

The BBC microcomputer

in science teaching

The BBC microcomputer

in science teaching

R. A. Sparkes

Hutchinson

London Melbourne Sydney Auckland Johannesburg

The programs listed in this book have been checked carefully. In the hands of a competent

user, all programs listed should perform their intended function satisfactorily. But no

program can ever be entirely free from error, even copied exactly from an accurate print-

out. Therefore the publishers do not guarantee the programs and take no responsibility for

any errors in or omissions from them. No liability is assumed for any damage, either

physical or psychological, that ensues from the use of any information contained in this

book. Neither is there is any guarantee that the equipment described in this book will not

change, thus rendering all programs unworkable.

COPYRIGHT 1983 R.A.SPARKES

World rights reserved.

No part of this publication may be copied, transmitted or reproduced in any way, without

prior written approval from the publishers, with the following exception. The programs in

this book may be entered into a computer, executed and stored on magnetic tape or disk for

use by the reader personally but such programs may not subsequently be sold, exchanged or

made available to others.

Hutchinson & Co. (Publishers) Ltd

An imprint of the Hutchinson Publishing Group

17-21 Conway Street, London WIP 6JD

Hutchinson Group (Australia) Pty Ltd

3032 Cremorne Street, Richmond South, Victoria 3121

PO Box 151, Broadway, New South Wales

Hutchinson Group (NZ) Ltd

32-34 View Road, PO Box 40-086, Glenfield, Auckland 10

Hutchinson Group (SA)(Pty) Ltd PO Box 337, Bergvlei 2012, South Africa

First published 1984

© R.A.Sparkes 1984

Printed and bound in Great Britain by

Anchor Brendon Ltd, Tiptree, Essex

British Library Cataloguing in Publication Data

Sparkes, R. A.

The BBC microcomputer in science teaching

1. Science - Computer assisted instruction

2. Science - Study and teaching

3. BBC microcomputer

I. Title

507'.8 Q181.A2

ISBN 0 09 154571 4

For Margaret

Acknowledgements

The BBC microcomputer, on which the programs in this book were written, belongs to my

wife and I am grateful for the use of it (not to mention the television set too). Once again I

thank Miss A. Hynes for producing the art work and I also acknowledge the support given

by the publishers, especially Bob Osborne. My ideas changed radically (and often), yet they

were always patient and able to supply advice and encouragement. I am especially grateful

to teachers who attended in-service courses at St Andrew's College and were willing to try

out my ideas and offer further suggestions.

 However, none of these can share any blame for the errors and omissions that occur in

this book, and I take full responsibility for them. I look forward to receiving comments from

readers on how this book and the use of the BBC microcomputer in the areas I have

discussed might be improved.

 Once again most thanks are due to my wife, Margaret, for her encouragements and

criticisms and for her patience and understanding. The development of this book and the

ideas in it has been at the expense of both Margaret and the children. I can only hope that

their sacrifice is found to be worthwhile.

The University of

Stirling.

7

Contents

 Introduction 11

1 The new resource 13

2 Programming techniques 27

3 Computation and mathematical modelling 60

4 Microcomputer timing and control 93

5 Analogue interfacing 153

6 The 6502 microprocessor 174

7 Assembly language programming 222

8 Interfacing in machine code 263

9 Dedicated systems 277

 Suppliers 285

 Electronic components 288

 Bibliography 289

 Program listings 291

 Index 391

8

Listed programs

The programs listed in the Appendix are given below. To allow them to be stored on disk

each has also been given a shortened name to fulfil disk-name requirements.

Program 1 LOGIC GATES (LGCGATE) These three programs teach (or test

practically) the principles of Boolean

logic and show the use of a

microcomputer in solving logic

problems. They require a logic board

connected to the user port, details of

which are given in the text.

Program 1A LOGIC TEST (LGCTEST)

Program 2 LOGIC TUTOR (LGCTUT)

Program 3 LOGIC MAKER (LGCMKR)

Program 4 6502 SIMULATION

(MICSIM)

teaches the instruction set and

mnemonic codes of the 6502

microprocessor.

Program 5 STOPCLOCK (STPCLK) measures time intervals with a visual

display of the elapsed time in large

digits

Program 6 REACTION TIMER (REACT) measures reaction times

The next four programs require a digital input connected to bits 0 or 1 of the user port.

Program 7 FAST TIMER (FASTTMR) measures time intervals in ten

microsecond units.

Program 8 TSA METER (TSA) measures time, speed and

acceleration.

Program 9 CONSERVATION OF

MOMENTUM

(CONSMOM)

measures speeds of two colliding

trolleys, simultaneously if necessary.

Program 10 SPEED-TIME PLOTTER

(SPTPLOT)

plots a speed-time or distance-time

graph.

The next two programs demonstrate the use of separate gates to control timing.

Program 11 PULSE TIMER (PLSTMR) measures the length of a square pulse.

Program 12 FREQUENCY METER

(FREQMTR)

measures pulse frequency.

9

Program 13 PROGRAMMABLE

OSCILLATOR (PROGOSC)

provides alternating voltages with

changeable waveforms and

frequencies. This program needs a

digital to analogue converter

connected to the user port.

Program 14 CAPACITOR DISCHARGE

(CAPDIS)

measures the voltage across a large

capacitor as it discharges.

Program 15 FAST ADC (FASTADC) takes rapid readings of input

voltages using a special converter.

Program 16 DIGITAL MULTIMETER

(DIGMULT)

displays voltage, current, power and

resistance.

Program 17 CURRENT-VOLTAGE

PLOTTER (IVPLOT)

automatically plots I-V

characteristics.

Program 18 FOUR-CHANNEL CHART

RECORDER (CHRTREC)

displays four channels of voltage

input and scrolls horizontally.

The remaining programs do not need interfaces. Their use is described in Chapter 1 and

they are referred to throughout the text as examples.

Program 19 MECHANICS DRILL (MECHDRL)

Program 20 INTEGRATED SCIENCE TEST (INSCTST)

Program 21 RADIOACTIVE DECAY (RANDECY)

Program 22 SUM OF TWO DICE (SUMDICE)

Program 23 STANDING WAVES (STWAVES)

Program 24 WAVE SUPERPOSITION (WAVESUP)

Program 25 WAVE REFLECTION (WAVREFL)

Program 26 MOLECULAR MOTION (MOLMOT)

Program 27 BROWNIAN MOTION (BRWNMOT)

Program 28 GRAVITY (GRAVITY)

Program 29 RESONANCE (RSNANCE)

Program 30 PROJECTILES (PROJECT)

Program 31 NEWTON (NEWTON)

Program 32 RUTHERFORD (RUTHFRD)

Program 33 MASTERMIND (MSTRMND)

Program 34 ELEMENTS (ELMENTS)

10

Program 35 PILES (PILES)

Program 36 FAST SCREEN TRANSFER (YESNO)

Program 37 DISASSEMBLER (DISASSM)

11

Introduction

This book is a BBC microcomputer version of my previous book Microcomputers in Science

Teaching, which was written mainly for PET and Apple users. The differences between

these machines and the BBC microcomputer are such that a major rewrite has been

necessary. That previous book was also not helpful to those who wished to develop their

own interfaces for using the microcomputer in the laboratory, so 1 have tried to remedy this.

These chapters assume some knowledge of basic electronics such as that found in

Microelectronics (Hutchinson, 1984). To allow this book to be self-contained, some of the

relevant ideas in Microelectronics have been repeated here.

 To some extent this book is also a sequel to Microelectronics. That book concluded that

the most sensible way to introduce students to microelectronics is through programming a

microcomputer to control the environment. Accordingly a large part of this book considers

the use of the BBC microcomputer in analogue and digital measurement and control.

 To reduce the overall amount of material, I have tried to exclude things that are described

in the BBC microcomputer user guide and I assume that readers are well acquainted with

that manual. Throughout that book the author has drawn attention to areas where 'Space

simply does not permit an adequate explanation...'. While not claiming that my explanations

are adequate, I have attempted to fill in the gaps in the user guide to allow BBC

microcomputer owners to get even more out of their machines.

 I have concentrated mostly on those applications of the BBC microcomputer that are

particularly relevant to science teachers. I have interpreted this term pretty widely and there

is a great deal to interest teachers of engineering science, CDT and mathematics too. Most

examples are taken from physics, but the principles they demonstrate apply to all subjects.

This area is one of very rapid development and new ways of doing things are constantly

being found. For this reason I have emphasized the principles involved as well as providing

specific examples. Thirty-eight programs are listed in the Appendix and these are referred

to in the text as examples of the points being made. In addition many other listings are

included in the text to illustrate particular ideas. Note that these examples (which are also

available on disk for readers who wish to save time) are not 'idiot-proof', that is they have

not been tested and protected against pressing the wrong keys or entering the wrong

information etc.

 My programs are mainly intended to help BBC microcomputer users to write their own

programs. The listings are utilities that can be developed by teachers for their own purposes.

There are those who decry this attitude saying that we can't expect teachers to become

program writers. Unfortunately, there is never enough money in education to pay for the

programs that teachers want, which results in teachers having to write their own (or steal

them from someone else). In any case program writing is well within the capabilities of the

average science teacher (like learning to drive a car).

12

I often use the analogy of the motor car in this context. If you occasionally need travel from

one part of the country to another in reasonable comfort, you may take taxi. This will be

very expensive. Alternatively, you may learn to drive the car yourself. This will take time

initially and is only worthwhile if you expect to do a lot of travelling. Likewise, if you only

expect to use the microcomputer on a few rare occasions, or if you want pupils to use it

without supervision, then, by all means, pay the extra and get crash-proof programs. But if

you intend to make considerable use of the microcomputer, it is better to learn programming

for yourself. Then you will be able to take control. You will not be afraid if a program

crashes because you will know how to recover it, you will be able to adapt an unsatisfactory

program to your own specification and you will pay very much less for programs.

 The effort in writing programs is less in getting them to work than in making them

absolutely idiot-proof. I appreciate that programs designed for use by novices must have

this protection built into them. If this is an important criterion for you, then you will be quite

happy to pay for someone to create the program for you. But if you have the ability to write

your own programs and therefore the ability to recover from a crash, you will not be so

happy at having to pay extra for someone else's lack of competence. Also, you will want the

ability to stop programs, list them and alter them to your own requirements and commercial

programs generally prevent this. One way of overcoming this 'protection' racket is by writing

your own programs and making them available to others.

 In support of this precept my programs are presented so that you will be able to modify

them for your own applications. If they were locked up on a no-copy disk, the benefit that

they could give would be more limited. I hope that anyone else making use of these

programs will have the same attitude and will acknowledge authorship in the traditional

way.

13

1 The new resource

'Where shall I begin, please your Majesty?'

(Lewis Carroll, Alice's Adventures in Wonderland)

One of the unfortunate results of the history of computing is that most people still regard it

as a branch of mathematics. A common response to the call to learn programming is, 'I'm

no good at maths'. This is a mistake since there is no longer much relationship between

mathematics and computing. For science teachers, the microcomputer is much more a new

piece of educational technology than a super calculating machine. Its use is not confined to

the mathematics department nor to a computing department. This chapter explores the

possible applications of the microcomputer in science teaching.

 To emphasize the difference between the traditional computer and its modern counterpart

the new phrase 'information technology' has been invented. The modern microcomputer is

mainly concerned with collecting, processing and presenting information. The machine

should therefore appeal instantly to the teacher, whose task it is to disseminate information

in its widest sense.

 There are several aspects of such 'presentation'. First of all, the microcomputer can be

used to display a page of text on its television screen (or VDU). The information could also

include a set of figures or a list of names in columns. Alternatively, the information could

be presented graphically (i.e. as a diagram or picture or graph) or by an animation or moving

picture. This is where the video screen has an immediate advantage over the blackboard or

OHP , since animation is not available on the latter. The microcomputer is thus a textbook,

blackboard, slide projector and film loop all together in one instrument. It is not restricted

to use by individuals, there are several ways in which it can be used with quite large groups.

In this case the display is unlikely to be just text, because this cannot be read from a distance

(although there are ways of displaying a few words at a time in large letters). More likely it

is a picture or an animation that is being presented for all to see, but with the added advantage

of interaction. At any stage during a demonstration the students can be asked to suggest how

the parameters should be changed. A discussion can then take place as to the likely effects

of this change upon the phenomenon being investigated. The changes may then be made to

check on the predictions. The general name for this application is electronic blackboard,

where the microcomputer is used by the teacher in front of the whole class.

 The microcomputer is also a powerful tool for helping small groups of pupils. Until class

sets of microcomputers become available, it is envisaged that this application will be

confined to use by students in a station's laboratory (where there are a number of

workstations and the students move from one to the other). The microcomputer can thus be

used by small groups for short periods of time within a lesson. Alternatively, students

The BBC microcomputer in science teaching

14

might use the computer in a library or resource centre. I use the generic term computer

assisted learning or CAL for this application.

 At the other end of this spectrum the microcomputer can be used by one individual pupil

working alone. The program being used might be simple drill and practice or a tutorial or

the microcomputer might be controlling a complete programme of work, adjusting the level

of presentation to the particular abilities of each individual pupil.

One reason why microcomputers have suddenly become important is because they make the

dream of individualized learning a reality. The difficulties of managing the workcards and

the tests etc. that are needed in the self-paced learning situation are overcome if they are

presented by the microcomputer. New material can be written on the screen for the student

to read and answer questions about. If the student is correct, then some other material can

be presented, but a wrong answer causes the microcomputer to behave differently, either by

presenting the question again or by branching to a remedial teaching loop. It is this ability

to react differently to different situations that makes the microcomputer more powerful than

any other resource we have had before. The interaction between the user and the

microcomputer creates possibilities for monitoring the teaching process much more

efficiently than hitherto. The process of instruction can be halted frequently to check that

the student is still following. This is something that every teacher tries to do but cannot

achieve in the conventional way for each individual student. Given these facilities, the

microcomputer's role in programmed learning is obvious.

 Scientists have an application of microcomputers that is peculiar to their discipline - its

use as a powerful laboratory instrument. We have already reached the stage, where no

physics laboratory is complete without a microcomputer, and I think that this situation will

soon apply in other areas. With suitable transducers and interfaces the computer is fast

becoming the only equipment in some industrial laboratories. I do not think that this will

happen in schools, but they do need to mirror the real world to some extent. The BBC

microcomputer may be used to measure almost any physical quantity desired. At a rough

estimate its use in this way can save up to a thousand pounds worth of alternative apparatus,

as well as enabling some hitherto unmeasurable quantities (like acceleration) to be

displayed. This is my own favourite use of the microcomputer and much of this book is

devoted to it.

 Inside every microcomputer is an incredibly powerful device called a microprocessor.

By talking to this device, new horizons can be opened up, especially for animated diagrams

and for using the microcomputer as a laboratory instrument. Because this is a new idea for

most teachers it is presented in Chapter 6 as a microcomputer simulation and tutorial,

providing a step by step approach to the principles of assembly language programming. This

is intended not only to explain microprocessor instructions, but also to demonstrate the

advantages of a computer simulation. Readers who follow this through might care to reflect

on how this way of visually presenting a new topic could be transferred to teaching in other

areas, for example, the operation of a nuclear power station or the electrics of a motor car.

Outside the classroom the microcomputer could take over the role of keeping records, in the

same way that bigger computers have been doing in commerce for some time. As

The new resource

15

might be expected, a great deal of research and development has already been done in this

area, and there is little point in any individual teacher doing it all again. There are several

projects under way on the development of administration packages for schools and, before

very long, these will become generally available. These will not only include student

records, timetabling, equipment records, library loans, etc. but also there will be complete

packages for marks processing and assessment. Even if no other part of the school is affected

by microcomputers, the school office certainly will be.

 Under this heading too I consider the use of a microcomputer as a word processor or text

editor to be very exciting. Readers of my previous book Microcomputers in Science

Teaching will note how parts of it have been used in this book too. It was a simple matter to

call up the text of that book onto the screen, to select the parts required, alter them and save

them once more on disk. There are several such word processors available for the BBC

microcomputer and their use more than repays their cost. Teachers who prepare their own

worksheets will find that their productivity increases by a factor of three or four at least.

There is an even bigger saving of time for one-fingered typists like me.

 Let us now explore some of these ideas in more detail with particular examples to

illustrate the principles discussed. Note that these examples (which are listed in the

Appendix and are also available on disk for readers who wish to save time) are not

thoroughly tested programmes, guaranteed to work with even the most stupid of users. They

are examples only of the sort of things that can be done with microcomputers. Nevertheless,

they have been tried and they do work and provided the user has a moderate understanding

of programming, they will produce no problems.

Specific examples

Testing

A common use of microcomputers in schools is testing. This means not so much the end-

of-term examination as the routine question-and-answer sessions, with which teachers

attempt to reinforce learning. Because time does not permit the conventional method to be

used on an individual basis, not all children benefit from it. Indeed, the public nature of the

responses often causes pupils to adopt strategies for avoiding an answer. If a child remains

dumb for long enough, most teachers will direct the question elsewhere. The microcomputer

can be viewed as a resource for handling question-and-answer sessions.

 At the simplest level are numerical tests; the microcomputer is perfectly capable of setting

its own arithmetic questions and working out the answers for itself. MECHANICS DRILL

(program 19) illustrates this application. It would be relatively easy to adjust the number

range and the difficulty of programs like this to suit the user. For practical purposes this

program needs to be improved in several ways. Where is the power of the microcomputer

being used? There are no diagrams or pictures or animations. INTEGRATED SCIENCE

TEST (20) shows what can be done in this area. In this program the number of correct and

wrong answers may be counted, so that a final score can be given. It is also useful to note

which questions the student gets wrong in case this reveals the source of the ignorance. A

properly structured test would be written for

The BBC microcomputer in science teaching

16

Plate 1 Integrated science test

Plate 2 Remedial response for a wrong answer

The new resource

17

this purpose anyway. A way of doing this can be seen in the score routines of

INTEGRATED SCIENCE TEST.

 A particularly powerful use of the microcomputer is to allow the student to ask for help,

if the offered problem proves too difficult. This could be automatically given after, say, three

attempts, or it could be available upon pressing key H. After the first few questions, it is a

little wearisome to a student to be given exactly the same 'Well done!' response each time.

No teacher would do this, so why should we accept a lower standard from the

microcomputer? It is not difficult to create a whole range of responses in an array, and to

pick one out at random. Also, thought should be given to more dramatic ways of responding.

Arcade invaders leap about with delight, when they score a hit on the defenders, why can't

the same graphics be used in education? As a suggestion FAST SCREEN TRANSFER

(program 36) illustrates how this might be done by flashing words onto the screen in rapid

succession. This could be incorporated into a test program to indicate whether the student

has got the right or wrong answer. The most exciting thing about test examples presented

via the microcomputer is that children tend to treat them more as a game. They aim to 'beat

the computer' or to 'do better than last time'.

 INTEGRATED SCIENCE TEST illustrates several of the basic principles of using

multiple choice items. This program can be used as the framework for any other multiple-

choice test. The items are kept separate from the main program, which handles all keyboard

inputs and scores etc. The question numbers, clues and correct responses are passed to

procedures as parameters. Scoring is a separate procedure and the final

Plate 3 Reinforcement of correct response

The BBC microcomputer in science teaching

18

presentation of the results is also self-contained. Note the way that graphics have been

included with each item. These are not essential in all cases, but they do increase motivation.

The longer test, from which these items were taken, was the one that made me realize the

power of the microcomputer. Some children ran the test again and again to see if they could

get full marks. I have never noticed this in a traditional school test. This area is also known

as drill-and-practice. The microcomputer is programmed to ask the questions and to monitor

the responses. To do this there has to be some way for the user and the microcomputer to

interact with the user, an aspect which is covered in the next chapter.

Simulations

Almost any phenomenon, model or experiment can be imitated or simulated by the

computer. Some programs of this type give tables of numbers as results, while others give

graphs or animations. GRAVITY (program 28) is an example of the former and the

remaining simulations show the use of graphics.

