irrespectiveof the setting of DDRB). The logic level of this line (PB7) changes from HIGH
to LOW or from LOW to HIGH, whenever a tiraut occurs from timer 1. The selection of
this mode is made through bit 7 of the ACR. If ACRY7 is set, then the digital signals will b
output through PB7. If ACR7 is cleared, then no signals appear at PB7.

ACR bit 6 controls whether timer 1 generates a single-auatesignal or continuous
signals as follows:

1) ACR6 LOW: the one shot mode

After timer 1 has been loaded with somunber, it is decremented at the | MHz clqukise

rate. When it reaches zero, the tio# occurs and a signal is sent to bit 6 of the flag register
to say so. If ACRY7 is also HIGH, then the logic level of PB7 is changed. PB7 will go LOW
as soon as the Mgoyte is loaded into timer 1. Countdown begins at the same instant anc
on the timeout signal, PB7 will go HIGH again.

i) ACR6 HIGH: free running mode

After timer 1 has been loaded, it is decremented at the clock pulse rate until it reaches ze
exactly as before. A tim@ut signal is sent to bit 6 of the flag register also as before. But the
number originally loaded into the latch of timer 1 is then automatically reloaded and th
countdown begins again. If, at the same time, ACR7 is HIGH, thegnzlevel ofPB7
changes, as described above. In this mode the PB7 line goes alternately HIGH and LC
with every timeout signal. The countdown of timer 1 begins as soon as its latch is loade
with its starting number. Since it is a sixtdahregister,it must be loaded in two halves.
The low byte is written into T1LLO (address = 65124) and the high byte into T1LHI (addres
= 65125). The countdown begins when the high byte is loaded, so the low byte must
loaded first. For a particular time intervalit microseconds) the required numbers are
loaded into T1LHI and T1LLO by

?T1LLO = (t-2) MOD 256
?T1LHI = (t-2) DIV 256

Applications of timer 1
I) Generate output pulses on PB7
In free running mode the PB7 logic level changes once éwegyout. Thus, if it is desired
to make PB7 generate a frequency of | kHz, tomés must occur every 500 microseconds.
Timer 1 thus needs to be loaded with 500. However, this number must be reduced by 1
to allow for the reloading time etc. of the st The pulses cannot therefore be quite as
accurate a one might hope. This gives 498 to be loaded into the T1 latches, a low byte
242 into TILLO and 1 into T1LHI.

Note that it is not necessary to set up PB7 as an output befor@htmsl present

128

Microcomputer timing and control

function overrides its configuration by DDRB. The pulses can be stopped by loading O in
the ACR (?ACR = ()). Since this is a sixtelaih timer, pulse frequencies between 250 kHz
and a few hertz can be produced with this method. This includes the angeand so is a
possible method of producing audrequency square wave pulses. This idea is also used ir
PULSE TIMER (11) to determine the length of a square pulse (Plate 23).

i) Generate a single (negative) pulse on PB7

To generate a single tirmit requires ACR6 to be LOW. Timer 1 should be loaded with
the length of the time interval required (less 1.5 machine cycles), so for an output pulse
1 millisecond duration, timer 1 should be loaded with 998, a high byte of 3 and a low byte
of 230. Thisdea is used in FREQUENCY METER (12) to open a gate for a specified lengtl
of time (Plate 22).

100 SET ACR7 HIGH and LOW
110 LOAD LOW BYTE
120 LOAD HIGH BYTE AND BEGIN PULSE

i) Provide an internal clock

The BBC microcomputer clock is only a centisecond timer. Timer 1 may be used to provic
accurate timeouts at shorter intervals. Rather than use the interrupt system of th
microcomputer, it is usually quite easy to inspect bit 6 of the flag registee ibises set.

If so a timeout has occurred and1IHI can be reloaded to start a new countdown.

FREQUENCY METER

When started, the PB7 line goes LOW to

enable pulses to be counted.

by Timer 2 via PB6.

From PB?
0

Unknown freq.
0

Press SPACE to take the measurement.

Plate22 FREQUENCY METER instructions
129

The BBC microcomputer in science teaching
SIMPLE TIMER

When input X goes HIGH, 1 millisecond
pulses will be counted by Timer 2.

This continues until 1nput X goes LOUW.

Input X
& PBO O

PBY” O
1 ms pulses
When you are ready {for the timing
to start, press SPACE.
O0.K. Waiting for POSITIVE pulse.

Plate 23 Timing of short intervals

[[
[[
UL

Press SPACE to hold the display.

Plate 24 Centisecond timeér STOPCLOCK

130

Microcomputer timing and control

This use of timer 1 is illustrated by STOPCLOCK(5)(Plate 24). This is a centisecon
clock that is started by an event (a change in logic level) at either bit O or bit 1 of the Us
port. The current time is displayed in minutes, seconds and centisdodiadge digits on
the screen, using the machine code subroutine developed in Chapter 7. Another event s
the clock, which then displays the elapsed time. The whole program illustrates the freedq
given by using the timer instead of microprocessoayd&ops to do the timing. The latter
can then get on with other tasks, like sortingwheére the digits have to go and displaying
them.