 Computer simulations are most useful where the real experiment is impossible (negative

gravity?) or very difficult to perform satisfactorily (Millikan's experiment?) or not

accessible (behaviour of an atomic pile?). I do not think that students should carry out

computer simulations of experiments, where the practical experiment itself could be

performed. A microcomputer could be used to demonstrate, for example, how to titrate an

acid against an alkali. One could press keys to allow the acid to drip in and, with high-

resolution colour graphics, could produce a superb effect of the indicator changing colour.

A meter could be displayed also to indicate the current pH as the acid is added. As an

introduction only, this could be very useful for showing the student what steps were

involved. The only objection to this would be if it replaced the actual experiment.

 There is also another danger in simulation experiments, of implying that one is actually

observing nature. Students may come to think that the characters moving around the screen

are behaving just like molecules in a real gas. This cannot be true, because we have no notion

of what the molecules of a real gas are actually doing. We can make observations and draw

conclusions about their behaviour and then produce simulations that appear to produce the

same behaviour. But that does not mean that the gas molecules are like the particles on the

screen. The students are really being encouraged to 'discover' our model of the behaviour of

the molecules, which is the reason why the simulation experiments must be integrated with

experiments on the real world, so that our theories about its behaviour can be tested.

 Programs 21 to 32 are straightforward simulations of physical events, some of which

make use of machine code graphics to achieve the necessary speed. The calculations needed

to keep 256 particles continuously moving at once are quite beyond the capabilities of

BASIC. RADIOACTIVE DECAY (21) is a simulation of the decay of radioactive particles

using the RND function of the BBC microcomputer. A graph of the number of nuclei

remaining after each time interval is displayed. Each nucleus that decays emits a click, thus

giving an audible record of the rate of decay at any instant. The aim of the simulation might

be for students to discover about half-life from a series of runs, but a teacher might wish to

use it for a different purpose instead. For example, it

The new resource

19

could be used in comparison with CAPACITOR DISCHARGE (14) and students asked why

the results are so similar from such different physical starting points. Alternatively, it could

be incorporated into a CAL package and the student instructed to make certain observations.

 SUM OF TWO DICE (22) is another example of the use of the random number generator

to simulate the shaking of two dice. The program adds the dice together and displays the

number produced each time. This program illustrates the graphics capabilities of the BBC

microcomputer in displaying a bar chart, while at the same time continuously updating it.

 The next programs are simulations designed to get across ideas of the behaviour of waves.

STANDING WAVES (23) shows what happens when two waves travelling in opposite

directions interfere to produce standing waves. WAVE SUPERPOSITION (24) is designed

to explain the relationships between speed, frequency, wavelength and also to demonstrate

the nature of a transverse wave. The amplitude, frequency and relative phase between two

waves may be altered and the production of beats between two waves of different frequency

demonstrated. Classical interference between two waves that only differ in phase may also

be shown.

 The way that the microcomputer is used to obtain these effects is discussed in detail in

Chapter 7. Basically, they use machine code plotting or scrolling routines. Another

application of the same technique is to keep a record of the positions of dots on the screen

and so to move them around under the control of certain laws. In WAVE REFLECTION

(25) this method is used to simulate the behaviour of water waves in a ripple tank, where

the water waves are themselves imitating the behaviour of light waves as they meet a

reflecting barrier.

 The next program also uses this directed motion technique. Graphics characters are

directed across the screen in straight lines, and they bounce off the walls simulating the

behaviour of molecules. MOLECULAR MOTION (26) demonstrates what happens to gas

molecules at different temperatures. Here a sound routine is used to demonstrate how the

number of collisions with the walls of the container is dependent both upon the number of

molecules and the temperature of the gas.

 Similar routines in a high-resolution mode enable the behaviour of smoke particles to be

simulated. Pupils look at a Whitley Bay smoke cell through a microscope but have no idea

what they are supposed to see. BROWNIAN MOTION (27) directs their attention to the

essentials so that they may then observe properly. No one is suggesting that the simulation

should replace the practical experiment, it is only another weapon in the teacher's armoury.

Computer assisted learning

This area has many names depending upon whether it is emphasizing what the program is

doing (instruction) or what the student is supposed to be doing (learning). I shall ignore the

fine distinctions involved, while still using the general term or CAL, for short. The above

discussion of drill-and-practice inevitably leads onto the use of the microcomputer for CAL.

INTEGRATED SCIENCE TEST moves some way towards it, since that program replies to

each response with a statement about why the chosen answer is correct

The BBC microcomputer in science teaching

20

or wrong. It is clearly possible to integrate such testing with the teaching of new material in

the same way. The idea is to present the topic and then ask questions to establish whether

the student understands. Then, if it becomes clear that the student does not understand,

remedial action can be undertaken.

 A program that does this is termed a tutorial and there are many in circulation. The most

common are self-instructional tutorials in BASIC programming. Most students, particularly

of those subjects which lend themselves to linear progression, such as mathematics and

computing, find such tutorials useful. They may even prefer them to traditional classroom

methods, because of the immediacy of the feedback and the fact that they can learn at their

own pace. Programs like this are not difficult to write, but they should use the full range of

interaction, reinforcement and, of course, graphics that is available. Several author

languages, like PILOT, exist to aid writers of CAL programs, but these can be too restrictive.

They were not developed with microcomputers in mind and may need special adaptation to

allow an author to incorporate graphics or other special techniques.

 There is, though, a great deal more to CAL than is implied above. To begin with, there is

a clear distinction between teaching and telling. Too many of the self-teaching packages that

have been published so far, fall into the latter category. What is involved in producing a

good CAL package?

 There are two broad categories of CAL programs, one of which favours a structured

approach to learning and the other a more open-ended approach. The former is based on

programmed learning theory, which may be summarized as follows:

1 The main objectives of the topics to be learned are specified, in terms of observable

outcomes, as precisely as possible. Not the 'student should understand something

about molecular weight', but specifics, like 'given a list of chemical compounds

and a table of the atomic masses of the elements, the student should be able to

calculate the corresponding, molecular masses for at least seven out of ten of

them'.

2 The objectives should then be listed in hierarchical order, in the sense that each

objective earlier in the list should not be dependent upon objectives that come

later. For example, the following objective should be attained before the one stated

above: 'given a list of chemical compounds, the student should be able to write out

the corresponding chemical formulae for at least eight out of ten of them'.

3 The next step is to arrange the objectives into a learning sequence. Teachers tend

to do this automatically, so they usually find no difficulty here. The difference

with programmed learning is the attempt to ensure mastery of the earlier objectives

before the later ones are tackled. One of the difficulties of traditional classroom

teaching has been the insistence that all pupils should progress at the same rate.

Thus pupils who had a particular learning difficulty , might never acquire later

objectives, not because they were unable to, but because they never quite mastered

the earlier ones. This is why the objectives above are criterion referenced. Students

do not just have to get higher marks than average, they actually have to attain the

external standard set by the objectives.

4 The learning sequence is then turned into a series of lessons, using appropriate

The new resource

21

teaching strategies for each objective. At certain stages throughout the sequence,

tests have to be devised to see whether a student is ready to proceed to the next

objective. These diagnostic tests are not stored up for the students' end-of-term

grades, their purpose is to inform the student of his or her mastery of each

particular objective.

5 Finally the package needs to be tested on a sample of students similar to those who

will ultimately use it. Any or all of the preceding stages may have to be modified

in the light of this experience.

 A CAL package is thus not just something that any knowledgeable person can write

down in an evening. Estimates vary as to the length of time needed, but a good average

figure is that 100 hours of development time must be devoted to produce material to keep

a student occupied for one hour. So, an expert programmer could put a year's full-time

work into a CAL package to keep a class occupied for one week! The failure of

programmed learning in the past has not necessarily been that it doesn't work, but that

there were not enough people around to write the packages. This position has not changed

with the introduction of microcomputers. It requires a massive effort to produce good

software.

 Even then there are hardware problems to be overcome. With graphics and

animations, a complete teaching package which could adapt its teaching to the individual

needs of its students could not be run with a cassette system for program loading. A disk

system is essential.

 Should teachers, therefore, give up the whole idea of CAL? I do not think so, because it

can never come unless there is a substantial number of teachers who have experience of it.

But I think that this is a task for a properly funded team of writers, not individuals.

Unfortunately, the ease with which software can be copied is likely to deter commercial

organizations from being interested.

 Teachers, or better still a group of teachers, could begin by taking some topic that is

particularly suited to a programmed learning approach; one that is linear in structure, will

fit into the video text method of presentation and where it is easy to write the objectives.

The commonest fault is to attempt too much, so that insufficient time is spent in ensuring

the mastery of each component part. After writing it, several trial runs with students (and

not just the school' s computer addicts) should be made with the teacher in attendance.

They should be challenged to 'crash the program' if they can. All problems discovered by

them should be noted and rectified. Only then should it be placed on the market; it should

not be the end users who have to debug the programs!

 There is one powerful reason for not spending a great deal of effort at the moment on

CAL (apart from the fact that few schools possess a class-full of microcomputers) and that

is the technology is changing fast. Within a few years the video disk will be used to

present the graphics, text, tests and other items that currently have to be put into a CAL

program. In future the microcomputer will become much more of a manager, calling up

from the disk the current lesson and also having previous lessons available for remedial

review. With a single video disk holding the equivalent of several hundred floppy disks of

information, CAL will no longer be a dream.

The BBC microcomputer in science teaching

22

Discovery learning

The other way of using the microcomputer to teach is, in my opinion, much more exciting

than CAL anyway. It is also less likely to be superseded when the video disk arrives. This

is its use in open-ended investigation. Instead of the computer asking the student, student

interrogates the computer. Already several data-base programs exist (e.g. MICROQUERY)

to allow students to obtain information by typing certain keyword into the computer. In

biology this promises to be very useful since a student can then carry out a search without

being forced into a particular direction by a CAL program. At a simpler level many programs

can be developed that allow the student to determine what he or she would like to know.

 Imagine that you wanted to teach a student about the properties of waves using a Nuffield-

type ripple tank. This could be done by direct instruction, with the teacher pointing out the

essential details. Or it could be left to the student to discover the principles for himself or

herself. My experience is, however, that pupils cannot see the waves because they do not

know what to look at. WAVE REFLECTION (25) strips away the inessentials and allows

the pupil to concentrate on the features that are important. The student may alter the angle

at which the waves strike the barrier and then see if the same results occur with the real

waves. This approach does not teach directly, but it does point the student along a particular

path. There is no guarantee that learning will take place. But all our experience indicates

that if it does, then the student will not just have

Plate 4 Plane wave reflection from a barrier

The new resource

23

learned the facts, he or she will also have gained an insight that could transfer to other

properties of waves too.

 Most of the simulation programs listed were originally devised for this purpose. They

illustrate the principles of discovery learning quite clearly, but their use is not restricted to

it. The versatility of the microcomputer ensures that a program can be used for many

different purposes, only a few minutes of adaptation being required.

Number-crunching

A glance at a list of available software reveals programs on Fourier transforms, least squares

fit, linear circuit analysis, linear programming, numerical methods, integration by Simpson's

rule and so on. The microcomputer is being used as a programmable calculator, with all the

advantages of screen display and editing, error detection and program storage.

 There are occasions in teaching when an equation needs to be solved many times and

where the result is more important than the solution itself. One example is typing

experimental data into a microcomputer to obtain an automatic straight-line plot. In this case

the important aspect is the interpretation of the data, not the long process of plotting it out

by hand. GRAVITY (28) gives another instance, calculating the height of a ball thrown

vertically against gravity. it is the nature of the motion that is being investigated, not the

solution of algebraic equations. Even here though a graph of the results would be even more

meaningful.

Modelling

The equation of motion used in GRAVITY (28) is a mathematical model of the behaviour

of a real stone falling. It is inaccurate because it ignores certain features such as friction, but

it does give some insight into the nature of the motion. In Chapter 3 we shall discuss ways

of making the model more real by using iterative methods. Physics and chemistry abound

with such models and most students can understand an equation much better if they can see

what happens to it when different parameters are changed. For example RESONANCE (29)

uses a simple technique to plot the resonance curve for an LCR circuit. The student may

observe the effect of altering the capacitance or the resistance of the circuit.

 Usually in science we eliminate some of the variables in order to make the mathematical

analysis of the phenomenon easier. The microcomputer allows some of these other variables

to be considered. GRAVITY ignores the effects of friction, but this is not too difficult to

incorporate provided the traditional technique of analysis is abandoned in favour of the

iterative method. PROJECTILES (30) uses this technique to provide a more accurate picture

of the motion of real stones being thrown through the air. The iterative method, which is

discussed in detail in Chapter 3, is particularly powerful when dealing with central forces

since the motion of satellites is obtained without recourse to integral calculus (a solution

that Newton would himself have liked). In addition, the motion is not confined to the circular

case, elliptical motion is no more

The BBC microcomputer in science teaching

24

difficult for the microcomputer than is the imaginary circular case. NEWTON (31) is a

mathematical simulation of Newton's thought experiment on why the moon doesn't (or

rather does) fall towards the earth. RUTHERFORD (32) is a variation of this program, that

replaces the attractive force with a repulsive one to simulate the scattering of alpha particles

by gold nuclei.

Games

If the recent fury that has developed over video games does not obscure the issue, there may

be very little distinction between this section and discovery learning. It may be possible to

distinguish between educational and recreational games, but I doubt if even that could be

maintained. There are reports of slow learners who have been very greatly helped by 'space

invaders', which, it is claimed, has increased their span of attention at other, more academic

activities. Nevertheless, I do think that some games exercise the intellect more than others,

and it is in these that I am interested.

 A standard favourite amongst beginners to computing is learning to program

MASTERMIND (33) or one of its forerunners like Bulls-and-Cows, which is easier uses

numbers. This game requires a strategy for getting the answer and I should like to improve

on it by encouraging the user to develop the correct strategy. I have seen even older children

adopting a trial-and-error method rather than using the information in previous guesses as a

basis for the next. If strategy training could be done here, would a

Plate 5 Guessing game - elements

The new resource

25

similar system be possible to teach students a strategy for, say, solving equations? It is

clearly an important potential development.

 Guessing games are among the most popular and I have included my own quiz

ELEMENTS (34). I am not sure that I agree with the traditional version of this game

(HANGMAN) on educational grounds. Doesn't learning theory require us to reward success

rather than punish failure? I have included my version to illustrate the technical ways of

handling guessed inputs. The game is easily adaptable to other topics by changing the nature

of the words (this one is based upon the elements) - this is easily done because they are all

contained in data statements at the end. The program chooses the next word at random and,

to avoid repetition, contains a routine to pick each word once only. Therefore, if you intend

to adapt it to your own use, you will need to alter the maximum number of words available

(103 in this case) wherever it appears in the program.

 My favourite guessing game is called ANIMALS and several versions are available for

the BBC microcomputer. The computer 'learns' the names of different animals and guesses

the one that you are thinking about, by asking a series of yes/no questions.

Does your animal live in the sea?
Does your animal fly?
Does your animal have horns?

When the computer gets to the end of its branching search without success, it gives up and

asks the user to say what the animal is and to suggest a suitable question for distinguishing

it from the previously named animal. Thus the computer 'learns' anew animal. The form of

the game usually given needs alteration, since it asks whether the animal in question has

long ears before even discovering whether it is insect, bird, fish or mammal. As a strategy

for guessing, it is therefore very poor. In the hands of a competent biologist the program

could be invaluable for teaching about classification. In chemistry too, it could be used to

develop an understanding of the periodic table.

 Finally, I add another game that is designed solely to promote thinking; PILES (35).

The user is provided with five piles each of four blocks, which may be yellow or blue. The

aim is to build four piles of five blocks with the colours in any one pile being the same.

Bricks are moved from the top of one pile to another by hitting the keys 1,2,3,4 or 5 only.

The number of attempts is recorded and revealed to the user as the game progresses. The

program also illustrates the use of sound to reinforce the user's responses. The program

was developed for use in primary schools from a version written by A. Wiltshire; find it

very good as a means of encouraging logical thinking in secondary schools too.

The new curriculum

I suppose it is inevitable that teachers first use microcomputers to enhance the current

curriculum. At the drill-and-practice level it is even reinforcing current syllabuses. The

discussion under Discovery learning above, though, does imply that the microcomputer will

eventually alter both how and what we teach. The way forward has been shown by Papert

and the LOGO language. With this, pupils can explore the world of space, shape,

The BBC microcomputer in science teaching

26

size and angle and discover the properties of language at the same time. Would it be possible

in the same way to use a microcomputer as a context-free method of developing process

skills in science?

 It might be possible to invent different worlds with particular properties to be

investigated. Gamow's Mr Tompkins in Wonderland describes worlds where the speed of

light is reduced to ten m.p.h. and where Planck 's constant is unity. The purpose of this is

not just to provide entertaining science fiction, it is rather to explain the real world by

exploring the properties of an imaginary one. I should like to see this done with a

microcomputer. At a simple level GRAVITY and some of the simulation programs in

Chapter 3 allow the acceleration due to gravity to be altered from its normal value of 9.81.

Could this be extended to exploring situations where an inverse cube law of force existed?

What would be the properties of visible light if our eyes could see into the X-ray or

microwave regions? This exploratory use of microcomputers cuts across traditional

boundaries, so that science, mathematics and art become united.

 At the moment few schools possess teletext facilities allowing them access to the vast

databanks of information that exist. When these do arrive, they will raise important

questions regarding the content of school syllabuses. In particular we shall have to question

the current emphasis upon knowledge. The 'Brain of Britain 1983' is the one who can

remember the most information. What will be the value of this skill when we each have

access to any desired information via a home computer terminal? A good memory will be

as outmoded as the ability to extract square roots by pencil and paper (which I was taught).

The skills we shall come to prize will be the processes of handling information. 'Brain of

Britain 1999' will be the one who can solve problems.

 Despite a generation or more of protagonists for process skills, most school science (and

nearly all university physics) is still heavily content based. Students have little chance to

apply their minds to new situations, they are too busy learning about old ones. Given the

opportunity the microcomputer could be used to put us back on the right track. This is why

I call this section 'The new curriculum'. I believe that the introduction of microcomputers

will be far more revolutionary than any of us expect.

27

2 Programming techniques

 'I'm afraid I don't quite understand,' said Alice.

 'It gets easier farther on,' Humpty Dumpty replied.

 (Lewis Carroll, Through the Looking Glass)

This chapter is not an introduction to BASIC programming, I assume you can do that

already. Instead, it attempts to explain some of the things that the BBC microcomputer user

guide omits (because they are of specialist interest). It also looks at ways of improving

tutorial programs with the use of graphics, proper display of text and methods of collecting

and processing responses from the keyboard. Finally, it looks at the whole process of

developing an educational program.

Programming

Introduction

The heart (or perhaps it should be brain) of any computer is its central processing unit

(CPU). A microcomputer like the BBC microcomputer is no exception, its CPU is the

Rockwell 6502 microprocessor. Note that this word 'microprocessor' refers only to the CPU.

People who use it in place of the word 'microcomputer' are fundamentally incorrect. The

microprocessor is only one of many chips inside the microcomputer, even if it is the one

which does all the work. Figure 2.1 shows a simple picture of the way that a microcomputer

works.

 For most purposes the INPUT to the microcomputer is via its keyboard. The OUTPUT

is via the television screen or monitor (in computer jargon this is a VDU or visual display

unit). One purpose of this book is to show you how to make use of other forms of INPUT

and OUTPUT.

 The microprocessor is a programmable device. There are two kinds of program that

control the microprocessor, the resident program and the user program. The same 6502

microprocessor is used in the Apple, the PET, the VIC and the Atom as well as in the BBC

microcomputer. These machines all behave in different ways because they have different

operating systems which tell the microprocessor how to read the keyboard, where to print

characters on the screen and so forth.

 A programmer can write different application programs for the microcomputer to execute.

For example, one program can be written to draw pictures on the video screen, another can

search through a list of numbers for the smallest value. This user program will not remain

in the machine after it has been switched off (it is said to be volati le). Every time that the

microcomputer is switched on, a new user program must be placed in its program memory.