When the countdown in timer 1 reaches zero, it sets a flag in the flag register, reloa
itself from the latch ath carries on counting down. Thus if the latch contains the number
10000, timer | gives out a steady stream of one centisecond signals. STOPCLOCK actue
reads the centisecond clock provided by the operating system at address 662 (OS 1.0
above) or 5940S 01). This works in the way just described except that it uses the 'other
VIA.

Timer 2

Timer 2 modes are controlled by bit 5 of the ACR and thus it only has two modes. Whe
ACRS5 is LOW, timer 2 acts rather like timer 1 in its one shot mode. Since no output puls
are produced, this mode is of no special interest to us. The other moddse aquunting
mode and is more valuable. It is selected when ACR5 is HIGH. Timer 2 is then loaded wi
the number to be counted. Every time that line 6 of #p@B (PB6) goes LOW, timer 2 is
decremented. When it reaches zero, it has counted the requinbemnof pulses and a time
out occurs. Bit 5 of the flag register is set HIGH to show this-tote

Applications of timer 2

1) A clock

By getting timer 1 to generate continuous output pulses on PB7 at, say, 10 milliseco
intervals and subsequentlywting these pulses by timer 2, then quite long time intervals
can be produced. To do this PB6 and PB7 should be connected together.

Then, after selecting the pulse counting mode, timer 2 is loaded with the required numt
of centiseconds to be coudtdJpon timeout timer 2 sets bit 5 of the flag register. A BASIC
program simply sets up the ACR and the timers and then waits until this flag has been s
thus indicating that the required time has elapsed. By altering the numbers loaded into
timersinitially, time intervals as low as one millisecond may be produced, which is abou
as low as BASIC can handle. Timer | set to produce isationd pulses and timer 2 set to
count 60 000 of these, gives a 100 minute interval.

The following example gaarates an interval of one second. It measures this time interva
by counting a thousand one millisecond pulses. PB7 and PB6 should be connected toge
for this application.

100 ?7ACR=224:REM SET ACRS5,6 AND 7 HIGH

110 ?T2LO=232:REM SET TIMER 2 LOW

120 ?T2HI=3:REM SET TIMER 2 HIGH

130 ?T1LLO=230:REM LOAD TIMER 1 LOW

140 ?T1LHI=1:REM START TIMER AND RESET FLAG

131

The BBC microcomputer in science teaching

150 X = INSPECT FLAG REGISTER
160 X =X - 192

170 IFX<32 THEN 150

180 RETURN

Since we are using timer | too, bits 6 and 7 of the riéagster will also be set, hence line
160.

i) A frequency meter

Timer 1 is set to produce a single negative pulse on PB7. This is inverted and opens a g
to allow pulses from an alternating voltage of unknown frequency to reach PB6 to be
counted byitmer 2. Upon observing tireut on timer 1, the microprocessor reads timer 2
to see how many pulses had been received (Figure 4.19)(Plate 22). This number is then
converted into a frequency and displayed.

100 REM FAST FREQUENCY METER

320 ?IER = 127:REM DISABLE INTERRUPTS

330 ?ACR=160:REM PB6 TO COUNT PULSES, PB7 TO PROVIDE ONE-
SHOT PULSE

340 ?PCR=0:REM TURN OFF LATCHES AND SERIAL REGISTER

350 ?T2L0O=255:?T2HI=255:REM INITIALIZE COUNTER

360 ?DDRB=128:REM BIT 7 AS OUTPUT (THIS INSTRUCTION
UNNECESSARY)

380 ?FLAG=127:REM CLEAR FLAGS

390

500 GOSUB 1000:REM OPEN GATE FOR 50 MILLISECONDS

510 freq=(256 * (255 - ?T2HI) + (255 ?T2L0O)) * 20

530 PRINT freq

540

1000 REM OPEN GATE FOR 50 MILLISECONDS

1010 ?T1LLO=79

1020 ?T1LHI=195:REM OPEN GATE AND RESET LATCH

1030 IF(?FLAG AND 64)=0 THEN 1030:REM WAIT FOR TIMEOUT ON
TIMER 1

1040 RETURN

A frequency below 2 kHz will provide less than a hundred counts in timer 2 and is thus
inaccurately measured. For these low frequencies the internal clock is used just to provic
a time interval of one second, during which time the gate is opened to allow the input
frequency to be measured.

800 REM LOW FREQUENCY OPTION

810 ?ACR=32:DISABLE OUTPUTS ON PB7

820 ?DDRB=128:REM PB7 AS OUTPUT

830 ?PRT =128:REM SET PB7 HIGH

840 ?T2L0O=255:?T2HI=255:REM INITIALIZE COUNTER

132

Microcomputer timing and control
+5V

10
pulses of
unknown frequency

pulse from PB 7 O

<

Figure 4.19 Gating input pulses to PB6

850 ?PRT=0:REM OPEN GATE

860 TIME=0:REM START CLOCK

870 REPEAT

870 UNTIL TIME=100

890 ?PRT=128:REM CLOSE GATE

900 freq=256*(255 - ?T2HI) + (255 - ?T2LO)
910 PRINT freq

The following line can be added to the above program, so that it automatically runs this Ic
frequency section if the frequency is too low for the first method.