This can, of course, be entered from the keyboard or loaded from disk

The BBC microcomputer in science teaching

28

or cassette tape. To allow the microcomputer to store different programs, the memory for

user programs is alterable. It is called RAM (which stands for random access memory).

To make it easier to produce such programs, they are often written in the language called

BASIC. The microprocessor does not understand BASIC, it is a digital device and only

'understands' digital signals.

 Information can only be sent to the microprocessor as a set of HIGH and LOW voltage

levels. The 6502 microprocessor has eight lines for this information and it reads all eight

lines at once. From our point of view these eight lines can be considered to be a binary

number. (Note, however, that the microprocessor does not understand binary any more than

it understands BASIC.) With eight lines there are 256 possible binary numbers (in the range

0000 0000 to 1111 1111) and any information received by the microprocessor must be one

of these numbers. Each digit of this binary number (called a bit) is either a 0 or a 1. To make

it easier for us, we usually convert these binary numbers into decimals using the following

values for each bit position:

Binary Decimal
0000 0000 0
0000 0001 1
0000 0010 2
0000 0100 4
0000 1000 8
0001 0000 16
0010 0000 32
0100 0000 64
1000 0000 128

The binary number 0110 0011 is equivalent to

RAM

6502

microprocessor

program memory

input output

Figure 2.1 The

microcomputer

as a system

Programming techniques

29

0 + 64 + 32 + 0 + 0 + 0 + 2 + 1, or 99 in decimal

 The whole set of eight bits is called a byte. One measure of the power of a computer is

the number of bytes of information that it can store. The BBC microcomputer model A can

store about 16 000 bytes and the model B about 32 000. It might seem that having only eight

bits to a byte is very limiting if we can only give the microprocessor 256 different pieces of

information. However, there are only seventy keys on a typewriter keyboard, yet how many

different books can be written? It is clearly the sequence of the instructions given to the

microprocessor that is important.

Machine language

One way of programming the microprocessor would be to give it sequences of binary

numbers via eight switches. A separate switch could be used to tell the microprocessor when

the next coded instruction was ready. This is obviously very slow and many mistakes might

be made. (It was the way that the early computers were programmed.)

 A better way would be to write all the binary numbers into the memory beforehand. The

microprocessor could then fetch each one in turn and execute it. It would be better still if we

could type in these numbers from the keyboard. This is the purpose of a machine language

monitor . (The word 'monitor' here has no connection with the television monitor.) The BBC

microcomputer does not possess a machine language monitor, since it has an even better

method of entering instructions. Older microcomputers, like the PET and the Apple have

machine language monitors as part of their resident program.

Assembly language

Using a machine language monitor is still slow, laborious and very prone to mistakes. The

BBC microcomputer allows the programmer to type in instructions for the microprocessor

in a special assembly language. For example, the instruction to the microprocessor to return

from a subroutine is 0110 0000 in binary and RTS in assembly language. The latter is

obviously easier to remember. The BBC microcomputer' s resident program contains an

assembler which takes each line of an assembly language program and turns it into the

correct binary number for the microprocessor to execute. It is a very powerful tool for a

programmer especially when the BBC microcomputer is being used for measurement or

control. Assembly language programming is the subject of Chapter 7 of this book.

BASIC

Even assembly language is not simple, so high-level languages have been developed.

BASIC is one of these. The BASIC instruction to return from a subroutine is RETURN,

which is even easier to remember. The microcomputer needs a special program, called the

BASIC interpreter, to turn BASIC statements into the binary numbers needed by the

microprocessor. This interpreter also contains error checking, so that errors in programming

give the message 'mistake' to the programmer. BASIC is so very easy

(by comparison with the other methods) that only a fanatic would use assembly language

unnecessarily. BASIC programs are used wherever possible throughout this book. For

The BBC microcomputer in science teaching

30

certain purposes, however, like rapid measurements, assembly language programs are

necessary and Chapter 8 of this book is devoted to this topic.

The resident program

The operating system, the assembler and the BASIC interpreter are all part of the resident

program in the BBC microcomputer. Since this must always be there when the machine is

switched on, it is non-volatile, and is written in ROM (read-only memory). ROM cannot be

changed, but it has the advantage of not disappearing when the machine is switched off.

Because it has to do so much, there is quite a lot of it in the BBC microcomputer, over 30

000 bytes. Some of this is useful to us even when we are not using BASIC. Also, as we shall

see later, it is quite possible to write machine language programs to make the BBC

microcomputer behave in different ways. You could even write your own operating system

(and make the BBC microcomputer behave like a PET!). The advantage of machine

language is the extra power it gives to the user.

Hexadecimal notation

In BASIC most users are unaware of binary, but when we start to talk to the microprocessor

it is not possible to avoid it altogether. But what are we to make of binary number like 1110

0110 1010 0111 ? Even copying it down might produce errors We use a shorthand system

called hexadecimal coding. Each set of four bits (half a byte is called a nybble) is represented

by a code according to the following table:

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

The sixteen-bit number 1111 1100 0000 0001 is thus written as FC01. To show that it is a

hexadecimal number, BBC BASIC uses the & sign, so the number becomes &FC01. The

addresses used in the BBC microcomputer have sixteen bits giving a total of 65 536

Programming techniques

31

different locations (from &0000 to &FFFF). The contents or data in any location are eight-

bit bytes with 256 possible different values (from &00 to &FF). Converting such numbers

to and from decimal is easily accomplished.

PRINT &FC01 produces the decimal number 64513
PRINT 32768 produces the hexadecimal number 8000

Talking directly to the memory

BASIC allows the user to be unaware of how the microcomputer works. This is usually

advantageous, but occasionally better results are obtained if the peculiar characteristics of

the machine are exploited to the full. Usually this prevents a program from being

transportable to a different microcomputer, but this is not in itself a sufficient excuse for

avoiding it. After all, each new microcomputer soon has its own specific version of

'Invaders' written for it and these are totally machine specific. Graphics are a particular

example of the advantages of machine dependent programming, so a little time will be

devoted to looking at BBC graphics from the microcomputer's viewpoint.

 The BBC microcomputer memory contains 65 536 locations each with its own address.

The contents of any address (for example 65535) can be seen with the BASIC statement

PRINT ?65535. The same can be done by writing the address in hexadecimal PRINT

?&FFFF

 New data can be sent to a particular memory location with the statement:

LET ?65535 = 0 (or ?65535 = 0, since 'LET' is optional).

In hexadecimal notation this becomes LET ?&FFFF = 0.

 With this particular address there will be no effect, &FFFF is in ROM and its contents

cannot be changed like this. Only RAM can be altered in this way. However, if you start

changing RAM indiscriminately, you may upset the operating system of the microcomputer.

Certain parts of RAM are reserved by the machine for its own use. If you change these the

BBC microcomputer may get lost inside itself. The screen may ' freeze' or go blank and the

microcomputer may refuse to respond to the keyboard. Even the BREAK key may produce

the situation where everything appears normal, but unexplained error messages appear. On

listing your program, you find that it is now a 'bad program' or that someone has written

rubbish over parts of it.

 None of this causes any permanent damage to the microcomputer. In computer jargon

you have caused a crash. The remedy is very simple. Switch off the microcomputer, wait

a few seconds and then switch on again. The proper operating system will be restored and

all will be well. The only casualty will be that your program has disappeared. This is your

own fault for not obeying the maxim:

ALWAYS SAVE A PROGRAM BEFORE YOU RUN IT

This is particularly sound advice when running machine code programs, when writing

directly to the memory or when external devices are connected to the microcomputer.

 One very useful place to write is the screen memory. Certain parts of the memory hold

The BBC microcomputer in science teaching

32

the information that is displayed on the screen. This RAM can be read and written to without

any fear of disaster. It also has the advantage that you can see what happens to the location.

Let us try this now.

 This investigation is designed for MODE 4, hence type MODE 4 and press RETURN.

The screen will go blank. Each dot on the screen is now the visible representation of a

particular bit in the screen memory and can be turned on or off directly. For example, type

LET ?30000=1

A single dot should appear approximately in the middle of the screen, because bit 0 of

memory location 30000 has been turned on. Try

LET ?30000=16

to get a different dot. A good investigation now is to discover the positions of the dots

corresponding to each bit. Try this program:

10 FOR i = 0 TO 255
20 LET ?30000 = i
30 FOR t = 1 TO 1000:NEXT t
40 NEXT i

Line 30 is a delay to slow everything down. You should observe that combinations of the

numbers 1, 2, 4, 8, 16, 32, 64 and 128 give different combinations of dots. In particular 255

switches on all the bits and produces a line.

 Now try different addresses, such as

LET ?30001=255 or
LET ?30010=255

To find out where the different memory addresses are located on the screen, run this

program:

10 FOR i = 32767 TO 22528 STEP -1
20 LET ?i=255
30 FOR T=1 TO 50:NEXT T
40 NEXT i

You will soon discover one fact: the screen positions are not contiguous. That is, the end of

one line is not followed immediately by the start of the next. Each block of eight contiguous

bytes is stacked vertically and is next to the following set of eight bytes. This makes it more

difficult to address the screen directly, but still far easier than with the APPLE or most other

microcomputers.

BBC health warning!

The BBC microcomputer user guide is full of dire warnings about the evil effects of writing

directly to the memory. There is good reason for this. The BBC machine is expandable - a

number second processors and other accessories is to be made available in the future. The

manufacturers clearly wish to preserve this expandability and

Programming techniques

33

programs that write directly to the memory do not allow this to happen. The user guide

explains quite clearly (to those with the background knowledge) how programs should be

written, using the special OS calls that are provided. Some use of these is made in Chapter

7.

 I have only one objection to this advice; when written in this way my programs do not

work! Using the OS calls slows down machine code graphics by a factor of a hundred and

makes fast data acquisition impossible. In the future when all the extras for the BBC

microcomputer are available, I may be able to revise this view (and re-write this book) but

for the moment there is still no other way to do many of the things I describe. The

consequences of this position are that some programs will need to be re-written in the future.

I regard this as a small price to pay for having access to these programs now. In any case I

do not think that much re-writing will be necessary. I believe it will be quite feasible to place

a machine code routing in the memory of the main processor, which can be called by a

program in the second processor, and which can pass parameters back to that program using

the proper OS calls. In this way we shall get the best of both worlds.

 It is gratifying to know that I am not alone in this view. The games programs published

by Acornsoft rely heavily upon direct addressing for their sophisticated graphics. If theirs is

the standard that science programs have to compete against for pupils' attention, then we

had all better learn machine code programming!

BBC microcomputer graphics
There are two different ways of producing pictures on the video screen, which are

exemplified by MODE 4 and MODE 7 (the teletext mode). MODE 4 has a high-resolution

screen, meaning that any of its 81 920 dots (called pixels) can be individually switched on

or off. We saw above how this can be done. The method is identical to that which will be

used in Chapter 4 to switch LEDs on and off. You can imagine the TV screen as a matrix of

pixels each connected to a different memory location. Each bit at each address controls a

single pixel. Any combination of dots can be produced anywhere on the screen by turning

on the appropriate bits. You could theoretically paint a complete picture by specifying each

individual dot but in practice this is time consuming and impracticable.

 The normal graphics commands of BBC BASIC are sufficiently fast for most purposes;

indeed they are its most valuable asset for creating pictures and animations. Although

graphics characters are not available, they can be created by the programmer. It is possible

to define any desired shape by specifying which pixels of an eight-by-eight matrix should

be on and which should be off. For example, a diamond shape could be defined as follows:

VDU23,250,24,60,126,255,255,126,60,24

It is given an identifying number (250 in this example) so that diamonds can be placed on

the screen at the point (x,y) with the statement PRINT TAB(x,y);CHR$250. By varying the

x and y values the character can be made to move around the screen at will. By creating two

or three different versions of the same character, for example a man in

The BBC microcomputer in science teaching

34

different walking positions, very lifelike animations are possible. The techniques of drawing

pictures with user-defined graphics are well described in the user guide and INTEGRATED

SCIENCE TEST has been specifically designed to illustrate the different methods that can

be used. Briefly, these are as follows. Once a graphics character has been defined (or is

already defined in MODE 7) it can be placed with PRINT CHR$250 or whatever. If the

picture to be drawn is at all large though, this technique consumes far too much memory

(four bytes per character since CHR$ is stored as a single token). Some saving can be made

by defining string variables thus, LET A$=CHR$240 or LET fly$ = CHR$250 + CHR$8 +

CHRS240. For large pictures it may be easier to store all the picture codes in a set of DATA

statements, calling up each one in turn and placing it on the screen. This usually involves

putting blank characters in too wherever they are needed, so there is rarely any saving of

memory with this technique. All these methods are illustrated in INTEGRATED SCIENCE

TEST.

 Another technique is to redefine certain rarely used symbols like 'q ' and '+'. Once done,

this allows a picture to be drawn with the actual graphics characters themselves so that it is

easier to see which ones to use and where to put them. Listing the program on a printer

produces the original symbol rather than the new graphics character and this makes it easier

for someone reading the program to type it into his or her machine. Inspect the listings for

LOGIC TUTOR (3) or 6502 SIMULATION (4) to see how this done in practice. In MODE

7 the following technique is recommended. Each numeric code normally represents an

alphanumeric symbol, for example CHR$170 is the * -character. If this is preceded by a

graphics conversion code, say CHR$151, then CHR$170 becomes a particular graphics

character instead. So, a whole picture can be drawn with the 'normal' symbol, which

becomes the corresponding graphics character when the program is run. Look at the way

that the V, I and W symbols are made in DIGITAL MULTIMETER (16) to see this

technique in operation.

 Another use of the high-resolution screen is for drawing graphs with the MOVE, DRAW

and PLOT functions. This is described in detail in the next chapter. These commands are

sufficiently fast for most purposes, except for making waves. For this it is necessary to create

a machine code routine (as described in Chapter 7), but this is complicated and not easy to

understand.

Teletext graphics

The other method of producing pictures (called chunky graphics) is used in the teletext

mode. Some of the possible characters that can be printed on the screen are shapes, called

the graphics characters. A picture can be made up from different combinations of these

shapes. The simplest way to use these is to treat them like letters in the PRINT statement,

so building pictures rather than words. Chapter 28 of the user guide describes the process

very well.

 Another possible way of using chunky graphics characters is to write them individually

to the screen by number. The teletext screen is memory mapped as follows:

 column no. 0éééé39
Row 0 address 31744 31783
Row 24 address 32704 32743

Programming techniques

35

which is 1000 positions on a 40 by 25 grid. Note that this is only true immediately after a

CLS or MODE 7 has been executed. After the screen has 'scrolled' the memory locations

are in different places on the screen.

 Each position occupies 64 pixels arranged in an eight-by-eight block. The character

displayed at any position is defined by the contents of a single byte that controls each

position. This is why the teletext screen needs only an eighth of the memory requirements

of MODE 4. Since each byte can have any of 256 values, there ought to be 256 different

characters that can be displayed at any one position (one of which is the 'blank' character,

number 32). In practice some of the codes are repeated for the same character and some are

control codes to change the colour or format of the succeeding characters. Reference should

be made to the user guide for details of what each code does. What the guide does not say,

is that these codes can be written directly onto the screen. There is no advantage of this in

BASIC, but in machine code this technique produces very good animations. To try this, type

MODE 7
?32000 = 42

which, will place the *-character somewhere near the middle of the screen. Investigate this

by writing other characters to different parts of the screen.

 The teletext method is good for animations, because it is then quite easy to remove the *

-character by overprinting it with a blank (232000 = 32) and to place it in the adjacent

position (?32001 = 42). Carried out at speed, this gives the appearance of continuous motion

and is of great use for simulating objects in motion. Unfortunately, if there are more than

just a few objects, BASIC cannot perform this process fast enough and machine language

becomes essential.

Motion

To make the * -character move across the top of the screen, it must be written into each

successive memory location in turn, and then erased again after a short delay to give it time

to be observed. The * -character has the value 42 and the blank has the value 32.

 5 MODE 7
10 FOR X = 31744 TO 3178
20 ?X=42:REM PLACE * ON SCREEN
30 FORT = 1 TO 100:NEXT:REM DELAY
40 ?X=32:REM ERASE *
50 NEXT X

To move the character vertically 40 must be added to or subtracted from the current position.

 5 MODE 7
10 FOR X = 31744 TO 32704 STEP 40
20 ?X=42:REM PLACE * ON SCREEN
30 FORT = TO 100:NEXT:REM DELAY
40 ?X=32:REM ERASE *

The BBC microcomputer in science teaching

36

 50 NEXT X
 60 FOR X = 32704 TO 31744 STEP -40
 70 ?X=42:REM PLACE * ON SCREEN
 80 FORT = 1 TO 100:NEXT:REM DELAY
 90 ?X=32:REM ERASE *
100 NEXT X

General motion is achieved with the following numbers.

Value Direction
 1 east
 41 south-east
 40 south
 39 south-west
 -1 west
 -41 north-west
 -40 north
 -39 north-east

 5 MODE 7
 10 FOR X = 31744 TO 32728 STEP 41
 20 ?X=42:REM PLACE * ON SCREEN
 30 FORT = 1 TO 100:NEXT:REM DELAY
 40 ?X=32:REM ERASE *
 50 NEXT X
 60 FOR X = 32728 TO 31744 STEP -41
 70 ?X=42:REM PLACE* ON SCREEN
 80 FORT = 1 TO 100:NEXT:REM DELAY
 90 ?X=32:REM ERASE *
100 NEXT X

More usually it is small pictures that are moved around the screen in this way (for example

the piston in the cylinder of a motor car). Low resolution pictures can be moved about in the

same way as defined characters on the high-resolution screen. The direct method of screen

addressing can also be used, although it has no advantages in BASIC. The technique is to

use two tables, one to hold the character and the other to hold the relative Place for that

character. This will be illustrated with a moving engine. This program also shows how the

teletext screen achieves its graphics characters with a set of CHR$(151) characters down the

left of the screen. The real advantage of this technique will become apparent later.

Engine

 10 MODE7
 20 REM SET UP SCREEN FOR GRAPHICS
 30 CLS
 40 FOR i=31744 TO 32703 STEP 40

Programming techniques

37

 50 ?i=151
 60 NEXT i
 90 REM MOVE ENGINE
100 FOR offset = &7CC9 TO &7CE9
110 RESTORE
120 FOR i = 1 TO 35
130 READ position
150 READ character
160 ?(position + offset) = character
170 NEXT i
180 NEXT offset
190 END
200 DATA 0,32,1,252,2,252,3,32,4,32,5,32,6,32
210 DATA 40,32,41,234,42,255,43,240,44,240,45,240,46,244
220 DATA 80,32,81,234,82,255,83,255,84,255,85,255,86,255
230 DATA 120,32,121,250,122,255,123,255,124,255,125,255,126,255
240 DATA 160,32,161,32,162,79,163,32,164,32,165,79,166,32

The position of each character is specified relative to its top left corner. This top left corner

is moved across the screen with the variable offset. To avoid leaving parts of the engine

behind, its trailing edge is filled with blank characters (32). The picture can be moved in

any direction, for example upwards, by adding -40 to the next offset each time, although in

this case it might be necessary to surround the whole picture with blanks. The result is most

unsatisfactory in BASIC. The point of doing it at all is to demonstrate the principle. When

we return to do the same thing in machine code, we shall obtain a much more pleasing result.

Interaction
The most usual means of communication from the microcomputer to the user is the display.

In this there are numerous pitfalls for those writing their own programs, which will now be

described.

The display of text

The statement PRINT 'PARIS IS THE CAPITAL OF FRANCE', is probably the most easily

understood of all BASIC statements. The sentence is just written out on the video screen of

the microcomputer. It is so easy to use, that some programmers fail to give any attention to

the result.

 The use of capitals (upper case) makes for difficult reading at the best of times, and if

the programmer does not use double-spacing either, it is doubly difficult to read. With

lower case letters and the use of double-spacing the result is more pleasant. The amount of

text presented also needs to be adjusted to the level of the user: secondary pupils

particularly merely scan the text without reading it properly. Later they complain that they

'don't know what to do!'.

The BBC microcomputer in science teaching

38

Plate 6 Motion against gravity showing tabulation

 An automatic linefeed occurs when there are forty characters in a line. The forty-first

character appears on the next line and the crime of wrap-around is committed. There is

no excuse for this, it simply requires the programmer to read what the program prints with

a critical eye and not accept inferior presentation. If the same things were done on paper,

they would be glaringly obvious. BBC BASIC has the ability to display figures in neat

columns, so there is no excuse for not doing so (Plate 6). This is described in the user guide.

 In the days of tele-typewriter output there was no way to prevent text from scrolling up

from the bottom. Part-sentences remained at the top of the screen, and these were most

distracting. There is no need to continue with this practice today. The programmer

should clear the screen before each new page of text. Also, less text should be displayed at

one time, in which case the student will need to indicate when a new page of text is to be

displayed. This is described later.

Input from the keyboard

Some published programs limit interaction to 'press SPACE' at the foot of each page of

video text. This is a misuse of a powerful machine, especially if the opportunity to return a

previous page is denied. The microcomputer is more than an electronic page-turner and its

facility for interaction should be fully utilized. At the highest level an interactive

program could determine the level of understanding attained by its users and adjust the

Programming techniques

39

presentation to suit. At the lower levels the interaction will probably be confined to

responding to questions.

 There are several ways of managing the response situation. The simplest is via the INPUT

statement. This needs careful handling since the pupil can easily enter the wrong information

by pressing the wrong keys or sit in vain while the microcomputer waits for the RETURN

key to be pressed. Full instructions need to be given, especially to first time users. The first

INPUT in a program might be to get the student to enter his or her own name, so that the

microcomputer can appear more personal. Some instructions such as the following need to

be displayed, not only on the screen itself, but also on any accompanying documentation.

Hello!
I want to learn your name.
Please type your first name on the keyboard.
If you make a mistake, you can rub it out with the DELETE key.
This key is near the bottom-right corner of the keyboard.

When you have typed in your name correctly, press the key marked
RETURN.
Then I will know you have finished.

Begin typing now

Note the double-spacing between paragraphs, the use of lower case text and the use of

capitals for emphasis. Also as mentioned above, the text should be preceded by CLS (screen

clear).

 The BASIC program to PRINT this text would be followed by the INPUT statement.

Since a string response is required, this must be INPUT A$. The student, who presses

RETURN before entering anything, returns the empty string, which could be detected if it

is important. (Often experienced users will be too impatient to type their name and wish

merely to press RETURN anyway; they should be allowed to do so.)

 A$=GET$ retrieves a single key entry, which may be any character on the keyboard.

Whole words can be entered with GET$, one letter at a time, and the word can be

assembled from these letters. This avoids the problems of having to use the RETURN key,

but the possibility of erasing an error is then removed also. This facility can be restored

with yet more lines of programming and MASTERMIND illustrates the technique for

doing this.

 A$=GET$ causes the program to halt until something on the keyboard is pressed.

Keyboard entries are, however, stored in a buffer and there may be entries in this buffer

from previous keypresses. Novice users particularly, press keys very firmly and the BBC

microcomputer then uses its auto-repeat facility. Spurious responses get stored and produce

peculiar results later. There are ways round this problem. First, the buffer can be cleared

immediately before the A$=GET$ statement with *FX15,1. Secondly, the auto-repeat

facility can be turned off completely with *FX11,0. It is recommended that both of these

techniques be adopted. A$=GET$ is most useful for accepting single letter inputs, such as

A, B, C or D in response to a multiple-choice item, or the inevitable 'press SPACE' at the

end of a page.

The BBC microcomputer in science teaching

40

L$ = INKEY$(800)

produces a delay of several seconds and may be used to pause to give a user time to read the

text. While this is adequate for single words or sentences, readers differ so markedly in their

speed that no common time can be fixed for them all. The alternative technique requests the

student to 'Hit a key' or better to 'Press SPACE to continue'. The SPACE can be detected

with the BASIC statements

100 IF INKEY$(0)<>" " THEN 100
or

100 REPEAT UNTIL GET$=" "

This has the advantage that pressing a different key has no effect. Consecutive pages of text

can be turned by alternating between 'Press SPACE' and 'Press RETURN', this latter being

detected by

100 REPEAT UNTIL GET$=CHR$(13)

There is then no danger that a ham-fisted pupil will rest a finger on a key for so long that

pages flash on and off the screen in rapid succession. A conscious action is required every

time.

 A common use of A$=GET$ is to select from a menu. The user is offered several

alternatives and invited to choose one. A typical menu in a tutorial might look like this:

You are correct, the shutter speed must be as fast as possible, i.e.
1/1000th of a second.

What would you like to do now?

1 Try another problem on shutter speeds?
2 Try a problem on apertures?
3 Go on to study film speeds?
4 Finish the lesson for now?

Press one of these numbers to make your choice.

2540 LET A$=GET$

waits for a keypress and returns with its key 'face value'. The desired response can then be

inspected with

2550 IF A$="1" THEN 5000:REM Next problem
2560 IF A$="2" THEN 6000:REM New problem set
2570 IF A$="3" THEN 8000:REM Next lesson
2580 IF A$="4" THEN 9000:REM Finish
2590 GOTO 2540:REM Incorrect response

If the user has accidently pressed SHIFT-LOCK, then pressing keys 1 to 4 apparently has

no effect, since A$ will return with the shifted character. It may be necessary then to

convert the characters to ASCII code (X=ASC(A$)) or use X=GET and manipulate the

result.

Programming techniques

41

2545 IF ASC(A$)<48 THEN A$=CHR$(ASC(A$)+16)

converts the shifted symbols of the top row to their corresponding numeric character.

 Similar problems occur if the CAPS-LOCK or SHIFT-LOCK conditions are (or are

not) in operation and the program expects an alphabetic key:

100 REPEAT
110 A$=GET$
120 UNTIL INSTR("ABCD abcd",A$)<>0

Possible upper case entries can also be converted to lower case with

IF ASC(A$)<97 THEN A$=CHR$(ASC(A$)+32)

It may sometimes be necessary to impose a time limit on a pupil. If the pupil has failed to

answer within say thirty seconds, the program could jump to a remedial loop.

A$=INKEY$(n) will wait for n centiseconds (maximum 327 seconds) before continuing

automatically if no key is pressed.

Other techniques

Novices take ages to find a particular key on the keyboard. One way to overcome this is to

use alternative methods of INPUT. These also remove the need for disabling keys and all

the other problems encountered above. The best of these devices is a light pen which can be

pointed at a particular part of the screen. These are available commercially and plug directly

into the analogue port at the back of the microcomputer.

 For some responses switches can be connected to the user port and detected with fairly

simple routines. One scheme is described in Chapter 4 to allow up to eight pupils to respond

independently. The first one to respond is recorded and the others are locked out after the

first response. This is ideal for competitive quiz programs.

 An alternative for the future is the soft or concept keyboard, which plugs into the

microcomputer, and where the number and function of the keys can be changed by the

program itself. The keys can thus become letters, numbers, pictures or special symbolic

characters as in BLISS. This is a far better way of communication with younger pupils,

avoiding all the above pitfalls and giving more freedom to the programmer. The discussion

of how to connect one of these to the BBC microcomputer is taken up in Chapter 4.

Crash protection

Ideally it should be impossible for a novice user to crash a program by indiscriminately

pressing the wrong keys. This can be such an effort (as the above discussion shows) that it

may take too much time. The best way is to put key entry checks into a separate

PROCEDURE, which already contains the protection (see INTEGRATED SCIENCE

TEST). This can then be called whenever it is needed. Even then a determined pupil can

crash by pressing the ESCAPE or BREAK keys.

 ESCAPE is relatively easy to handle. Begin each program with

ON ERROR GOTO 9000 (or wherever)

The BBC microcomputer in science teaching

42

and at line 9000 put a routine to deal with the situation of the pupil having pressed the

ESCAPE key.

 BREAK is dealt with by redefining that key so that the program restarts (page 143 of the

user guide). This is far from ideal, since it re-runs the program from the start, not from the

place where the BREAK key was pressed. Neither of these suggestions thus solves the

problem by returning the pupil to his last exit point. My solution is to teach pupils to be

careful and not to press all the keys in sight. The display should tell them exactly which keys

to press and if they press others, then they can jolly well find out how to recover from the

crash themselves. (Actually, it is quite amazing how quickly even young children can learn

to use the machines properly; there is such a thing as over-protection.)

Processing the response

Once the response of the student has been collected, the microcomputer has to process it.

If the entry is the student's name, presumably this is so that a personal touch can be added

to requests:

'Now, Bob,
can you tell me

This is achieved by printing out the string variable that was used for the original input. That

variable name must not be used again, or the microcomputer will later change the student's

name to PHOTOSYNTHESIS or whatever. Note also the need to leave a long space after

the student's name. If this is not done, you will find the computer responding to a long name

with:

'Now, Stephanovanovitci, can you te
Il meé.ô

Wrap-around is unforgiveable in video text.

 The response PHOTOSYNTHESIS might be the answer to a question set by the

microcomputer. Once this response has been collected, the program has to decide if

PHOTOSYNTHESIS is the correct answer. A sequential list of questions can retain the

correct response in a DATA statement, which is then collected by READ. If responses have

to be accessed at random, then a better way is to keep the correct responses in a string array,

thus:

100 R$(1)="PHOTOSYNTHESIS"
110 R$(2)="RESPIRATION"
120 R$(3)=éetc.
500 PRINT "What name is given to é.
510 INPUTA$
520 IFA$ = R$(1) THEN PRINT "CORRECT"
530 etc.

 The unfortunate thing about checking responses by the method shown in line 520 above,

is that misspelled inputs or even things like PHOTO-SYNTHESIS are considered

Programming techniques

43

incorrect. The program could contain a selection of possible responses and check each one

separately, but the range of possible correct responses could be enormous.

 One solution is to use the LEFT$, RIGHT$ and MID$ functions to check that the majority

of a word is correct, but every word tends to behave differently and about the best that can

be achieved is to disregard leading spaces and hyphens. The problem mentioned above,

about the use of upper- and lower-case letters, can be overcome by the use of the ASC and

CHR$ functions.

 One desirable feature of tutorials is to give clues if the student has no idea. In the case

above, after the first wrong response, the microcomputer could prompt with

CLUE: PHOTO---------

LEFT$(word$(1),5) is used to extract the initial letters, and this can be printed out on top

of

FOR I = 1 TO LEN(word$(1)):PRINT"-";:NEXT I

ELEMENTS (34) demonstrates the way that this is achieved in practice.

 Techniques like these are learned by studying the user guide, the programs of others and

books specifically about BASIC and the BBC microcomputer. A list of such books is given

in the Appendix.

Writing a program

This topic is a subject in its own right and at least one book has been entirely devoted to it.

Thus, it is not possible to do more than indicate the overall principles. The whole process

can be subdivided into three parts:

Design
Coding
Debugging

Of these the most important, and the one most often neglected, is the design stage. There is

always a great urge to begin coding, that is to write BASIC statements into the

microcomputer. This should be resisted as long as possible, because the faster one begins

coding, the poorer the program will be.

 An example of this is MICSIM (4) which was never planned at all. This program began

on the PET as a diagram to illustrate the various registers in the 6502 microprocessor.

While it was being written, the thought occurred to me that it would be useful to load

different numbers into the registers and see their effect. First the mnemonic instructions

LDA, LDX and LDY were added and then STA, STX and STY. Then it was decided to

include the main 6502 instructions too and illustrate the different addressing modes. At

this point it was discovered that some addressing modes could not be implemented; the

program was beginning to creak.

After a great deal of effort, it finally worked to my satisfaction, but it was becoming

difficult to deal with new problems as they arose during the evaluation. At one stage a

The BBC microcomputer in science teaching

44

RENUMBER was implemented to create more space and this destroyed any vestige of

sensible numbering that had originally been incorporated. When the program was

transferred to the BBC microcomputer, it was merely translated into BBC BASIC, although

some of the advantages of the latter were utilized. Further patches removed a few more

problems and at this point I decided to make the simulation a dynamic one. As well as just

il lustrating the instructions, I made it execute sequences of instructions too. This addition

showed serious faults in the original idea and ad hoc solutions were introduced to solve each

problem as it arose. I finally abandoned the whole project and decided to leave the program

as it now is. It is full of errors, it is impossible even for me to interpret, it is probably

incapable of improvement, but it works after a fashion and gives a satisfactory introduction

to machine code programming.

 The purpose of this tale is to warn of what can happen if the planning stage is neglected.

What I have just described is called bottom-up programming - starting from a simple idea

and adding refinements to it. A computer scientist would argue that I should have designed

the whole program from the start and anticipated the problems that might arise. This is called

top-down programming and is what the rest of this chapter is about. I do however, want

to give a note of caution.

 It often happens that programs are developed by chance. For example, my first (PET)

programs on wave motion were the result of an accident. I had spent some time trying to

make waves that moved across the screen, but BASIC was much too slow. Then working

on a routine to paint a picture on the screen in machine code, I assumed that the end of the

screen was in position 40 (in fact it runs from 0 to 39). The routine painted the picture quite

happily but then scrolled it across the screen. I realized that a sine curve would become a

travelling wave and the solution to one of my problems had been overcome. I was able to

use this accidental discovery to write several wave programs for the PET.

 The point of this story is that planning by itself does not always provide a solution. There

nearly always has to be interaction between experimentation and program development. In

the commercial world program designers must specify accurately what they want to do.

Poorly constructed programs cost money, so top-down programming is an economic

necessity. The educational world is not quite the same as this. Teachers are almost certainly

writing programs in their own time, which is never costed. Also, they do not have all the

necessary programming skills at their fingertips beforehand. For them strict top-down

programming is not possible until they become more expert.

 I shall therefore describe a technique that can be used by non-experts. To aid the

discussion we shall look closely at one particular program RESONANCE INA TUBE,

which is listed at the end of this chapter. This is not a program merely developed to il lustrate

the principles, it is a genuine one. Thus, it gives a better insight into the whole process of

program development than any artificial example can provide. It also utilizes animated

graphics and sound and illustrates most of the techniques so far discussed in this chapter.

 I wanted a program to simulate the resonance tube experiment. In this experiment a tuning

fork is held over the mouth of a long tube, whose other end is closed by a movable piston.

As the piston is moved, so the tube reaches its optimum length for the frequency

Programming techniques

45

of the tuning fork and a loud sound results. This is called resonance and the length of the

tube is a quarter of a wavelength at this point. From a knowledge of this length and the

frequency of the tuning fork it is then possible to determine the speed of sound in the tube.

The experiment itself is difficult to perform since students do not know what to look for.

The purpose of the simulation is to isolate the principles from the mass of conflicting details.

Once students know what they are expected to do, they can carry out the real experiment for

themselves. I cannot emphasize too strongly that this simulation was never intended to

replace the actual experiment, although I realize that some misuse it in that way. It will be a

sad day if computers take over from laboratory work - they simulate mathematics, not

science.

Design

There must be a diagram of a tube and a tuning fork with a movable piston that can be moved

in and out with the left and right cursor movement keys. These are the best keys to use since

their arrow heads point in the correct directions. As the piston is moved, so the loudness of

the sound changes, becoming a maximum at resonance. Then the user measures the length

of the tube and plots the graph. This specification immediately threw up problems.

 Should the user measure the length of the tube with a real ruler? Considering the different

sizes of screen that might be encountered, this idea might be difficult to implement. The

values obtained would be unlike the real situation, since 300mm tube lengths are used in

practice. The program would need to use fairly high frequencies to fit the limited width of

some screens and the frequencies chosen would be different in each case too. It was decided

therefore, to use an artificial ruler measuring up to 330 mm, which allows tuning forks in

the range 256 Hz to 512 Hz to be selected.

 Should it be possible to obtain the higher harmonics? This was considered to be one of

the distracting details that I was trying to eliminate. By restricting the tube length and

choosing the frequency range as I did above, these harmonics do not exist.

 Should the user plot real values or those chosen by the computer? The latter would make

graph-plotting much easier but might hide the purpose of the simulation. I knew how to do

the graph anyway so I was not afraid of this. I decided to allow pupils to enter their own

results, which could be wrong (within limits), but which could be altered later if necessary.

One of the purposes of the simulation was the development of good experimental technique.

I therefore decided to plot the graph as soon as two readings had been taken. The plotting of

subsequent points then shows if any of them are in error. I always tell students to 'plot the

graph as you go along'; hopefully this simulation encourages the habit.

 Should longitudinal waves be shown moving down the tube? They would indicate clearly

how resonance is produced. However, this is not the purpose of the experiment and its

inclusion in the simulation would be a distraction. It is the same trap that teachers are always

falling into, trying to make experimental work verify theory instead of existing in its own

right.

 Now that we have decided what we want to achieve, it is time to start top-down

programming. We do not go straight to the computer and start programming, that state

The BBC microcomputer in science teaching

46

is still some way off. We begin by writing the program on paper in pseudo code -

meaningful statements that can later be turned into BASIC statements (or indeed any other

language). For this code we recognize three distinct processes:

Sequence
Repetition
Choice

 A sequence is a set of instructions that follow one another in strict order. TRAFFIC

LIGHTS in Chapter 4 is a good example of this.

Turn on red traffic light
Long delay
Turn on red and amber traffic lights
Short delay
Turn on green traffic light
Long delay
Turn on amber traffic light
Short delay

Choice is achieved by lF..THEN..ELSE and readers will be very familiar with it (after all it

is standard scientific jargon). The sequence branches into two or more separate routes

depending upon the conditions encountered initially.

 Repetition is similarly obvious, but here there are different kinds. The traffic lights

sequence may need to be repeated forever. This can be achieved by a GOTO back to the

beginning. A pelican crossing has the green traffic light on until a pedestrian requests the

traffic to stop. This can be achieved by a WHILE. .DO structure:

WHILE the pedestrian is not requesting traffic to stop,
DO keep the green traffic light on.

 A pedestrian crossing at crossroads may be incorporated into the traffic lights sequence

itself, but this is wasteful since it makes traffic wait when there are no pedestrians. It is better

if the pedestrian request switch interrupts the normal sequence to make it behave differently.

The normal sequence is repeated until an event occurs to change it; the REPEAT..UNTIL

structure. Finally, it may be necessary to repeat some sequence a given number of times.

This uses the well-known FOR.. NEXT structure.

 In none of these processes are we concerned with BASIC - exactly how we implement

this pseudo code is irrelevant. BBC BASIC recognizes all of them except 'WHILE condition

DO loop', which is carried out by 'IF condition THEN GOTO start of loop'. Similarly, Apple

BASIC does not have REPEAT..UNTIL but all pseudo codes can be Implemented in some

way on all machines. For example FOR..NEXT can be carried out by incrementing a counter

(IF count = maxcount THEN finish ELSE carry on counting). For our purposes at the

moment, it is the process that is important, not how it is later turned into BASIC.

 One way of designing a program (long taught in schools) is flowcharting. This has

sequences (rectangular boxes), choices (diamond boxes) and repetitions (returning lines

Programming techniques

47

and junction boxes). To introduce the ideas of design flowcharting is a good method, but it

is not popular with serious programmers. Programs of any size spill over onto several sheets

of paper and are difficult to follow. Also, it is very difficult to plan a flowchart until all its

limbs are known. This results in the same chart being endlessly redrawn to accommodate

extra requirements. Most programmers draw the flowchart after the program has been

written!

 Top-down programming allows the program to be developed from the general plan right

down to the level of coding in BASIC by a process known as stepwise refinement. This

cuts out a great deal of the redrawing (or rewriting in this case) of those elements that are

already known. It also allows each step to be checked for error before it is turned into code.

In this way any bugs in the final program will only require simple patches, not wholesale

rewriting. Now that we have an overall strategy for our program, let us begin this process.