520 IF freq<2000 THEN 800
The full listing of this program is given in FREQUENCY METER (12

i) A pulse timer

The same technique can be used in reverse to measure the length of a pulse. In this cas
unknown pulse is used to open the gate to allow through millisecond pulses from PB7 to
counted via PB6 (Plate 23).

One difficulty @out the automatic nature of this program is to determine when the puls
has finished. For this reason it is also connected to PB1, which can then be monitored (Fig
4.20). Timer 1 should be loaded with 5P@o provide one millisecond pulses through PB7
(the number is reduced by two to allow for the reloading time described above).

pulses from PB 7 e >
JuUuuo » PB 6
pulse of unknown length e » PB ¢

__[! l_

Figure 4.20 Pulse measuring circuit

133

The BBC microcomputer in science teaching

100 REM PULSE TIMER
110 ?IER=127:REM DISABLE INTERRUPTS
120 ?7ACR=224:REM PB6 TO COUNT,
PB7 TO PROVIDE CONTINUOUS PULSES
130 ?PCR=0:REM TURN OFF LATCHES AND SERIAL REGISTER
140 ?T2LO=255:?T2HI=255:REM INITIALIZE COUNTER
150 ?FLAG=127:REM CLEAR FLAGS
155 ?DDRB=128:REM BIT 0 AS INPUT
160 ?T1LLO=242:REM LOAD TIMER 1 WITH 500
170 ?T1LHI=1:REM AND START CLOCK AND CLEAR FLAG
180 IF(?PRT AND 1)=0 THEN 180:REM PULSE HAS NOT
YET STARTED
190 IF(?PRT AND 1) THEN 190:REM PULSE HAS NOT YET FINISHED
200 time =256 * (2550 ?T2HI) + (2550 ?T2LO)
210 PRINT time;" milliseconds"

The full listing is given in PULSE TIMER (11).

The serial register

This register SR, (at address 65130) outputs its contents to the CB2 line, one bit at a tim
There are eight modes for this, determined by bits 2d3larf the ACR. If ACR4 is cleared
then the bits are shifted into the SR and if ACR4 is set they are shifted out. The advante
of the system is that, once initiated, the bits are output automatically, thus freeing tt
microprocessor for other tasks.

The main use of the SR is for serial data transfer. Parallel transfer requires all eight b
to be sent at once along eight separate lines but only one is needed for serial transfer (in |
cases another line for ground return and two more for confyodls are also needed). Thus
it is possible to send data from one computer to another, with only four lines instead of tl
eleven needed for parallel data transfer (Figure 4.21). To illustrate the principles tt
following BASIC program transfers bytes fraane BBC microcomputer to another.

The contents of the serial register can be shifted out in four different ways:

1 Mode 10® free running, which is discussed later.
2 Mode 1010 under the control of timer 2. This is the mode we shall actuatyfor ded
transfer. The contents of the shift register are shifted out bit by bit on the CB2

CB2 > CB 2

CB1 > CB1)
sender RFD receiver

PBO < PAO

GND GND

Figure 4.21 Serial data transfer

134

Microcomputer timing and control

line starting with the most significant bit. At the same time the bit is shifted back intc
bit O of the SR. Thus after eight shifts, the byte in SR has been rotated completely.
new shiftout occurs when timer 2 reaches tin#, which depends uponeghvalue
loaded into T2LO initially. Note that T2HI is not used, so the timer is only eight bits
wide, giving a maximum interval between shifts of 255 microseconds. The process
initiated by writing thebyte to be sent into the serial register. After eighifts the
corresponding flag (bit 2) in the flag register is set. This can be used to give an interru,
or alternatively as in this application, can simply be inspected until it goes HIGH. Thi:
can be the signal for the microcomputer to get the net foybe shifted out. The flag
Is reset at the same time as the next byte is loaded into SR to begin the next byte trans
Time-outs on T2 cause the contents of the T2 latch to be reloaded into the timi
itself ready for the next bit shift. Ahé same time a pulse is output through the CB1
control line for strobing the receiver. The CB1 line goes LOW when the next bit ha
stabilized at the CB2 output. Note that this is the only condition for which CB1 is ar
output.
3 Mode 11® under the combl of the system clock. This is similar to the method
above, except that the shdut rate is controlled by the system clock.
4 Mode 1116 under the control of external clock pulses. This time it is the external
receiver that generates the clock pulses and sends these to the VIA through the CB1
control line.

There are similar ways for shifting the data into 8f in the receiving microcomputer
(modes 001 to 011). In this application it is mode 011 that is used, which shifts the bits
from the CB2 line under the control of external clock pulses along the CBI line. These a
the clock pulses generated by modé& a0bove. Thus the CBI lines of the two machines are
connected together to communicate the shift pulses, as are the CB2 lines, which are use
carry the data itself (Figure 4.21).