RESONANCE IN A TUBE
A Initialize mode, variables etc.
B Give instructions
C Draw tuning fork, tube, piston and ruler
D REPEAT
D1 Select tuning fork frequency
D2 REPEAT Compute sound intensity
D3 REPEAT Make sound
D4 UNTIL piston is moved
D5 UNTIL tube length has been measured
D6 Process the measured length
UNTIL ESC key is pressed.

 The structure of the program is becoming obvious. A, B and C are sequential and are

executed once each time the program is run. D is executed repetitively until the program is

halted by pressing the ESC key. This is not very elegant and for younger users would be

wrong but, considering our target users, this is acceptable. Within this REPEAT..UNTIL

loop are other nested loops, each of which is terminated by a different condition. Thus the

sound is maintained until a cursor key is pressed to move the piston. The sound is switched

off when the new length has been measured. Then the graph-plotting routine (D6) runs

sequentially after which control returns to D1 .To make the pattern more obvious each of

the nested loops is indented to show where it begins and ends.

 The question raised now is where to go next. As a rule one should stick to the order of

execution unless there are some processes that are not yet clearly defined. These should be

tackled first, because they may throw up problems that cause the original design to be

modified. The earlier such modification takes place, the better. In our case we have to ask

about D4, D5 and D6.

 D4 tests whether the user wants to move the piston. As stated above this is to be done

with the left and right cursor movement keys. It should be possible to detect these with

INKEY$(0). But alternatively, the user might want to enter the measured length of the

The BBC microcomputer in science teaching

48

the tube (D5) and this requires INPUT. The two can be combined by using INKEY$(0) for

both types of information. The RETURN key could be used to confirm the entered

measurement, or the DEL key could be used to delete some or all of it. So D4 and D5 are

further refined thus:

 Note which key pressed
 D4 IF key is cursor shift left
 THEN move piston left
 IF key is cursor shift right
 THEN move piston right
 D5 IF key is numeric
 THEN keep it as a number
 IF key is DEL
 THEN remove last numeral entered
 IF key is RETURN
 D6 THEN process the result

 We must still ask what is meant by 'keep it as a number'. If the user wishes to enter the

number 345, say, the first numeral entered will be 3. This needs to be printed on the screen

to let the user see it. Then the user presses 4, so the first numeral must be multiplied by ten

and added to the second. Finally, the numeral 5 is added and the process is repeated. We

want to stop the user entering numbers greater than, say, 329 and numbers equal to 0, since

these are clearly wrong. Shall we tell the user they are wrong or just ignore them? Bearing

in mind our target users, I adopted the latter strategy. When RETURN is pressed the number

entered is accepted as the measured length and D6 begins. If DEL is pressed the last numeral

entered is deleted by removing the last digit from the assembled number. Each of the simple

choices in D4/5 is mutually exclusive, since a single key can only be one character. If this

had not been the case, a series of nested IF..THEN..ELSE processes would have been used.

Simple IF..THEN processes are always to be preferred for readability. This produces the

further refinement:

 Set measurement to zero
 Note which key pressed
 D5 IF key is numeric
 THEN measurement = 10*measurement + numeral
 IF key is DEL
 THEN measurement = measurement DIV 10
 PRINT measurement

The whole structure can be searched and refined further until it all ends up as simple

statements, each of which can be converted into code without problems. If there are

that not known, (and non-experts will find plenty of these) then the top-down technique

has to be modified as I shall show shortly.

 Before coding begins it is necessary to check that all the likely problems have been

foreseen and allowed for. The programmer should make a dry run through the program

with imaginary data to see what happens (as we did with 345 above). In this dry run we

Programming techniques

49

should notice that 345 should not be acceptable since it exceeds 329. However, if a user

enters 34 we cannot tell if another numeral is intended to follow, so we have to accept this.

We can, however, reject any further numerals if the existing value of measurement

exceeds 32. Dry runs of this type usually lead to modifications in the program.

 The user knows when too large a number has been entered, because it is printed on the

screen. Do we want to print the initial value of zero? Clearly this is a distraction and, in any

case, we do not accept zero as a measurement. So, unless the measurement is zero, we print

it. If the user has entered 34 and meant to enter 240, he or she delete back to zero and start

again. How will the program know whether the user has deleted back to zero or has not yet

started? If the latter, the program prints nothing, if the former, the program must delete what

was there previously. So 'nothing' will have to be a blank to delete any previously printed

value. Likewise, when a measurement is reduced from three digits to two, or two digits to

one, the previous end digit must be erased. This can be done by following the printed

'measurement' with a blank character. What do we do if the user presses non-numeric keys?

I decided to ignore these, without telling the user why; programs for younger users might

include such messages. There are also other pitfalls, like pressing RETURN or DEL when

there is no measurement. We shall have to allow for all these.

 Such a dry run through the program reveals several problems to be overcome. Having

discovered them, we build their solutions into the program at the planning stage.

 Set measurement to zero

 Note which key is pressed

 D5 IF key is numeric AND measurement <

 THEN measurement = measurement + numeral

 IF key is DEL AND measurement <> 0

 THEN measurement = measurement DIV 10

 IF measurement <> 0

 THEN PRINT measurement + blank

 ELSE PRINT blank

 IF key is RETURN AND 0

 THEN process the measurement

To determine when the RETURN key has been legitimately pressed, we set a flag, which is

initially FALSE, but is set to TRUE at the right point. The flag is called 'measured'. In this

way almost the whole program can be written and tested in pseudo code before going near

the computer itself.

 This is the theory! In practice the strict pattern of top-down programming breaks down

whenever a problem is encountered for which the programmer can see no solution. For

example, I need to know how to move the piston under of the control of the cursor keys.

This is where the advice of computer scientists has to be ignored - no amount of stepwise

refinement will tell me how to do this, only experimentation, that is bottom-up

programming. I used to feel guilty at ignoring the advice of expert computer scientists, until

I realized that they are dealing with different problems. They already know how to handle

their machines, so they do not need to break off to find out. I have not yet reached

The BBC microcomputer in science teaching

50

this stage and I am sure that few other science teachers have either. The problem with

bottom-up programming is the restrictions it might impose on later top-down refinements.

It is advisable to discard any code created during the experiment, its retention might force

the programmer into a predetermined mould and lead to later problems.

 It is difficult to follow this advice because of lack of time. Having developed some code

that works we tend to want to keep it. If it is a procedure then that is fairly easily incorporated

at a later stage, but if it is part of the main program, it may be necessary to RENUMBER it

and merge it with the rest of the program later. For example, I knew that the piston would

have to be moved inside the tube, so the graphics for the latter had to be constructed too. I

developed lines 3020 to 3480 to draw the tuning fork, tube, piston and ruler. Originally this

was done in MODE 2, giving four colours. Logical colour 3 was made into flashing black

and white and the repetition rate was speeded up to make it appear to vibrate. Later it was

found that the program had exceeded the memory available in this mode, so the program

was changed to MODE 4. The reason for choosing a high-resolution mode was to make use

of the VDU5 statement to move the piston smoothly in and out in the manner described

earlier in this chapter. The routine to move the piston was developed as the procedure

PROCpiston(position) with the position of the piston in the tube passed as the parameter

'position'. This is converted into an x coordinate and drawn as a line. Prior to this the

previous line is erased by drawing over it in black ink (GCOL0,0).

Coding

Having refined each process until I was sure how to do it, I was then in a position to begin

turning it into a BASIC program. I did this linearly from the beginning. With the

fundamental structure developed this was quite an easy job. Some problems were

encountered and needed ad hoc solutions (see later), but the structure remained intact

throughout. Even so, a structure alone does not necessarily lead to a readable program.

There are some ground rules for structured programming that should be borne in mind.

 One oft-quoted is 'avoid GOTO and GOSUB'. I agree with this up to a point. Some

programs are such a mass of convoluted GOSUBs and GOTOs that it is impossible to see

what different conditions are doing. MICSIM is a particularly notorious example. But this

advice can be carried to ridiculous extremes. Where a routine is only called once (for

example in setting up arrays or graphics characters) then a GOSUB is no less meaningful

than a procedure. Which of these conveys the most sense?

 GOSUB 20000:REM define graphics characters

or

PROCgraphics

Given that it is much easier to find line 20000 in the listing than to find a procedure

definition, GOSUB is clearly better. Similarly, to repeat a process indefinitely (as in D of

our program), which of these is more meaningful?

Programming techniques

51

 3000 REM Start of main program

 etcéé..

 etcéé..

 etcéé..

 9000 GOTO 3000: REM Restart main program

or

 3000 REM Start of main program

 3010 finished = FALSE

 3020 REPEAT

 etcéé..

 etcéé..

 etcéé..

 9000 UNTIL finished:REM Restart main program

 Whether a program uses procedures or subroutines, these should be located in high line

numbers at the end of the program (unless speed is at a premium, in which case GOSUBs

are faster and the closer they are to the current line the better). In RESONANCE IN A

TUBE, I kept procedures in lines 30000 upwards and subroutines in 20000 upwards. Apart

from moving the piston, speed of execution was not important in this program. I was

therefore able to be very liberal with REM statements, using them to mark off the different

sections and to explain what each was doing. Another help in this respect is the facility for

using long variable names. Where these were used for holding integers, then integer

variables were used to increase speed. A further aid to readability was to declare constants

at the beginning of the program, rather than just use numbers. For example,

 IF INKEY(-26) THEN éé

is less meaningful than

 IF INKEY(cursor left) THEN éé

Debugging

As mentioned above, correcting any errors in the program is not something that can be left

until last. Each step should be checked with dummy data to ensure that nothing has been

overlooked. Even so there will be errors in the program once it has been coded. Simplest to

eliminate are syntax errors (or mistakes) since BASIC contains error detection routines and

obligingly tells the programmer where the error has occurred. More difficult to determine

are errors in the logic. Hopefully these should not exist, but that is a counsel of perfection.

In my case several such problems arose, which were detected with dummy data as soon as

the code had been written.

 For example, I wanted to move the piston with the cursor movement keys and, during the

design phase, I assumed that these could be detected with INKEY$(0). I thus carried on with

stepwise refinement in the proper way. When checking the coding stage found that the

method I had chosen did not work, INKEY$(0) returned the null value whichever cursor

key was pressed. I then tried GET$, GET and INKEY(0) in vain and even resorted

The BBC microcomputer in science teaching

52

to reading the keyboard directly from memory (see Chapter 7). The latter was rejected as

breaking the rules; I wanted to make the final program usable with the second processor

added. In the end I used a combination of INKEY$(0) for RETURN, DEL and the numeric

keys and INKEY(-26) or INKEY(-22) for the cursor keys. This is inelegant and I am still

hoping for a better solution. By the time I had discovered this I had gone too far to change

the structure (I could have separated off the piston movement with separate statements to

INPUT the measured length). Bottom-up programming at this point would have saved

trouble later. The fault lay in not being an expert in BBC BASIC beforehand.

 The problem with producing the sound was how to keep it playing indefinitely until the

piston was moved. Again, no difficulty was anticipated until the relevant part of the program

was tested. Eventually the solution was found in the user guide with a technique for turning

off the previous sound when a new one is reached (SOUND &11 instead of SOUND 1).

 The graph plotting routines were also developed by trial and error. I used the

VDU5:MOVEx,y:PRINT"+" method to plot crosses on the screen, but found that the centre

of the cross did not coincide with the point x,y. Some adjustment of the x and y was

necessary to overcome this. Drawing the line was a linear regression technique already

known to me. But after writing this section (line 5000 onwards) I spent some time entering

dummy data to see its effect. I hope this will be rewarded by having no crashes in future.

One problem was that the linear regression routine can only work with at least two points,

so I had to develop a method of counting how many points the user had measured so far,

and to distinguish this from one point measured twice. The variable 'numreadings' was used

for this and the ensuing code is clumsy. All measurements of the tube length for each tuning

fork are set to zero initially. Each time a new measurement is entered, all thirteen

measurements are checked and only the non-zero ones are counted. This produces an

undesirable GOTO in line 5490. I have yet to find a more elegant way of tackling this.

 After the program had been debugged by me, I gave it to teachers for evaluation. Almost

immediately one had caused a crash. As stated before in this chapter, the auto-repeat facility

is a nuisance and is one reason for avoiding the INPUT statement. The only INPUT left in

the program is to determine which tuning fork is to be used. One user entered F blank and

found that this was not acceptable. She could not see why, since all she could see on the

screen was 'F'. Lines 12092 and 12094 were thus added to eliminate leading and trailing

blanks from the input string.

 The full listing of the program now follows. Doubtless there are further bugs, but in the

time-honoured method of all lecturers, I leave them as an exercise for the student.

Programming techniques

53

RESONANCE IN A TUBE - PROGRAMMING EXAMPLE
LIST
 1 REM RESONANCE IN A TUBE
 2 REM BY R.A.SPARKES
 3
 4 REM 30/3/83
 5
 1000 MODE 4
 1010 LET cursorleft= - 26
 1011 LET cursorright= - 122
 1012 LET returnkey$=CHR$13
 1013 LET deletekey$=CHR$127
 1014 LET space$=CHR$32
 1030 LET endcorrection=20
 1040 LET top=860:bottom=704:REM top and bottom walls of tube
 1050 LET place=1000:REM x - coordinate of piston
 1060 LET length=280:REM INITIAL LENGTH OF TUBE
 1070 LET forever=255:REM LENGTH OF NOTE
 1080 GOSUB 21000:REM SET UP ARRAYS FOR TUNING FORK
 1090 GOSUB 20000:REM DEFINE GRAPHICS
 1200
 1500 REM***************************
 1510 REM
 1520 REM INSTRUCTIONS
 1530 REM
 1540 REM***************************
 2000 CLS:PRINT TAB(8,0);"RESONANCE IN A TUBE"
 2010 PRINT TAB(0,5);"This program simulates the resonance"
 2020 PRINT TAB(0, 7);"tube experiment."
 2030 PRINT TAB(0,9);"A tuning fork held at the mouth of"
 2040 PRINT TAB(0,11);"the tube causes the air to vibrate."
 2050 PRINT TAB(0,13);"The sound produced is loudest when the"
 2060 PRINT TAB(0,15);"length of the tube is closest to the"
 2070 PRINT TAB(0,17);"resonant length."
 2080 PRINT TAB(0,20);"First choose your tuning fork."
 2090 PRINT :PRINT"Enter one of the following values: - "
 2100
 2500 REM***************************
 2510 REM
 2520 REM REPEAT UNTIL ESC KEY
 2530 REM
 2540 REM***************************
 2550
 2560 PROCchoose
 2600 LET measurement%=0
 2700 REM***************************
 2800 REM
 3000 REM DRAW PICTURES
 3005 REM
 3006 REM***************************
 3010 CLS
 3020 PRINT TAB(8,0);"RESONANCE IN A TUBE"
 3024 REM***************************
 3025 REM
 3026 REM DRAW TUNING FORK
 3027 REM
 3028 REM***************************
 3040 PRINT TAB(0,5) CHR$243;SPC (2);CHR$248
 3050 PRINT TAB(0,6) CHR$243;SPC(2);CHR$248
 3060 PRINT TAB(0,7) CHR$243;SPC(2);CHR$248

The BBC microcomputer in science teaching

54

 3070 PRINT TAB(0,8) CHR$243;SPC(2);CHR$248
 3090 PRINT TAB(0,9) CHR$244;CHR$245;CHR$246;CHR$247
 3100 PRINT TAB(1,10) CHR$249;CHR$250
 3110 PRINT TAB(1,11) CHR$249;CHR$250
 3120 PRINT TAB(1,12) CHR$249;CHR$250
 3130 PRINT TAB(1,13) CHR$249;CHR$250
 3140 PRINT TAB(1,3);tone$(tuningfork%)
 3150
 3200 REM***************************
 3210 REM
 3220 REM DRAW TUBE
 3230 REM
 3240 REM*************** ************
 3250 FOR X=5 TO 39:PRINT TAB(X,4) CHR$240:NEXT X
 3260 FOR X=5 TO 39:PRINT TAB(X,10) CHR$242:NEXT X
 3270 REM***************************
 3280 REM
 3290 REM DRAW PISTON
 3300 REM
 3310 REM***************************
 3315 PROCpiston(length)
 3320 REM***************************
 3330 REM
 3340 REM DRAW RULER
 3350 REM
 3360 REM***************************
 3370 MOVE 130,684
 3380 DRAW 1279,684
 3390 DRAW 1279,620
 3400 DRAW 130,620
 3410 DRAW 130,684
 3420 VDU5
 3430 FOR value= 0 TO 33
 3440 LET x=129+value*32:MOVE x,684
 3450 IF value MOD 5<>0 THEN PRINT CHR$251
 3460 IF value MOD 5=0 THEN PRINT CHR$252
 3470 IF value MOD 5=0 THEN MOVE x+4,660:PRINT;value*10
 3480 NEXT value
 3490 VDU4
 3500 PRINT TAB(0,15)"Use the left - right cursor keys"
 3510 PRINT TAB(0,17)"to move the piston in and out."
 3520 PRINT TAB(0,19)"When you have found the resonance"
 3530 PRINT TAB(0,21)"position, measure the length of the"
 3540 PRINT TAB(0,23)"tube up to the piston in millimetres."
 3550 PRINT TAB(0,25)"Enter this length as a whole number and"
 3560 PRINT TAB(0,27)"confirm this value with RETURN"
 3570 PRINT TAB(0,29)"(the DELETE key works normally)."
 3580 PRINT TAB(0,31)"Press ESCAPE to finish.";
 3590
 3600 REPEAT
 3605 VDU 23,1,0;0;0;0;:REM TURN CURSOR OFF
 3610 REM************************
 3620 REM
 3630 REM MAKE SOUND
 3640 REM
 3650 REM*************** *********
 3660 LET resonantlength%=80000 DIV freq%(tuningfork%)
 3670 LET comparison%=ABS(resonantlength% - length - endcorrection) DIV 3
 3680 LET loudness= - 2
 3690 IF comparison%<12 THEN LET loudness=comparison% - 15

Programming techniques

55

 3700 SOUND &11,loudness,note%(tuningfork%),forever
 3710
 4000 REM*********************
 4010 REM
 4020 REM GET KEY FROM KEYBOARD
 4030 REM
 4040 REM*********************
 4050
 4060 measured = FALSE
 4070 REPEA T:LET key$=INKEY$(0)
 4080 UNTIL key$<>"" OR INKEY(cursorleft) OR INKEY(cursorright)
 4090 IF INKEY(cursorleft) THEN PROCmoveleft
 4100 IF INKEY(cursorright) THEN PROCmoveright
 4105 IF key$=deletekey $ AND measurement%<>0 THEN measurement%=measurement% DIV 10
 4110 IF key$=returnkey$ AND measurement%<>0 THEN measured =TRUE
 4120 IF key$<="9" AND key$>="0" AND measurement%<33 THEN LET
measurement%=10*measurement%+VAL(key$)
 4130 IF measurement%<>0 THEN PRINT TAB(31,31);measurement%;space$;
 4140 IF measurement%=0 THEN PRINT TAB(31,31);space$;
 4150 UNTIL measured
 4160 REM*************************
 4170 REM
 4180 REM PROCESS MEASUREMENT
 4190 REM
 4200 REM******* ******************
 4240 REM
 4250 LET measurement%(tuningfork%)=measurement%
 4260 SOUND&11,0,0,0:REM TURN OFF SOUND
 4500 VDU 23,1,1;0;0;0;:REM TURN CORSOR BACK ON
 4800
 4900
 5000 REM***************************
 5010 REM
 5020 REM PLOT GRAP H
 5030 REM
 5040 REM***************************
 5050 CLS
 5060 MOVE 128,256:DRAW 128,960
 5070 MOVE 96,256:DRAW 1279,256
 5080 PRINT TAB(12,0)"RESONANCE IN A TUBE"
 5090 PRINT TAB(0,1)"length/mm"
 5100 VDU5
 5110 FOR y=0 TO 3.5 STEP 0.5
 5120 MOVE 0,(268+192*y):PRINT;100*y
 5130 MOVE 116,(268+192*y):PRINT;" - "
 5140 NEXT y
 5150 MOVE 100,256
 5160 PRINT CHR$251;SPC(3);CHR$251;SPC(3);CHR$251;SPC(3);CHR$251;SPC(3);
CHR$251;SPC(3);CHR$251;SPC(3);CHR$251;SPC(3);CHR$251;SPC(3);CHR$251
 5170 M OVE 112,230
 5180 PRINT"0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0"
 5190 MOVE 300,192
 5200 PRINT TAB(10,26)"1/frequency /ms"
 5210
 5220 REM**********************
 5230 REM
 5240 REM LINEAR REGRESSION
 5250 REM
 5260 REM******************** **
 5270 LET xtotal=0

The BBC microcomputer in science teaching

56

 5280 LET ytotal=0
 5290 LET sumxsquares=0
 5300 LET numreadings=0
 5310 LET sumxyproduct=0
 5320 FOR tuningfork%=0 TO 12
 5330 LET x%=111+1024*256/freq%(tuningfork%)
 5340 LET y%=268+1.92*measurement%(tuningfork%)
 5350 IF measurement%(tuningfork%)=0 THEN 5420:REM next tuningfork%
 5360 LET xtotal=xtotal + x%
 5370 LET ytotal=ytotal + y%
 5380 LET sumxsquares=sumxsquares + x%^2
 5390 LET sumxyproduct=sumxyproduct + x % * y%
 5400 MOVE x%,y%:PRINT;"+"
 5410 LET numreadings=numreadings + 1
 5420 NEXT tuningfork%
 5430 REM***************************
 5440 REM
 5450 REM CALCULATE SLOPE AND INTERCEPT
 5460 REM
 5470 REM***************************
 5480 REM
 5490 IF numreadings<2 THEN 9000:REM IGNORE PLOT ROUTINE FOR A SINGLE READING
 5500 LET slope=(numreadings * sumxyproduct - xtotal * ytotal) / (numreadings * sumxsquares -
xtotal^2)
 5510 LET intercept = (ytotal - slope * xtotal) / numreadings
 5520 REM***************************
 5530 REM
 5540 REM PLOT LINE
 5550 REM
 5560 REM***************************
 5570 REM
 5580 REM plot minimum x - value
 5590 LET x%=111:y%=intercept + slope*x%
 5600 MOVE x%+12 ,y%- 12
 5610 REM plot maximum x - value
 5620 LET x%=1135:y%=intercept + slope*x%
 5630 DRAW x%+12,y%- 12
 5640 VDU4
 5650 REM***************************
 5660 REM
 5670 REM DISPLAY SPEED OF SOUND
 5680 REM
 5690 REM***************************
 5700 LET speed = slope*1024*256*4/1000/1.92
 5710 @%=&20105:REM ONE DECIMAL PLACE
 5720 PRINT TAB(6,3);"Speed of sound = ";speed;" m/s"
 5730 @%=&A0A:REM NORMAL PRINT FORMAT
 5750
 9000 VDU4:PRINT TAB(0,26):REM RESTORE TEXT MODE
 9010 GOTO 2500:REM REPEAT FOREVER
 9999
10000 REM***************************
10010 REM
10020 REM PROCEDURES
10030 REM
10040 REM***************************
10050 REM
10060 DEF PROCmoveleft
10070 IF length>0 THEN length=length - 2
10080 PROCpiston(length)

Programming techniques

57

10090 ENDPROC
10100 DEF PROCmoveright
10110 IF length<330 THEN length=length+2
10120 PROCpiston(length)
10130 ENDPROC
10140 DEF PROCpiston(position)
10150 REM This procedure draws the pistion in the place specified by 'position'
10160 REM Delete old piston
10170 GCOL0,0:MOVE place,bottom:MOVE place+16,bottom:PLOT85,place,top:PLOT85,place+16,top
10180 LET place=159+position*3.2
10190 REM Put piston in new position
10200 GCOL0,1:MOVE place,bottom:MOVE place+16,bottom:PLOT85,place,top:PLOT85,place+16,top
10210 ENDPROC
12000 DEF PROCchoose
12010 REM****************************
12020 REM
12030 REM CHOOSE TUNING FORK
12040 REM
12050 REM****************************
12060 PRINT:PRINT"C C# D D# E F F# G G# A A# B"
12070 PRINT:PRINT"or UC (whic h means upper C) ";
12080 REPEAT:tuningfork%=13
12090 INPUT tuningfork$
12092 IF LEFT$(tuningfork$,1)=CHR$32 THEN LET tuningfork$=RIGHT$(tuningfork$,LEN(tuningfork$) -
1):GOTO 12092
12094 IF RIGHT$(tuningfork$,1)=CHR$32 THEN LET tuningfork$=LEFT$(tuningf ork$,LEN(tuningfork$) -
1):GOTO 12094
12100 IF tuningfork$="C" THEN tuningfork%=0
12110 IF tuningfork$="C#" THEN tuningfork%=1
12120 IF tuningfork$="D" THEN tuningfork%=2
12130 IF tuningfork$="D#" THEN tuningfork%=3
12140 IF tuningfork$="E" THE N tuningfork%=4
12150 IF tuningfork$="F" THEN tuningfork%=5
12160 IF tuningfork$="F#" THEN tuningfork%=6
12170 IF tuningfork$="G" THEN tuningfork%=7
12180 IF tuningfork$="G#" THEN tuningfork%=8
12190 IF tuningfork$="A" THEN tuningfork%=9
12200 IF tuningfork$="A#" THEN tuningfork%=10
12210 IF tuningfork$="B" THEN tuningfork%=11
12220 IF tuningfork$="UC" THEN tuningfork%=12
12230 IF tuningfork%=13 THEN PRINT:PRINT"This value is not listed. Try again."
12240 UNTIL tuningfork%<>13
12250 ENDPROC
20000 REM DEFINE GRAPHICS CHARACTERS
20010 VDU23,240,0,0,0,0,0,255,255,255
20020 VDU23,242,255,255,255,0,0,0,0,0
20030 VDU23,243,7,7,7,7,7,7,7,7
20040 VDU23,244,7,7,3,1,0,0,0,0
20050 VDU23,245,0,128,192,240,124,63,15,3
20060 VDU23,246,0,1,3,15,62,252, 240,192
20070 VDU23,247,224,224,192,128,0,0,0,0
20080 VDU23,248,224,224,224,224,224,224,224,224
20090 VDU23,249,3,3,3,3,3,3,3,3
20100 VDU23,250,192,192,192,192,192,192,192,192
20110 VDU23,251,1,1,1,1,0,0,0,0
20120 VDU23,252,1,1,1,1,1,1,1,0
20200 RETURN
20300
21000 REM SET UP FREQUENCIES FOR TUNING FORKS
21004 DIM measurement%(12)

The BBC microcomputer in science teaching

58

21005 DIM tone$(12)
21010 DIM freq%(12)
21020 DIM note%(12)
21030 FOR tuningfork% = 0 TO 12
21040 READ tonsolfa$, frequency%, soundvalue%
21045 LET tone$(tuningfork%)=t onsolfa$
21050 LET freq%(tuningfork%)=frequency%
21060 LET note%(tuningfork%)=soundvalue%
21065 LET measurement%(tuningfork%)=0
21070 NEXT tuningfork%
21080 RETURN
21100 DATA C,256,53
21110 DATA C#,271,57
21120 DATA D,288,61
21130 DATA D#,304,65
21140 DATA E,320,69
21150 DATA F,341,73
21160 DATA F#,362,77
21170 DATA G,384,81
21180 DATA G#,406,85
21190 DATA A,427,89
21200 DATA A#,456,93
21210 DATA B,480,97
21220 DATA UC,512,101

60

3 Computation and mathematical modelling

 'She can't do sums a bit!' the Queens said

 together, with great emphasis.

 (Lewis Carroll, Through the Looking Glass)

This chapter explores the uses of the BBC microcomputer as a mathematical tool, including

calculations, graphical display of functions, plotting experimental data, simulations using

the random number generator and problem solving by iterative methods.

The super calculator

Calculation is the traditional domain of the computer (as its name implies). There are many

books that deal exhaustively with this aspect of computing, with many illustrative examples.

In fact, there may even be too many! Why do so many books of programs include one on

the solution of quadratic equations? It is not because there are many problems that require

its solution, in fact, hardly anyone uses it after leaving school. I suspect the real reason is

that it has become a standard example upon which mathematical programmers cut their teeth

(while physicists do radioactive decay and the rest write programs on sorting). The real value

of writing such programs is the insight they give the programmer into the nature of the

problem. Try writing your own quadratic equations program and you will see what I mean.

How do you interpret 'too big' or 'syntax error'? Perhaps you forgot about equal or imaginary

roots. If this is true, then one way to teach students about LCR circuits might be to get them

to write their own LCR circuit analysis program.

 There is no point in just using a computer to carry out the often meaningless exercises set

in school physics and chemistry examinations. For example, we would not want a student

to enter a set of data into some previously prepared program on, say, Newton's rings, that

then automatically calculates the wavelength of sodium light. In this case the process is more

important than the product - we are trying to get the student to appreciate the properties of

the equations being used.

 The microcomputer can aid this understanding of equations and concepts in two ways.

One of these, the iterative method, is left till last. The other is the sledge-hammer technique

of getting the computer to solve an equation many times over while varying one of the

parameters. As an example, consider the motion of a stone being thrown vertically against

gravity (GRAVITY, program 28). By entering different starting speeds a pupil should be

able to discover the relation between the vertical height reached and the initial speed. This

technique may be used with almost any other standard equation in science. It would be much

better though if the graphics capabilities of the microcomputer were used as well.

Computation and mathematical modelling

61

 Producing a table of results used to be a nightmare but the excellent tabulation facilities

of the BBC microcomputer have changed that (Plate 6). Practice changing the parameters

of the @% variable until you appreciate how it works and you will have no more problems

(page 70 of the BBC Microcomputer System User Guide).

Graph plotting

The high-resolution screen is particularly useful for sketching functions. MOVE and DRAW

are easily used and some very sophisticated graphs can be drawn. The process is a little slow

for complex functions, but this is not necessarily a disadvantage. One can ask the students

to predict 'What will happen next? '. For those whose coordinate geometry is a little rusty,

the following discussion may be of assistance.

 The most useful screen of the BBC Model B microcomputer is MODE 1. This gives a

normal 40 columns of text, sufficiently high-resolution for most purposes and three colours

at any one time (plus a background colour). This mode is similar to MODE 4, which is the

alternative for Model A users. VDU19 and GCOLO should be used to select the different

colours of the lines and the background as described in the guide. If you do not have access

to a colour monitor, then use MODE 4 to get the extra memory.

 The statement to plot a single dot is

 PLOT69,0,512

You may just be able to see the small dot on the left of the screen and half-way up, which is

the point you have just plotted. Now type

 PLOT69,10,512

which gives a point nearer to the right, but at the same height as the other point. The first

number in the PLOT69 command tells how far the point is from the left edge. Type

 PLOT69,10,200

to get a point below the ones plotted before. This shows that the second number in the

PLOT69 command gives the vertical position of the point. The smaller the number, the

nearer it is to the bottom. The largest value for the horizontal position is 1279 (extreme right)

and the smallest is 0 (extreme left). The largest value for the vertical position is 1023 (top)

and the smallest is 0 (bottom). Any attempt to plot points outside these limits will be ignored.

 Clear the screen with CLS and prove for yourself the positions of the extreme corners of

the screen as follows:

 TOP-LEFT : PLOT69,0,1023
 TOP-RIGHT : PLOT69,1279,1023
 BOTTOM-LEFT : PLOT69,0,0
 BOTTOM-RIGHT: PLOT69,1279,0

Occasionally it is necessary to visit a point without plotting a dot; the MOVE statement

The BBC microcomputer in science teaching

62

can be used for this purpose. MOVEx,y refers to the same point as except that the dot is not

plotted.

Lines

We get lines by drawing a set of dots close together using the DRAW statement. This a line

from the previous point visited (PLOT69 or MOVE or a previous DRAW) to the new point

specified in the DRAW statement. For example:

 MOVE0,0
 DRAW1000,512
 DRAW0,1023
 DRAW0,0

The points on the screen have the coordinates x,y (as in coordinate geometry). To plot graphs

there must be some relationship between x and y, which must be included in the program.

Here is a simple example:

 100 MODE 1
 110 GCOL0,3
 120 FOR x = 0 TO 1279
 130 LET y = x/2
 140 PLOT69,x,y
 150 NEXT x

Note how the program plots the equation given in line 130. Any equation connecting x and

y can be used, provided the equation is of the form y = function of x only. Try this for

yourself, with different equations in line 130. For example:

 130 y = 800-x/2
 130 y = x*x/1000
 130 y = 500 - x + x*x/1000

You will see that only values of y within the range 0 to 1023 are plotted. To fill in any gaps

between the different points the DRAW statement may be used instead of PLOT69.

Unfortunately, this causes problems because the program also draws a line from the origin

to the first point plotted. Ideally, we want to PLOT the first point and only DRAW thereafter.

This can be done by noting that PLOT4 is exactly equivalent to MOVE and PLOTS is

exactly equivalent to DRAW. The program thus becomes

 100 MODE 1
 110 GCOL0,3
 115 LET n=4
 120 FOR x=0 T0 1280
 130 LET y = 800-x/2
 140 PLOTn,x,y
 145 LET n=5
 150 NEXT x

The first time that the PLOTn statement is reached, n has the value of 4, so it is the

Computation and mathematical modelling

63

equivalent of MOVE. Subsequently n is 5, so all the remaining PLOTn statements are

equivalent to DRAW.

Different origins

The methods used so far only allow us to plot graphs in one quadrant, for positive values of

x and y. Some graphs, particularly sines and cosines produce negative values too. To plot

these requires us to move the axes with the VDU29 command. To keep the origin of the x

axis at the left of the screen (x = 0) and put the y axis in the middle (y = 512) we write

 VDU29,0;512; (Note the semi-colons!)

The graph will now show points in the range 0 to 1279 (x coordinate) as before, but -512 to

+ 511 (y coordinate). For some purposes it is better not to redefine the screen in this way,

but to add the required displacement to the x or the y value with statements like

 PLOT69,x,(y+512)

The range of plottable values for y will now be from -512 to + 511 as above. In both methods

axes are drawn with MOVE and DRAW statements.

 Another problem with sine and cosine graphs is that they are functions of angles in

radians. To get at least two cycles on the screen, the range for the angle must be from 0 to

4*PI radians (0 to 12.566). The range for x is 0 to 1279, so a conversion factor has to be

included to make 1279 equivalent to 12.566. It is better to define a conversion factor

(confac) to carry out this operation at the start of the program and to do this in such a way

that it is obvious what is happening.

 LET cycles = 2
 LET confac = 2* PI * cycles / 1280

The value of any sine function goes from -1 to + 1, so it must be multiplied by an amplitude

(maximum of 511 to get the full range on the vertical axis). Here is the program for the sine

function (Plate 7):

 100 MODE 1
 110 VDU29,0;512;
 120 GCOL0,3
 130 MOVE 0,0
 140 DRAW 1279,0
 150 MOVE 0, -512
 160 DRAW 0,511
 200 LET cycles = 2
 210 LET confac = 2 * PI * cycles / 1280
 220 LET amplitude = 300
 230 LET n = 4
 240 FOR x = 0 TO 1280
 250 LET y = amplitude * SIN(x * confac)
 260 PLOTn,x,y
 270 LET n = 5
 280 NEXT x

The BBC microcomputer in science teaching

64

Plate 7 Sine curve

The speed of plotting can be dramatically increased by plotting every tenth point thus:

 240 FOR x = 0 TO 120 STEP 10

This makes little difference to the appearance of the final graph. Note that this can only be

done with the DRAW statement.

 A program to plot the cosine function involves changing line 250 to

 250 y = amplitude * COS(x*confac)

A program to plot two functions at the same time requires two FOR-NEXT loops. Let us

plot three cycles of the sine function and two of the cosine functions at the same time. The

use of DRAW now becomes awkward and it is better to revert to PLOT69 again. This allows

the two graphs to be drawn in different colours.

 100 MODE 1
 110 VDU29,0;512;
 120 GCOL0,3
 130 MOVE 0,0
 140 DRAW 1279,0
 150 MOVE 0,-512
 160 DRAW 0,511

Computation and mathematical modelling

65

Plate 8 Sum of two waves

200 LET sincolour = 1
210 LET coscolour = 2
220 LET sincycles = 3
230 LET coscycles = 2
240 LET sinconfac = 2 * PI * sincycles / 1280
250 LET cosconfac = 2 * PI * coscycles / 1280
260 LET sinamplitude = 300
270 LET cosamplitude = 400
280 FOR x = 0 TO 1280
290 LET siny = sinamplitude * SIN(x * sinconfac)
300 GCOL0,sincolour
310 PLOT69,x,siny
320 LET cosy = cosamplitude * COS(x * cosconfac)
330 GCOL0,coscolour
340 PLOT69,x,cosy
380 NEXT x

 With other trigonometrical functions although it does not cause an error message if the

plotted point is not within the range of the screen, it is useful to ensure that the graph can be

seen. The function plotted should be checked for its maximum and minimum values

The BBC microcomputer in science teaching

66

and the amplitude adjusted. An example is the function 300sin(3A) + 400cos(2A), which

can have a value of 700, so the amplitude should be reduced accordingly. To plot this

function as well as the functions that go to produce it, add these lines to the previous

program:

 350 GCOL0,3
 360 LET sumy = (siny + cosy)/2
 370 PLOT69,x,sumy

Sometimes, however, the use of a range check is unavoidable. For example, the function

tan(A) goes to infinity when A is ninety degrees producing an error. ON ERROR GOTO

will detect this condition and avoid crashing the program. This program plots tan(A) for two

cycles and to get as much of the function as possible on the screen the amplitude is made

quite low (Plate 9).

 100 MODE 1
 110 VDU29,0;512;
 120 GCOL0,3
 130 MOVE0,0
 140 DRAW 1279,0
 150 MOVE0,-512
 160 DRAW0,511
 200 GCOL0,3
 210 LET cycles = 2
 220 LET confac = 2 * PI * cycles/ 1280
 230 LET amplitude = 10
 240 LET n=4
 250 FORx=0 TO 1280
 260 ON ERROR LET x=x+1:GOTO 270
 270 LETy = amplitude * TAN(x * confac)
 275 IF y>1000 OR y<-500 THEN LET n = 4
 280 PLOTn,x,y
 290 LET n=5
 300 NEXTx

This use of ON ERROR prevents the normal function of the ESCAPE key to exit the

program. To do this, perform a BREAK (followed by OLD <RETURN> to recover the

program). Line 275 is a 'bug-fix' to prevent + infinity being joined up to -infinity. Try

removing it to see its effect.

 Some functions still cause problems. Consider the equation of the circle

 x2 + Y2 = radius2

 where the maximum value for the radius is 511. BASIC cannot handle the equation

as it is, it must be transformed to get a single value of y (or x) on the left of the equation.

 y = SQR(radius*radius - x*x)

Computation and mathematical modelling

67

Plate 9 Tangent curve

Care must now be taken to prevent the absolute value of x from exceeding the radius,

otherwise y becomes imaginary. Also the square root is automatically positive, so we shall

only get the whole circle by separately including the negative value.

 100 MODE 1
 110 VDU29,640;512;
 120 LET radius = 400
 130 FOR x = -radius TO radius
 140 y = SQR(radius*radius - x*x)
 150 PLOT69,x,y
 160 PLOT69,x,-y
 170 NEXT x

This gives uneven spacing between the plotted points and a more satisfactory way, which

makes use of a separate parameter is preferred. For circular functions angle is the most useful

parameter.

100 MODE 1
110 VDU29,640;512;
120 LET amplitude = 300
200 FOR angle = 0 TO 360
210 LET x = 1.1 * amplitude * COS(RAD(angle))

 220 LET y = amplitude * SIN (RAD(angle))

The BBC microcomputer in science teaching

68

 230 PLOT69,x,y
 240 NEXT angle

Here the x amplitude is made larger than the y amplitude to make the circle more circular in

the display. The factor 1.1 in line 210 will need to be changed for different monitors.