There has also to be some signal from the receiver to the sendeiate the process
each time. The line used is bit O of the user port in both cases. The receiver holds this |
HIGH until it is ready to receive data and then it sends it LOW. The sender waits for its lir
to go LOW before loading its SR and thus steytto send the byte. In use, this allows
characters to be typed in on one keyboard to appear on the screen of the other. It termin
when the character @ is typed in. It is necessary to generate a line feed whenever a carr
return is pressed and thssdone by the subroutine at line 500.

1 REM SERIAL TRANSFER-SENDER ROUTINE
10 BPRT = &FEGO

20 DDRB = &FEG62

30 T2LO = &FE6G8

40 SR = &FEGA

50 ACR = &FE6B

60 PCR = &FEGC

70 FLAG = &FEGD

80 IER = &FEGE

135

The BBC microcomputer in science teaching

136

90
100 REM INITIALIZE VIA
110 ?DDRB=0:REM BIT 0 IS INPUT
120 ?IER=0:REM DISABLE SHIFT INTERRUPT
130 2ACR=20:REM ACR IN SHIFT-OUT MODE
140 ?PCR=236:REM CB2 HIGH INITIALLY
150 ?T2LO=100:REM SHIFT OUT AT ONE BIT PER 100
MICROSECONDS
160
200 REM SEND BYTE
210 A$=GET$
220 IFA$=CHR$(13) THEN GOSUB 500
230 IF(?BPRT AND 1) THEN 230:REM WAIT FOR SIGNAL FROM
RECEIVER
240 ?SR=ASC(A$):REM SEND BYTE
250 IF(?FLAG AND 4)=0 THEN 250:REM WAIT FOR SHIFT-DONE FLAG
260 GOTO 200:REM GET NEXT BYTE READY
270
500 REM LINE FEED SUBROUTINE
510 IF(?BPRT AND 1) THEN 510:REM WAIT FOR SIGNAL FROM
RECEIVER
520 ?SR=10:REM SEND LINE FEED
530 IF(?FLAG AND 4)=0 THEN 530:REM WAIT FOR SHIFT-DONE FLAG
540 RETURN

1 REM SERIAL TRANSFER-RECEIVER ROUTINE

10 BPRT=&FEGO

20 DDRB=&FEG2

30 SR=&FEGA

40 ACR=&FEGB

50 FLAG=&FE6D

60 IER=&FEGE

70
100 REM INITIALIZE VIA
110 ?IER=0:REM DISABLE INTERRUPTS
120 ?DDRB=1: REM BITO IS OUTPUT
130 ?ACR=12:REM SHIFT IN MODE
140 ?BPRT=1:REM NOT READY FOR DATA
156 X=?SR:REM INITIALIZE FLAGS, ETC
160
200 REM GET BYTE
210 ?BPRT=0:REM READY FOR DATA

Microcomputer timing and control

220 IF (?FLAG AND 4)=0 THEN 220:REM WAIT FOR SHIFT-DONE FLAG
230 ?BPRT=1:REM NOT READY FOR DATA

240 X=?SR:REM COLLECT BYTE

250 IF X=64 THEN STOP:REM @ CHARACTER IS END-OF-DATA

260 PRINT CHR$(X):

270 GOTO 200:REM GET READY FOR NEXT BYTE

Continuous pulse output

This is mode 100 mentioned above. It is very like mode 101 and utilizes T2LO in exactl
the same way. The only difference is that once all eight bits have been output from SR alc
the CB2 line, the process is immediately restarted, so that the cont&iRsaoé repeatedly
output. The data in the serial register can thus be made to produce pulses of a partici
shape continuously output via CB2 (Figure 4.22). To select this free running output requir
ACR bits 4, 3and 2 to be setto 1, O and O resgaygtand T2LLO should be loaded with
the required time interval between the sbhifits of the individual bits. Suppose we require
a frequency of | kHz for the selected pulse shape. With eight bits to be output, we requ
one bit every 125 microseconds,vge load the low byte of timer 2 with 124 (one less than
125) to get the correct time interval. The routine is as follows:

100 ?SR=15:REM SET UP SR WITH PULSE SHAPE
110 ?T2LLO=128:REM LOAD TIMER 2 LOW
120 ?ACR=16:SET UP ACR FOR FREE-RUNNING OUTPUT

To switch off these pulses, the simplest way is to load SR with zero, thus retaining the mo
without outputting any pulses.

data= 1

data= 3

data=7

etc.

Figure 4.22Pulse waveforms

Because this method only uses the low byte of timer 2, the lowest frequency available
when tiner 2 is loaded with 255 and SR with 15, giving about 200 Hz. The maximurnr
frequency is when timer 2 is loaded with O, giving 31 kHz (since the routine takes 1 cyc
per bit). This can be raised to 125 kHz if SR is loaded with four pulses at once, thht is wi
85 or 170. This is not as good as that available by using timer 1 and outputting through P
and so is not actually much use. Its main application is in providing asymmetric pulses.