 The parametric method is widely applicable to most conic sections. The ellipse is given

by

 100 MODE 1
 110 VDU29,640;512;
 120 LET xamplitude = 400
 130 LET yamplitude = 200
 200 FOR angle = 0 TO 360
 210 LET x = xamplitude * COS (RAD(angle))
 220 LET y = yamplitude * SIN (RAD(angle))
 230 PLOT69,x,y
 240 NEXT angle

The parabola is given by

 x = 2*a*t
 y = a*t*t

For example,

 100 MODE 1
 110 VDU29,640;512;
 200 FOR t = -500 TO 500
 210 LET x = 20 * t*t
 220 LET y = t * t
 230 PLOT69,x,y
 240 NEXT t

The hyperbola has an awkward parametric equation

 x = a/COS(RAD(angle))
 y = b*TAN(RAD(angle))

This can produce infinite values, so the ON ERROR technique is used here too.

 100 MODE 1
 110 VDU29,640;512;
 120 GCOL0,3
 130 ON ERROR LET angle=angle + 1:GOTO210
 200 FOR angle = 0 TO 360
 210 x = 100/COS(RAD(angle))
 220 y = 200*TAN(RAD(angle))
 230 PLOT69,x,y
 240 NEXT angle

Computation and mathematical modelling

69

Plate 10 Lissajous figures

 Particularly pleasing to the physics teacher is the production of Lissajous figures using

sine equations with different frequencies and phase angles (Plate 10).

 100 MODE 1
 110 VDU29,640;512;
 120 GCOL0,3
 130 INPUT "Phase Angle = "phase
 140 INPUT "Frequency Ratio = " freqratio
 150 LET amplitude = 300
 160 LET n = 4
 200 FOR angle = 0 TO 100000
 210 LET x = amplitude * SIN(RAD(angle*freqratio + phase))
 220 LET y = amplitude * SIN(RAD(angle))
 230 PLOTn,x,y
 240 LET n = 5
 250 NEXT angle

If non-integral values of the frequency ratio are desired, it can be many cycles before the

pattern repeats itself, hence the need for the large number of cycles in line 200.

The BBC microcomputer in science teaching

70

EVAL

The BBC BASIC function EVAL allows equations to be entered from the keyboard instead

of the user having to stop the program to try out a different function. In some cases this is

useful and you can see one application of it in PROGRAMMABLE OSCILLATOR (13).

Usually, however, the necessity to enter the function with BASIC syntax means that the user

has to have some familiarity with programming anyway. In this case it is no more difficult

to halt the program and alter the line numbers. Program 3 (LOGIC MAKER) uses this

technique since a particular Boolean function may spread over several lines of

programming.

Applications

These ideas can be turned to practical classroom use in a number of ways. Once the

principles are appreciated, a few hours at the keyboard will tell students more about the

behaviour of functions than a whole series of lectures.

Simple functions

If a phenomenon can be described by a simple equation, then it can be plotted in the ways

just described. For example, the distance-time graph of a body that falls from rest can be

plotted with the equation

 s = g * t * t / 2

This translates into a program as follows:

 100 MODE 1
 110 VDU29,0;900;
 120 GCOL0,3
 150 PRINT TAB(0,0);"Enter the acceleration due to gravity"
 160 INPUT g
 170 LET acc = -g
 180 LET n=4
 200 FOR t = 0 TO 1280
 210 LET s = acc * t * t / 2
 220 PLOTn,t,s/1000
 230 LET n = 5
 240 NEXT t
 250 GOTO 150

Different values for gravity may be entered and their effects noted. In this program values

between 0 and 10 give the best results.

 Wherever there are more than two variables, the others can be held constant during

each scan of the screen and altered later by entering new values in precisely the same way

as this. This process fits most equations experienced in O-level physics and chemistry.

Computation and mathematical modelling

71

Plate 11 Damped oscillations - via mathematics

Typical examples are as follows:

 V = I * R
 W = I * i * R
 P * V = const 0.
 1/v + 1/u = 1/f
 F = k * m * M / (r * r)

 Trigonometrical functions allow some of the properties of vibrations and waves to be

investigated. The superposition of two waves to give interference, beats and modulated

waves was demonstrated above. Here is another example: a program for an object executing

damped oscillations. This includes a plot of the wave envelope too, so that the student can

appreciate which part of the equation causes the different shapes of the graph (Plate 11).

This program is actually an oversimplification, since no account has been taken of the effect

of damping on the frequency of the oscillations. A much better way of doing the whole thing

is discussed later in this chapter.

 10 REM DAMPED OSCILLATIONS
 100 MODE 1
 110 VDU29,0;512;
 120 GCOL0,3
 130 MOVE 0,0

The BBC microcomputer in science teaching

72

 140 DRAW 1279,0
150 MOVE 0, -512
160 DRAW 0,511
190 INPUT TAB(0,0) "Coefficient of friction (0 to 0.1) " friction
200 LET cycles = 4
210 LET confac = 2 * PI * cycles/1280
220 LET amplitude = 300
230 MOVE 0,amplitude
240 FOR t = 0 TO 1280 STEP 5
250 LET angle = t * confac
260 LET displacement = amplitude * EXP(-t * friction) * COS(angle)
270 GCOL0,3
300 DRAW t,displacement
310 NEXT t
320 REM DRAW PEAK ENVELOPE
350 MOVE 0,amplitude
360 GCOL0,1
370 FOR t = 0 TO 1280 STEP 5
380 LET envelope = amplitude * EXP(-t * friction)
390 DRAW t,envelope
400 NEXT t
410 GOTO 190

A particularly satisfactory demonstration of the Fourier synthesis of a square wave is

obtained with the following program:

10 REM FOURIER SYNTHESIS
100 MODE 1
110 VDU29,0;512;
120 GCOL0,3
130 MOVE 0,0
140 DRAW 1279,0
150 MOVE 0,-512
160 DRAW 0,511
200 LET cycles = 2
210 LET confac = 2 * PI * cycles / 1280
220 LET amplitude = 300
230 LET n = 4
240 FOR x = 0 TO 1280
250 LET angle = x * confac
260 LET y1 = amplitude * SIN(angle)
270 LET y2 = amplitude / 3 * SIN(3 * angle)
280 LET y3 = amplitude / 5 * SIN(5 * angle)
290 LET y4 = amplitude / 7 * SIN(7 * angle)
300 LET y5 = amplitude / 9 * SIN(9 * angle)

Computation and mathematical modelling

73

310 LET y = y1+y2+y3+y4+y5
320 PLOTn,x,y
330 LET n = 5
340 NEXT x

Provided you are prepared to wait this process may be continued for as many harmonics as

you wish.

Complicated functions

Many functions cannot easily be rearranged to make one variable into the subject of the

equation. There is usually no necessity for this in any case as the microcomputer is quite

capable of carrying out the calculation in parts. A good example of this is the voltage across

a capacitor in an LCR circuit (Figure 3.1). If this is plotted against frequency a resonance

curve is produced. The input voltage is assumed to be constant (E) and this produces a

current in the circuit (I).

Figure 3.1 LCR circuit

 I is given by E/Z, where Z is the impedance of the circuit at the given frequency (f). The

voltage across the capacitor (C) is thus 1/2 ́fC. The value for Z is obtained from the formula

 Z2 = R2 + (2 ˊ fL - 1/2 ˊ fC)2

RESONANCE (29) plots the desired curve (Plate 12). The values of L and C should be

chosen to make the resonant frequency come near the middle of the screen (frequency =

500). Assuming inductances in millihenries and capacitors in microfarads, this gives L =

100 mH and C = 250 BF. (Strictly, this frequency is the angular frequency, but this is not

apparent in the final plot, so it is ignored here. If required it is simple enough to allow for

it.) Here is the essential part of the program.

 INPUT "Inductance = " L
 INPUT "Capacitance = " C
 INPUT "Resistance = " R

The BBC microcomputer in science teaching

74

Plate 12 LCR resonance curves

LET E = 50:REM APPLIED VOLTAGE
FOR frequency = 1 TO 1280
LET XL = frequency * L
LET XC = 1/(frequency * C)
LET X = XL - XC
LET Z = SQR(R*R + X*X)
LET I = E/Z
LET VC = I * XC
PLOT frequency,VC
NEXT frequency

It can be seen how the final capacitor voltage is obtained after several separate calculations,

each of which should be familiar to the student. By showing each step of the calculation like

this, it is easier to keep sight of the physics. The value of this kind of program is that students

can vary one parameter at a time and observe the effects. PROJECTILES (30) also shows

this technique.

Graph plotting with experimental data

Probably the most useful application of graphs in science is the plotting of experimental

data. This is usually carried out to obtain the slope or intercept of a straight-line graph,

Computation and mathematical modelling

75

where the best line is obtained from the data by guesswork. The computer can be a great

help in teaching students to do this, since the 'best' line can then be obtained by the method

of least squares. The technique was used in Chapter 2 to draw the best line for

RESONANCE IN A TUBE. This program also demonstrates one method of plotting

crosses, by printing them in the position of the graphics cursor.

 VDU5
 MOVE x-12,y+12
 PRINT"+"

This plots a cross at the point x,y. It is necessary to reduce the x coordinate and increase the

y coordinate as shown in order to get the centre of the cross as near to the point x,y as

possible. The + sign is far from ideal for this purpose, since its vertical part is actually two

lines wide. A better way is to use a user-defined cross as follows:

 VDU23,255,16,16,16,254,16,16,16,0
 VDU5
 MOVE x-12,y+12
 PRINT CHR$255

Better still is a procedure (PROCplot(x,y)) that draws a cross exactly at the point x,y without

the hassle of changing these values first. The procedure is defined by:

 DEF PROCplot(x,y)
 MOVE x-16,y
 DRAW x+16,y
 MOVE x,y-16
 DRAW x,Y+16
 ENDPROC

A complete program to accept students' data and to process it is not easy if the data can have

all possible values. The following program works within limits and may easily be adapted

to suit any particular application. RESONANCE IN A TUBE demonstrated one such

adaptation.

 LEAST SQUARES FIT
 100 MODE4
 200 @% = &A0A: REM Restore normal format
 300 VDU23,250,8,8,8,8,8,8,0,0
 1000 REM*************************
 1010 REM
 1020 REM COLLECT DATA
 1030 REM
 1040 REM*************************
 1050 CLS
 1060 PRINT:PRINT"Enter the number of data pairs."
 1070 PRINT:INPUT numreadings

The BBC microcomputer in science teaching

76

1080 DIM x(numreadings),y(numreadings)
1090 PRINT:PRINT "Enter each pair of readings"
1100 PRINT:PRINT "in the order x-coord.,y-coord."
1110 PRINT:PRINT "for example 56.3,89.75"
1120 FOR n = 1 TO numreadings
1130 PRINT
1140 INPUT x(n),y(n)
1150 PRINT x(n),y(n)
1160 NEXTn
1170 CLS:PROClist
1180 PRINT:PRINT "Do you wish to change any readings?"
1190 PRINT:PRINT "Answer Y or N."
1200 PRINT:INPUT answer$
1210 IF answer$<>"Y" AND answer$<>"N" THEN 1180
1220 IF answer$="N" THEN 2000
1230 PRINT:PRINT "Enter the reference number for the"
1240 PRINT:PRINT "data pair you wish to change."
1250 PRINT:INPUT m%
1260 IF m%>numreadings THEN PRINT:PRINT"You did not enter this
reading.":GOTO 1170
1270 PRINT:PRINT"Enter the new pair of readings"
1280 PRINT:INPUT x(m),y(m)
1290 PRINT
1300 PROClist
1310 GOTO 1170
1320
2000 REM******************************
2010 REM
2020 REM DETERMINE AXES
2030 REM
2040 REM******************************
2050 CLS
2060 PRINT:PRINT"Enter the maximum x-coordinate"
2070 PRINT:INPUT xmax
2080 PRINT:PRINT"Enter the maximum y-coordinate"
2090 PRINT:INPUT ymax
2100 LET xscale=xmax/1000
2110 LET yscale = ymax/ 1000
2120
5000 REM**********************
5010 REM
5020 REM DRAW AXES
5030 REM
5040 REM**********************

Computation and mathematical modelling

77

5050 CLS
5060 REM Move origin
5070 VDU29,128;64;
5080 MOVE 0, -32:DRAW 0, 1000
5090 MOVE -32,0:DRAW 1200,0
5095 @% = &202: REM short format
5100 VDU5
5110 FOR y = 0 TO 10
5120 MOVE -128,12+100*y:PRINT;100*y*yscale
5130 MOVE -28,12+100*y:PRINT;"-"
5140 NEXT y
5150
5160 FOR x=0 TO 10
5170 MOVE -16+100*x,0:PRINT CHR$250
5180 MOVE -48+100*x,-32:PRINT;100*x*xscale
5190 NEXT x
5200
5210 REM************************
5220 REM
5230 REM LINEAR REGRESSION
5240 REM
5250 REM************************
5260
5270 LET xtotal = 0
5280 LET ytotal = 0
5290 LET sumxsquares = 0
5300 LET sumxyproduct = 0
5320 FOR n = 1 TO numreadings
5330 LET x = x(n)/xscale
5340 LET y = y(n)/yscale
5360 LET xtotal = xtotal + x
5370 LET ytotal = ytotal + y
5380 LET sumxsquares=sumxsquares + x*x
5390 LET sumxyproduct=sumxyproduct + x*y
5400 PROCplot(x,y)
5410 NEXT n
5420
5430 REM************************
5440 REM
5450 REM CALCULATE SLOPE AND INTERCEPT
5460 REM
5470 REM************************
5480
5490

The BBC microcomputer in science teaching

78

5500 LET slope = (numreadings * sumxyproduct - xtotal *
ytotal)/(numreadings * sumxsquares - xtotal * xtotal)
5510 LET intercept = (ytotal - slope * xtotal) / numreadings
5520 REM*********************
5530 REM
5540 REM PLOT LINE
5550 REM
5560 REM*********************
5570
5580 REM Plot minimum x-value
5590 LET x% = 0:y% = intercept + slope * x%
5600 MOVE x%,y%
5610 REM Plot maximum x-value
5620 LET x% = 1200:y% = intercept + slope * x%
5630 DRAW x%,y%
5640 VDU4
5650 END
5660
10000 DEF PROClist
10010 PRINT TAB(19,2);"x , y"
10020 PRINT
10030 FOR n = 1 TO numreadings
10040 PRINT n,x(n),y(n)
10050 NEXT n
10060 ENDPROC
10070
11000 DEF PROCplot(X,Y)
11010 MOVE X-16,Y
11020 DRAW X+16,Y
11030 MOVE X,Y-16
11040 DRAW X,Y+16
11050 ENDPROC

 For statistical data a bar chart is preferred. In this case the x coordinate is probably

discontinuous, but whether it increases in steps of one, two or five, etc. is a matter of

choice in each case. Hence again a single program will not suffice for all occasions and

one like the following will need to be adapted for each particular case. The procedure to

plot a bar of length y at the position x is:

DEF PROCvbar(x,y)
MOVE x,0
MOVE x+48,0
PLOT85,x,y
PLOT85,x+48,y
ENDPROC

Computation and mathematical modelling

79

One program to handle the data input for bar charts is as follows:

BAR CHART
 100 MODE 4
 200 @% = &A0A:REM Restore normal format
 300 VDU23,250,8,8,8,8,8,8,0,0
1000 REM************************
1010 REM
1020 REM COLLECT DATA
1030 REM
1040 REM************************
1050 CLS
1060 PRINT:PRINT "Enter the number of data readings."
1070 PRINT:INPUT numreadings
1080 DIM y(numreadings)
1090 PRINT:PRINT "Enter each reading in ascending order"
1100 PRINT:PRINT "of the x-coordinate."
1120 FOR n = 1 TO numreadings
1130 PRINT TAB(5);n;" ";:INPUT y(n)
1160 NEXT n
1170 CLS:PROClist
1180 PRINT:PRINT "Do you wish to change any readings?"
1190 PRINT:PRINT "Answer Y or N."
1200 PRINT:INPUT answer$
1210 IF answer$<>"Y" AND answer$<>"N" THEN 1180
1220 IF answer$="N" THEN 2000
1230 PRINT:PRINT "Enter the reference number for the"
1240 PRINT:PRINT "data you wish to change."
1250 PRINT:INPUT m%
1260 IF m%>numreadings THEN PRINT:PRINT"You did not enter this
reading.":GOTO 1170
1270 PRINT:PRINT" Enter the data."
1280 PRINT:INPUT y(m%)
1290 PRINT
1300 PROClist
1310 GOTO 1170
1320
2000 REM************************
2010 REM
2020 REM DETERMINE AXES
2030 REM
2040 REM************************
2050 CLS
2080 PRINT:PRINT"Enter the maximum y-coordinate"

The BBC microcomputer in science teaching

80

 2090 PRINT: INPUT ymax
 2100 LET xscale = numreadings/1000
 2110 LET yscale = ymax/1000
 2120
 5000 REM**************************
 5010 REM
 5020 REM DRAW AXES
 5030 REM
 5040 REM**************************
 5050 CLS
 5060 REM Move origin
 5070 VDU29,128;64;
 5080 MOVE 0,-32:DRAW0,1000
 5090 MOVE-32,0:DRAW 1200,0
 5095 @%=&202:REM short format
 5100 VDU5
 5110 FOR y=0 TO 10
 5120 MOVE -128,12+100*y:PRINT;100*y*yscale
 5130 MOVE -28,12+100*y:PRINT;"-"
 5140 NEXT y
 5150
 5160 FOR x=0 TO 10
 5170 MOVE -16+100*x,0:PRINT CHR$250
 5180 MOVE -48+100*x,-32:PRINT;100*x*xscale
 5190 NEXT x
 5200
 5210 REM**************************
 5220 REM
 5230 REM BAR CHART
 5240 REM
 5250 REM**************************
 5260
 5320 FOR n = 1 TO numreadings
 5360 LET x=n/xscale
 5340 LET y=y(n)/yscale
 5400 PROCvbar(x,y)
 5410 NEXT n
 5500
 5640 VDU4
 5650 END
 5660
10000 DEF PROClist
10010 PRINT TAB(9,2);"x,y"
10020 PRINT

Computation and mathematical modelling

81

10030 FOR n = 1 TO numreadings
10040 PRINT n,y(n)
10050 NEXT n
10060 ENDPROC
10070
11000 DEF PROCvbar(X,Y)
11010 MOVE X,0
11020 MOVE X+48,0
11030 PLOT85,X,Y
11040 PLOT85,X+48,Y
11050 ENDPROC

Another example of the plotting of bar charts is given in SUM OF TWO DICE (22).

 Horizontal bar charts are just as easy to achieve thus:

11000 DEF PROChbar(X,Y)
11010 MOVE 0,Y
11020 MOVE 0,Y+48
11030 PLOT85,X,Y
11040 PLOT85,X,Y+48
11050 ENDPROC
11000 DEF PROCvbar(X,Y)
11010 MOVE X,0
11020 MOVE X+48,0
11030 PLOT85,X,Y
11040 PLOT85,X+48,Y
11050 ENDPROC

Pie charts are obtained with the circle drawing technique already shown. The filled circle

uses the triangle-filling PLOT85 instruction too. To ensure that the pie is closed each amount

is converted to its nearest whole number of degrees (line 1320). Each sector is added onto

the previous one and hopefully the total angle reaches exactly 30 degrees. MODE 2 allows

the seven colours to be used (line 1370), but if there are exactly eight sectors this will need

to be modified or two adjacent colours will be the same.

 PIE CHART

 100 MODE 7
 200 DIM amount(100)
1000 REM************************
1010 REM
1020 REM COLLECT DATA
1030 REM
1040 REM************************
1050 CLS
1060 PRINT:PRINT"Enter the amounts for each sector"
1070 PRINT:PRINT "of the pie chart."