137

The BBC microcomputer in science teaching

The 1 MHz bus

As an alternative to connecting inputs and outputs to the user port, the BBC microcompu
provides the 1 MHz bus. In order to make use of this some knowledge of the way ti
microprocessor works is helpful. As we shall see in the next chapter, the moasgswo
reads and writes to memory or to the user port through two sets of lines, catlathtbes

and theaddress busWhen the microprocessor wants to collect the contents of a particula
location, it places the address of that location on the addusssThis consists of sixteen
separate lines, each of which is made HIGH or LOW. For example, to read the user port,
microprocessor sets the lines of the address bus like this:

Address line Status Address

Al5 HIGH
Al4 HIGH =
Al3 HIGH
Al2 HIGH
All HIGH
Al10 HIGH E
A9 HIGH
A8 LOW
A7 LOW
A6 HIGH 6
A5 HIGH
A4 LOW
A3 LOW
A2 LOW 0
Al LOW
A0 LOW

These address lines go through a series of logic gates (in the ULA of the BB
microcomputer) and only the-Bort of the 6522 VIA is enabled to respond. All other
locations are ignored. This is callddcoding the addressSince there are sixteen address
lines, there are 65 536 possible locations that can be separately addressed.

When the addressed location sees its own address on the address bus, its response
two kinds. Either the data in the location is read or new data is written into itll Tioete
location which is to occur, the microprocessor signals along a separate R/NW line (read/
write). When this line is HIGH, the data will be read, when this line goes LOW, new data i
written into the addressed location. Either way, it is the loiagavhich carries the data. This
consists of eight separate lines, one for each bit of the data.

There also has to be careful control of when the data is available. In a data wri
instruction, the address is placed on the address bus, the date® @iethe data bus and
the R/NW line is made LOW, but still nothing happens until the microprocessor sends tt
action signal. This is very much like an orchestra, where the conductor keeps everya
together by regular beats of the baton. The microproces&s the same with clock

138

Microcomputer timing and control

pulses. These are carried to all parts of the microcomputer alonpthepulse line
(CLK).

All of these lines appear at the connector of the 1 MHz bus. To add more memory
another device of our own to the microcomputer is ideally a matter of connecting the pow
supply, address, data, R/NW and CLK lines to the correct pins of the device.
Unfortunately there are a few problems.

The first of these is that the selected address for the device must be different from a
others that have already been chosen for the operating system of the microcomputer. T
whittles the choice down from @36 to 63! Actually the BBC microcomputer sets aside
512 spare addresses, which run in the memory from®@kC&FDFF. Unfortunately some
of these are scheduled to be used by-@udinits, such as the teletext adaptor and the
sideways ROM. Since you caever be sure which of these devices will be added to your
machine in the future, it is safest to stick to the 63 that have not been booked (so far!). Th
are from &FCQ@ to &FCFE. (&FCFF has a special use.)

All these addresses start with &FC, and tee BBC microcomputer automatically
decodes the top eight address lines for us. When any location beginning with &FC
addressed, a special line in the 1 MHz bus connector (called FRED) goes LOW to signi
the fact. FRED is therefore used instead of the dight address lines. The lower eight
address lines may be decoded as required.

To illustrate the principles, Figure 4.23 shows how sixteen separate select signhals can
obtained from the SN74154 decoder. This has five inputs (address lines A% ald A7,
and FRED) and produces sixteen device select One&FCOx to &FCFx ('x' can be any
number from O to F). Of these only &FCCx, &FCDx, &FCEx and &FCFx can be used
alongside the other adih devices mentioned above. As the following truth table

» FCF x
» FCE x ;
> FCD x devsii(;enz?slect
+» FCC x
» FCB x
13 12
14 11— FCAXx
15 10— FC9 x
16 9 > FC8 x
17 SN 74154 8 —FC7 x
ov-Lt"18 71— FC6 x
FRED e— 19 66— FCbH x
1 MHz bus A7e 20 5—"‘FC4X
A G e 21 4 +—>FC3 x
AD5e 22 33— FC2 x
+5V—-[— A 4 o 23 2}— FC1 X
24 m 1— FCop X

- —» 0OV

Figure 4.23 Decoding the 1MHz bus

139

kO
N
N

AGH|——1—{bZ

0/]1/]2|3/4/5/6|/7|8|9|A|B|C|/D|E|F
L HHHHHMHHHHHHHHHH
HIL HIHHHHHHHHHHH[H|H
HHILIHHHHHHHHHHHH[H|H
HHHLHHHHHHHHHH[HIH
HIHHHLHHHHHHHHHHIH
HHHHHLHHHMHMHHHHH|H
HHHHHHLHHMHHHHHHIH
HIHHHHHHHLHMHHHHH[H|H
HIHHHHHHHHLIHHHHH[H|H
HIHHHHHHHHHILIHHHH[H|H
HIHHHHHHHHHH|LIHHH[H|H
HHHHHHHHHHHLHH[HIH
HHHHHHHHHHHHLHH|H
HHHHHHHHHHHHMH|L[H|H
HIHHHHHHHHHHHHHH|[L|H
HIHHHIHHHHHMHMHHHHMHHIL

0
1
0
0
1
0
0
1

p-
@

@

RW
device select
clock

A7 | A6 A5 A4

indicates, only one of these select lines goes LOW at any one time, when the binary addr

of the required line is sent to the address inputs (A4, AS, A6 and A7).

The BBC microcomputer in science teaching

LA gqsz
s a— 8z
v a—6z
¢ a—oe
za—ie
sq bLa—{ee

6522 VIA

|
N
A-port

0 o)
-FNMYLONOOSCNRIRVORRDR
[
™

— L VO
- C VO

data bus
!
g

>

(o}

y
@
-

b o .f
Ne S
- - - ¢

L 4
o
@

RST
A3

Figure 4.24 Connecting another VIA

140

Microcomputer timing and control

If the other adebn units are not being used, each of these output lines can be used to sel
a different VIA, giving a possible 256 extra input/output lines for control. Figure 4.24 show
how one of these (address &FCCO) is connected to the device isplgicof just one of
these VIAs. The lower four address lines are connected to the four address inputs of the \
and the R/NW and CLK lines are connected too. Pin 21 of the VIA is left unconnected, it
an interrupt request line and the use of thisrttaeen considered in this book. | have yet
to find how the BBC interrupts work and, in any case, very few of my applications requir
interrupts. The technique of occasionally checking an input is nearly always satisfactor
Pin 34 of the VIA is connectetb the RESET line. When the BREAK key of the BBC
microcomputer is pressed, the RESET line goes temporarily LOW and clears all the regist
of the VIA.

This VIA may now be used in exactly the same way as has just been described, exc
that it respods to different addresses, as follows:

Name Function Decimal Hexadecimal
BPRT B-port 64704 &FCCO
APRT A-port (+handshake) 64705 &FCC1
DDRB Data direction reg B 64706 &FCC2
DDRA Data direction reg A 64707 &FCC3
T1LLO Low-byte Timer 1 - latch 64708 &FCCA4
T1LHI High-byte Timer 1 - latch 64709 &FCC5
TICLO Low-byte Timer 1 - count 64710 &FCC6
TICHI High-byte Timer 1 - count 64711 &FCC7
T2LO Low-byte Timer2 - latch 64712 &FCC8
T2HI High-byte Timer2 - latch 64713 &FCC9
SR Serial register 64714 &FCCA
ACR Auxiliary control reg 64715 &FCCB
PCR Peripheral control reg 64716 &FCCC
FLAG Interrupt flag reg 64717 &FCCD
IER Interrupt enable reg 64718 &FCCE
APRT A-port (no-handshake) 64719 &FCCF

There are other input/output devices that may be connected to the 1 MHz bus, but | ar
firm advocate of the 6522 VIA. It is not much more expensive than simpler devices that ju
latch data in or out, yet it is far more powerful. In the next chapter alerskurn to the 1
MHz bus to connect other devices also.

This chapter has tried to show the principles of environmental monitoring and contra
Using the input and output buffers described in this chapter, almost any system can be eit
simulated orealized in a practical way. It is, however, most unlikely that a microcomputel
would be used in a real situation. Chapter 9 discusses more realistic ways of produci
control equipment.

Practical details
The practical wiring details for the two input board and the logic board are shown in Figur
4.25 and 4.26 respectively. The logic board requires two DS8833 quad line

141

The BBC microcomputer in science teaching

O— +5V

ov

O

(

270 R ki ¥
- bit 6
10k S

> bit 5
bit 4
— bit 3

bit 1

K BC 109

— bit 2

bit 0 | bit 1

— bit 0

O O

Figure 4.25 Two input board

LT

transceivers (not available from RS Components touh fFarnell Ltd). Each output driver

Is used to drive an LED indicator. The inputs of the four transceivers used for the outp
terminals are not used, so they are disabled. Connection to the BBC microcomputer u
port is via a 26vay cable, each end wihigequires a 2@vay cable mounting socket (RS
467-289). One end plugs into the user port and the other end plugs into a PCB mounti
plug (RS 467346), which may be soldered directly onto each logic board. The eight dat
lines and the +5V an@V lines shold then be connected as shown in Figure 4.26. The pin
connections to the user port are shown in Figure 4.27. This configuration assumes that \
have lifted up the front of the BBC microcomputer and are looking underneath at the sock
directly from the font.

Specific applicaions of timing

Now that we have looked at the general principles of timing, let us examine a few speci
timing applications in physics. The BBC microcomputer can be made to measure the tir
interval between logic level changes ather input. These changes can be caused by
switches or, more importantly, with photocells, one connected to bit O and the other to bit
of the user port through a suitable op. amp. or transistor driver (Figures 4.9 and 4.10), F
some programs only oraé these is needed.