The BBC microcomputer in science teaching

82

1080 PRINT:PRINT "Enter 0 to obtain the pie chart."
1090 LET n = 0:total = 0
1100 REPEAT
1110 LET n = n + 1
1120 PRINT:INPUT amount(n)
1130 LET total = total + amount(n)
1140 UNTIL amount(n) = 0
1150 LET numreadings = n-1
1160
1200 REM**************************
1210 REM
1220 REM DETERMINE AXES
1230 REM
1240 REM**************************
1250
1260 MODE2
1270 REM Move origin
1280 VDU29,600;500;
1290 LET totalangle% = 1
1300 MOVE 400,0
1310 FOR n = 1 TO numreadings
1320 LET angle% = 360 * amount(n)/total + 0.5
1330 FOR totalangle% = (totalangle%-1) TO (totalangle% + angle%)
1340 LET X = 400*COS(RAD(totalangle%))
1350 LET Y = 400*SIN(RAD(totalangle%))
1360 MOVE 0,0
1370 GCOL 0,(n MOD 7) + 1
1380 PLOT85,X,Y
1390 NEXT totalangle%
1400 NEXT n

Computation and mathematical modelling

83

The use of RND
The random number function of BASIC is not provided only for computer games! It is

invaluable for carrying out statistical experiments, particularly where the results can be

displayed graphically. RADIOACTIVE DECAY (21) illustrates the use of this function to

decide which nucleus should decay next. Since the position of this next nucleus is decided

at random, the chance of choosing a position with an undecayed nucleus depends upon the

number of such nuclei remaining. This therefore simulates radioactive decay quite well

(Plate 13). The use of SOUND to simulate a Geiger counter is an idea suggested by W.

Jeffries at a conference in Jordanhill College of Education in June 1982.

Plate 13 Radioactive decay

 If one of the variables is discontinuous, then the bar chart is an obvious means of display

as SUM OF TWO DICE (22) illustrates. This is a standard experiment, but few students

could do it more than a few times as a practical exercise, so the microcomputer can help to

make the pattern more obvious. In the space of a few minutes the experiment is performed

hundreds of times (Plate 14).

 The use of RND is particularly valuable in biology for simulating genetic linkage and

there are very many programs available for this. It is also used in the simulation of Geiger

and Marsden's experiment discussed later (RUTHERFORD, 32).

The BBC microcomputer in science teaching

84

Plate 14 Probability distribution - the sum of two dice

Iterative Methods

The Nuffield Advanced Physics originators were far-sighted in noting probable trends

towards more and cheaper calculators. They describe several experiments which run very

nicely on a microcomputer. Basically, they suggest that as well as the traditional algebraic

(usually integral calculus) analysis of physical phenomena, teachers should explore

numerical solutions. A good example is the discharge of a capacitor through a resistor. This

can be solved algebraically by noting that the current flowing through the resistor is the

differential of the charge on and hence the voltage across the capacitor. Since this current is

directly proportional to voltage, all that has to be done is integrate a reciprocal and end up

with an exponential logarithm. The mathematics so obscures the physics that it is better to

seek a step-by-step solution to the problem.

 The voltage (V) across the capacitor is related to the charge (Q) in the capacitor by

 Q = V * C (Eq.1)

Computation and mathematical modelling

85

This voltage causes a current (I) to flow through the resistor according to the well-known

formula

 V = I * R (Eq.2)

If a current of one ampere flows for one second, the capacitor will lose one coulomb of

charge, so in one millisecond, say, it will lose one millicoulomb of charge. Thus the

remaining voltage on the capacitor after one millisecond is a bit less than it was before, and

we can use Eq.1 to calculate exactly how much less. This gives us a new value for V, with

which to begin the next millisecond. By hand it could take some time to see how the

capacitor voltage is falling, but the microcomputer makes very short work of the

calculations. The exponential curve is obtained with only the three fundamental equations.

The actual program is listed below, but any student, particularly one able to comprehend the

calculus approach, could write such a program.

 The main difficulty is ensuring that the chosen values give results that fit the screen. The

time axis (x axis) goes from 50 to 1279 units. If these are seconds, then a time constant of

about 300 seconds is needed for the R-C circuit. This is somewhat unrealistic, so we pretend

that our time scale is in microseconds instead. The value for R can thus be a few thousand

ohms and the value for C between 1 and 10 microfarads. The increment of time between

each successive calculation (timeinc) is fixed at 5 units in this program. It can be changed

to give a finer line (which is slower) or a more chunky line which is faster. Since

Plate 15 Capacitor discharge by formula

The BBC microcomputer in science teaching

86

different values for R and C can be entered, students can be asked to discover how the rate

of decay depends upon R and C (Plate 15), In so doing, they learn a great deal about the

decay curve, which should transfer to their understanding of, say, radioactive decay too.

 100 MODE1
 110 GCOL0,3
 120 MOVE 0,50:DRAW 1279,50
 130 MOVE 50,0:DRAW 50,1023
 140 PRINT TAB(0,0);" "
 150 PRINT TAB(0,2);" "
 160 PRINT TAB(0,0);"Capacitance (microfarad) ";:INPUT capacitance
 165 PRINT TAB(0,2);"Resistance (ohms) ";:INPUT resistance
 170 PRINT TAB(0,14);"V"
 180 PRINT TAB(20,31);"time";
 185 IF resistance=0 THEN resistance=0.001
 190 REM INITIAL VALUES
 200 LET E=800:REM INITIAL VOLTAGE
 210 MOVE 50,E
 220 time = 50
 230 LET charge= E * capacitance:REM microcoulomb
 240 LET voltage=E
 250 LET timeinc=5
 260
 300 REPEAT
 310 LET current=voltage/resistance
 320 LET charge=charge-current*timeinc
 330 LET voltage=charge/capacitance
 340 LET time=time+timeinc
 350 DRAW time,voltage+50
 360 UNTIL time>1279 OR voltage<5
 370 GOTO 140

This approach to the analysis of phenomena is called the iterative method. It is applicable

in very many areas (and not just physics). Programs 30 to 32 show how it may also be

applied to motion. Plate 16 shows the sort of results obtained with PROJECTILES (30), The

basic algorithm is as follows:

1 Assume initial position, velocity and acceleration.

2 Assume a small increment of time,

3 Determine the new velocity after this time interval.

4 Determine the distance travelled at this velocity during this time interval,

5 Calculate the new position,

6 Return to step 1, with new values of velocity and acceleration.

Computation and mathematical modelling

87

This gives a delightful way of tackling simple (and damped) harmonic motion, without

recourse to differential equations.

 10 REM DAMPED OSCILLATIONS
 20 REM BY THE ITERATIVE METHOD
 100 MODE 1
 110 VDU29,0;512;
 120 GCOL0,3
 125 MOVE 0,0
 130 DRAW 1279,0
 140 MOVE 0,-512
 150 DRAW 0,512
 160 INPUT TAB(0,0) "Coefficient of friction (0 to 0.1) " friction
 170 INPUT "Spring constant (0 to 10) " springconstant
 180 INPUT "Mass of body (0 to 10) " mass
 190 LET amplitude=300
 200 LET displacement=amplitude
 210 LET speed=0:REM INITIAL SPEED
 220 MOVE 0,displacement
 230 LET time=0
 240 LET timeinc=5
 250 REPEAT
 260 LET restoringforce=-springconstant*displacement/10000
 270 LET frictionalforce=-friction*speed
 280 LET totalforce=restoringforce+frictionalforce
 290 LET acceleration=totalforce/mass
 300 LET speed=speed+acceleration*timeinc
 310 LET displacement=displacement+speed*timeinc
 320 LET time=time+timeinc
 330 DRAW time,displacement
 340 UNTIL time>1279

On each run different values can be entered to discover the role that each variable plays in

the overall motion. If this is coupled with actual experimental work with masses on the end

of a spring, I believe the approach to be much more truly physics than the traditional

mathematical approach.

 For projectiles there are two directions (x and y) to consider, However, these can be

considered entirely independently, so the only complication is that there are twice as many

calculations in each cycle. PROJECTILES (30) illustrates this: the motion in the x direction

is constant velocity, while that in the y direction is constant acceleration (Plate 16). This

program also shows how easy it now is to include more difficult ideas. The usual treatment

of projectiles ignores friction and leads to the ideal case of 45 degrees as the angle for

maximum range. PROJECTILES incorporates a frictional drag, proportional to the speed,

which reduces the speed and leads to the idea of terminal velocity. The resulting motion is

not unlike that predicted by Bacon's impetus theory. The acceleration

The BBC microcomputer in science teaching

88

Plate 16 Projectiles

due to gravity and the friction (dragcoeff) can be altered for different effects (projectiles

in treacle?).

 Motion under a central force is rarely understood. NEWTON (31) is a game that any

student should be able to solve, but it often fools physics graduates. The objective is to put

a rocket into moon orbit from outside. Try it and see if you understand Newton's laws

yourself (Plate 17). The program first calculates the distance between the rocket and the

centre of the moon. This is converted into two forces, one which affects the acceleration in

the x direction, the other the y direction. This in turn leads to predictions of where the rocket

will be after the next unit of time (timeinc) and the process reiterates until the rocket crashes

on the moon's surface or disappears off the screen. The value of 'timeinc' can be altered as

before to achieve smoother if slower motion.

 Alpha particle scattering by a gold nucleus provides a classic derivation for university

undergraduates. I understand that the mathematics of this was too difficult for Rutherford

and was handed over to a mathematician. I imagine that Rutherford would have loved the

iterative method. The essential part of RUTHERFORD (32) is very similar to its equivalent

in NEWTON, except that the force acting is reversed to produce repulsion instead of

attraction. The motion is also speeded up (with a loss in resolution) to allow a large number

of particles to be observed. These are fired at random at the gold nucleus and only a few

pass close enough to be deflected (Plate 18). So the mathematics is reduced to the level

where any sixth former can understand it. I

Computation and mathematical modelling

89

Plate 17 Satellite motion

Plate 18 Rutherford alpha particle scattering simulation

The BBC microcomputer in science teaching

90

am not sure that many teachers, particularly of physics, have yet realized the implications

of this. If, as I suspect it will, computer programming becomes the fourth R, the traditional

dependence of advanced science subjects upon mathematics could be allowed to decline,

thus opening them up to more students than hitherto.

Modelling the environment

The iterative process has wider applications than those above and it was used by the

Huntingdon Project, which produced the well-known simulations in biology and

chemistry. One of these, POLLUT, analyses the effect of certain types of pollutant upon

water life and another, HABER, looks at the effects of changing the temperature and

pressure etc. of the reactants in an industrial process. Practically anything that can be

quantified, can be mathematically modelled, although the accuracy of the predicted

outcomes is not necessarily reliable. It depends upon whether all the important factors

have been taken into account.

 To illustrate the principles, fox and rabbit populations can be modelled to predict how

they change with time. It is assumed that the rabbits' food is infinite so that they can

reproduce without restriction. Although the increment of time is assumed to be one week,

it is possible to enter an arbitrary rate of growth for the rabbit population between 0 and 5

per cent.

 The growth in the fox population is dependent upon the supply of rabbits. If foxes only

Plate 19 Fox and rabbit population simulation

Computation and mathematical modelling

91

eat rabbits, then they will begin to die if their population exceeds some factor of the rabbit

population. Foxes with abundant food reproduce at a constant rate, which is also chosen

before the start of the iteration. It is assumed that the starvation rate of foxes depends upon

the ratio of foxes to rabbits, which seems reasonable. It is further assumed that the death rate

of rabbits is proportional to the product of rabbits and foxes. This assumes that one fox with

1000 rabbits will still eat twice as much as the same fox with 500 rabbits. (I greatly suspect

the model at this point.) The number of rabbits that are eaten depends upon the number of

foxes and the number of foxes depends upon the number of rabbits. This classic problem

can only be solved by an iterative process, since the equations generated have no analytical

solution (Plate 19).

 10 REM FOX AND RABBIT SIMULATION
 100 MODE4
 110 ON ERROR GOTO 500
 200 CLS
 300 INPUT "FOX GROWTH RATE (range 0 to 5%) "foxgrowthrate
 310 INPUT "RABBIT GROWTH RATE (range 0 to 5%) "rabbitgrowthrate
 320 PROCpopulation
 500 PRINT TAB(0,0);"Press R to repeat. "
 510 IF INKEY$(255)<>"R" THEN 510
 520 GOTO 200
 1000
 2000 DEF PROCpopulation
 2010 CLS
 2020 LET
weeks=0:rabbitgrowthrate=rabbitgrowthrate/100:foxgrowthrate=foxgrowthrat
e/100
 2030 PRINT TAB(0,0);"Press ESCAPE to stop."
 2040 PRINT TAB(12,2);"weeks = "
 2050 LET rabbits=3000
 2060 LET foxes=20
 2070 PRINT TAB(12,30);"Fox population"
 2080 PRINT TAB(10,20);"Rabbit population"
 2100 REPEAT
 2200 LET babyrabbits=rabbits*rabbitgrowthrate
 2210 LET deadrabbits=0.001*foxes*rabbits
 2220 LET rabbits=rabbits+babyrabbits-deadrabbits
 2230 LET babyfoxes=foxes*foxgrowthrate
 2240 LET deadfoxes=5*foxes/rabbits
 2250 LET foxes=foxes+babyfoxes-deadfoxes
 2260 weeks=weeks+1
 2270 PRINT TAB(20,2);weeks
 2280 GCOL0,1:PLOT69,weeks,2*foxes+100
 2290 GCOL0,3:PLOT69,weeks,rabbits/20+400

The BBC microcomputer in science teaching

92

 2300 UNTIL weeks>1279 OR rabbits>25000
 2400 ENDPROC

As a physicist I find this much less satisfying than the same approach applied to physics

because I can justify some of the values entered into the equations of motion. I am not at all

sure about the constants entered into the fox and rabbits program. (I chose them to get the

right result!) However, I am sure that biologists will be able to do it properly once the

essential idea has been appreciated.

93

4 Microcomputer timing and control

'The question is,' said Humpty Dumpty, 'which

is to be Master that's all.'

(Lewis Carroll, Through the Looking Glass)

Interfacing a microcomputer

Most control applications use two-state devices. An electric light switch can be up or down.

An electromagnetic relay can be on or off. A valve can be open or closed. Digital electronic

systems are used to switch such devices on or off. Although quite complex, a microcomputer

is still only another digital system, so it is possible to use a microcomputer to control the

above devices. It can switch lamps, relays, motors and valves on or off.

 This is not a normal function of a microcomputer and it has not been designed specifically

to do this. Consequently the current needed to switch on these devices may be larger than

that provided by the microcomputer output. There has to be some interface between the

microcomputer and the device being switched, to boost the switching current to the correct

levels.

 A microcomputer can also be used to detect whether any particular two-state device is in

its on or its off state. Here, the switching voltages involved may be different for each device,

so some interface must be used to change the voltage levels of the device to the levels

acceptable to the microcomputer.

 In digital electronics we are only concerned with two-state devices, ones that can be

switched on or off. Generally, to switch a device on, we send a HIGH voltage to its input.

To turn it off, we send a LOW voltage. HIGH and LOW are obviously not the same for

different devices, here are a few examples:

Device On Off
light emitting diode 1.2V 0.5V
torch bulb 3.0V 1.5V
electromagnetic relay 5.0V 2.0V
silicon transistor 0.7V 0.5V
TTL integrated circuit 2.4V 0.4V

 To remove this uncertainty about what is 'HIGH' and what is 'LOW', engineers use TTL

logic levels. TTL stands for Transistor-Transistor-Logic; it is a particular standard used in

the electronics industry. A TTL HIGH voltage is between 2.4 and 5.5 V, which, as you can

see, will switch on all the above devices. A TTL LOW voltage is between 0.4 and 0 V,

which will switch all these devices off. A HIGH voltage is also called logic level 1 and a

LOW voltage is called logic level 0.

 Connections to the BBC microcomputer are made through its user port. This is

The BBC microcomputer in science teaching

94

described in detail later in this chapter, but to begin with we shall just use it without

explaining how it works. A logic board or a two-input board may be connected to this user

port and all investigations in this chapter will be done with these. The design of these boards

and the method of connecting them to the user port are described at the end of this chapter.

The power supply for these logic boards comes from the microcomputer itself.

 The two-input board (Figure 4.1) consists of two input sockets and a transistor driven

LED to indicate the logic state of the output. It can be used by the microcomputer to

Figure 4.1 The two-input board

Plate 20 LOGIC GATES

Microcomputer timing and control

95

simulate each of the standard logic gates. Once the board has been connected to the

microcomputer in the manner discussed in the Appendix, LOGIC GATES (1) should be

loaded and run. It works in the following way.

 The two-input board has two inputs labelled A and B. When the program is run it asks

which logic gate is to be simulated (the choice is AND, OR, NOT, NAND, NOR,

EXCLUSIVE-OR or EQUIVALENCE) (Plate 20). After the selection is made (by pressing

one of the keys 1 to 7) the screen displays a diagram of the board (Plate 21), indicates the

current logic states of the inputs and the output, displays the appropriate truth table and

highlights the particular line of this truth table which is currently being implemented.

 The input logic levels can be changed by connecting them to the 5 V terminals (red),

which makes them go HIGH, or they may be connected to the black 0 V terminals, which

makes them go LOW. Unconnected inputs float HIGH; the normal condition for TTL

devices. When the logic level of either input is changed, the display also changes

accordingly.

 This program has been found to give a good introduction to the principles of logic gates.

It also illustrates the way that a programmable device, like a microcomputer, can be used to

produce different Boolean functions under the control of a program. Program 1A is a

variation on the above called LOGIC TEST. This illustrates the capability of the

microcomputer to assess practical ability as well as just knowledge (admittedly in a

specialized area). This program uses the same two-input logic board, but this time it is the

program that selects the type of gate being implemented. The student has

Plate 21 Simulation of logic gates

The BBC microcomputer in science teaching

96

to send the inputs HIGH or LOW and look at the output logic level each time. From the truth

table is constructed and the student guesses which of ten possible gates is being produced.

After three guesses the student is informed of the correct answer and its truth table is

displayed. The student may verify this before proceeding with another gate.

Four-bit logic

The logic board (Figure 4.2) has four input terminals labelled A, B, C and D and four output

terminals labelled W, X, Y and Z. All terminals are connected to LED indicators to show

their logic state. When a terminal is HIGH, its LED is on, when a terminal is

Figure 4.2 The logic board

Figure 4.3 Switch inputs

Microcomputer timing and control

97

LOW, its LED is off. The LEDs connected to A, B, C and D indicate the state of the inputs.

These states are determined by the voltages at the input terminals, usually from some

external device like a switch. The LEDs connected to W, X, Y and Z show the output logic

levels. These are the levels chosen by the microcomputer. They do not depend upon the

devices connected to the output terminals.

Logic inputs

The easiest way to create HIGH and LOW logic inputs is with switches. When a switch is

to the left, its output is connected to the 0 V line (also called ground), so it will be LOW,

or at logic 0. When the switch is to the right, the output is connected to the 5 volt line through

the 1 kilohm resistor, so it will be HIGH, or at logic 1. Connect the outputs from the four-

switch unit to the logic board inputs as in Figure 4.3. Make sure that the 5 V and 0 V lines

of each board are connected too. When the switches are operated, the LEDs should go on

and off.

Logic gates
With integrated circuits different Boolean functions can be made by connecting NAND

gates together. Each function is made by combining the gates in a different way, as described

in Chapter 2 of Microelectronics. The advantage of a programmable system is that the same

circuit can be used to produce these different functions, under the control of the program.

This can be demonstrated with LOGIC GATES, but the more powerful version of this

program, called LOGIC TUTOR (2) enables several different gates to be simulated at the

same time. This program uses the logic board and makes each of the four

outputs into different Boolean functions of the inputs. For example, in Figure 4.4, output W

has been set up as the AND combination of inputs A and B. The program allows you to set

up any output as a particular logical combination of any inputs. The best way of explaining

it is to do this example.

Figure 4.4 Simulating an AND gate

The BBC microcomputer in science teaching

98

When the program is run, it asks which