Events or logic level changes at the inputs are used to measure time intervals in exa
the same way as in CONTROL EXAMPLE 8. The inputs are read and stored in a mema
location called status. The current state of the inputshare monitored continuously and
compared with status, Normally they will be the same, but when they are different, this
because one or other of the photocells has been activated. At this point the contents ¢
clock are noted. When the timing is fined, the time intervals involved can be calculated
and displayed.

There are three ways of achieving the clock. The first is to make use of the BBC

142

Microcomputer timing and control

+5V 10 pin connector J_\)
oV .
bit 7 ~—f— 1k0
bit 6 ~—f— 5 =
P t4 N
. A g 7B
it4 —t—
pO—dina 11 iUt 7
bit 3 ~—f— bit 4 1 sH
bit 2 ~——t—e out 5 bit 7 o —)z
bit 1 i 5 t6 CD
itl >~—1—=
bit 0 bit 5 a b = >
I S B t
ti—gi1s 20
it
£ 16 7N\ 15— out 6
. 2 Y
cO n DM 8833 &
Ho 8B
outl__Ew = B
7 ou
B in1 in1 —()Xx
O_—' —H11 6 B—out3
bit 1)
ko '6_512 53— in3
t
— o =13 45— bit3
.‘-—'-—514 38— out2
GD& |n(1_E15 28— in2
y out 4
A(>— bit O —{)W
- H16 M\ 1 bit 2
DM 8833 []27OR
270R[]

Figure 4.26 Logic board
BBC user port

Z>>
view from underneath il
1 1
6 6 6 6 6 & & o o
REEEEEEEX
EEEEEREEER
N © D T M N - O N -
M o O oM oM oMo @m@O@oD
o O

Figure 4.27 User port connections

143

The BBC microcomputer in science teaching

microcomputer's own clock, which runs at 100 Hz, thus enabling time intervals of 10 ms
to be counted. The technique is illustrated by this primitive reaction timer, which assume
a push button switch connected to one of the inputs.

1 REM CONTROL EXAMPLE 10 - REACTION TIMER
10 ?765122=60:REM CONFIGURE USER PORT
100 PRINT"WHEN THE SCREEN GOES BLANK,"
110 PRINT"PRESS THE SWITCH."

120 max=5000+RND(10000)

130 FORT=1 TO max:NEXT T

140 CLS

150 now=TIME

160 status=765120 AND 3

170 IF status=?65120 AND 3 THEN 170

180 PRINT "REACTION TIME = ":(TIME-now)/60

The more sophisticated REACTION TIMER (6) uses the same timing technique, but it
displays the results in large digits for all to see (Plate 26). It also replaces the smuitch in
with a keyboard input, so an interface is not needed for this program (Plate 25).

STOPCLOCK (5) accesses the same centisecond clock from machine code and
continually updates the display to show the elapsed time. This has to be done with a
machinecode routine, because the display of the large digits would be too slow in BASIC
All the machine code routine in this section are described in Chapter 8, only their uses ir
teaching are discussed here. You do not have to be a machine code expert teenodke u
machine code programs, as long as you know how to call them and how to pass values
from them back to BASIC. As already mentioned, programs like STOPCLOCK have
many applications, for example they can replace centisecond timers in most instances. A
simple photocell connected to bit O will operate STOPCLOCK for experiments on
kinematics, etc.

Unfortunately, for intervals shorter than a second, the BBC centisecond clock is not
sufficiently accurate. In this case the timers of the VIA can be uséeé manner already
discussed. A third way of timing relies on the fact that the BBC microcomputer is itself
under the control of a crystal oscillator, which produces clock pulses at a rate of roughly
MHz. Each machine code operation of the microprocessate the BBC microcomputer
requires a given number of such clock pulses. These can be counted, thus giving a
measured time interval. This counting can be done with the VIA timers as discussed
above, or by machine code loops as discussed in Chapter 8.

FAST TIMER (7) uses the latter technique to measure intervals up to milliseconds in
tenmicrosecond units. It is of universal application and can easily be used in other
programs without knowing how it works; for example:

1) Speed of a rifle pellet

Bits 0 and 1 should be grounded through the thin pieces of foil as in Figure 4.28. When t
pellet breaks the first foil, the clock starts and when it breaks the second foil, the clock
stops. The program will then stop the clock and display the elapsenhtiarge digits on

the screen.

144

Microcomputer timing and control

REACTION TIMER
by R.A. Sparkes

This program measures reaction time.

A few seconds after you press the
RETURN key, the screen will go blank.
As soon as this happens, you must press
the SPACE bar. Your reaction time

will then be displayed.

Press RETURN to begin.

Plate 25 REACTION TIMER instructions

Press RETURN to start again

Plate 26 REACTION TIMER result

The BBC microcomputer in science teaching
’ +5V

1k0 foil 1

» t0 PB ¢

100 R

foil 2

ov

Figure 4.28 Foils

8.75 1.5 2.295 3
timesmilliseconds

Plate 27 Contact bounce when a switch is closed

146

Microcomputer timing and control
+5V

» PB ¢

ov_|_ » PB 1

1k0

+5V
Figure 4.29 Switchover time of a switch

i) Contact bounce

Some idea of the speed of the timing routine can be gained by using a single push but
switch connected to one of the inputs. FAST TIMER is run and when the display says it
ready, the switch is pressed once. In most instances the program will caspésylt,
indicating that at least two input changes have been detected. There were probably m:
more changes than this, caused by the contact bounce in the switch, when it is closed. F/
TIMER is more than fast enough to measure this contact bounce Tihee same
arrangement with a fast voltage measurement program (Chapter 5) produces Plate 27.

iii) Switchover time

Using this program with a twway switch as indicated in Figure 4.29, enables the
changeover time of this switch to be measured. An istieigg experiment is to see if the
switchover time is dependent upon the speed at which the toggle is operated.

iv) Camera shutter speed

Instead of switches to produce changes in the input status, this can also be done by
interruption of a beam ofdht focused on a photocell, with the photocell connected to one
of the inputs. It then becomes possible to measure the effective shutter speed of a cam
The photocell should be mounted inside the camera at the image of an external light soul
When thecamera is operated, the time measured by this program is a good indication of t
exposure time that the film receives.

V) Trolley speed measurement

If a card attached to a trolley crosses a light beam focused on the photocell, the time tal
for it to do so may be measured by this program and displayed for all to see. In this instar
both changes take place at the same input. If the length of the card is entered into the prog
beforehand, the microcomputer will automatically compute the speed ofrdley.
Unfortunately this program cannot be used with two photocells, i.e. one

147

The BBC microcomputer in science teaching

connected to each input. This would be very useful, since the speed of the card could tt
be measured over a much greater distance. However, as the card crossegtidust,

it would start and then stop the clock at this point. A more sophisticated timing routine |
needed to measure the time between two different photocells.

Advanced timing

The advanced timing routine used in the following programs needs sotaraiqn so that

it can be used even without a knowledge of machine code. A full assembly listing is give
in Chapter 8. To enable multiple measurements of speed for studying the law of conservat
of momentum, there must be two photocells. Furthermoris experiment, it is possible
for a second trolley to begin a transit of its photocell before the first has finished crossir
the other photocell. Thus it must be possible to detect the two inputs independently and
keep their results separate. Wl shly need the one clock, but at the start or finish of an
event, the time on the clock is copied into a store. In fact up to sixteen stores are availa
for each input. Thus, in the conservation of momentum experiment, it is possible to ha
two trolleys approach from different directions, to collide in the middle and both go off ir
one particular direction at different speeds. This involves two events at one input and ¢
events at the other, but the routine can easily cope with this. (An eventisaage in logic
level at either of the inputs.)

This advanced timing routine can be called from a BASIC program in a variety of way:
to measure time and speed as above and also to measure period, frequency and acceler
All measurements are disgyed in large digits on the screen using the large digits machine
code routine described in Chapter 7.

Program 8 (TIME, SPEED AND ACCELERATION METER) makes use of this routine
for a number of purposes. Firstly, it measures time intervals of up ietwgnutes in units
of fifty microseconds. Speed measurements are based upon the photocell technique usi
card length of 40 mm. By changing lines 5070 and 6070 of the program this may be chanc
to any other length. However, there is considerable uracy introduced by the photocells,
because the point at which they switch on is not necessarily the same point at which tf
switch off. So a 40 mm card may not necessarily look like a 40 mm card to the photoce
The error is only a few mm, and this islypimportant if very short cards are being used. If
great accuracy is desired, then 100 mm cards or longer should be used. The advantag
short cards is that some meaning can then be given to the difficult concept of 'instantanec
velocity.

A douwble card such as that shown in Figure 4.30 enables acceleration to be determir
and displayed directly. This quantity is computed from the standard equation

acceleration = (final speed 0 initial speed)/ time taken

An interesting experiment isimply to drop this double card vertically in front of a
photocell using the acceleration option of program 8. The display gives the acceleration ©
to gravity directly (Plate 28). (But see the educational note later.) If different lengths at
used for tis double card, then line 5070 of the program should be changed. It is only the ¢
mm lengths that are important, not the distance between them. The double card provides
two measurements of speedjuired in the calculation.

148

Microcomputer timing and control

Figure 4.30 Double card

Plate 28 Measurement of acceleration due to gravity

By connecting two photocells in series, they can be placed any distance apart, and the
single card can pass in front of both photocells to provide the initial and final $pe#ds
calculation. This would be a good way to introduce the function of the double card.

The advanced timing routine of program 8 was designed to be used for measuring 1
speeds resulting from trolley collisions. It is used for this purpose agrgm 9
(CONSERVATION OF MOMENTUM). The same restrictions on card lengths apply as
above. The speeds are displayed for each photocell separately, with the readings
chronological order for each separate channel (Plate 29).

149

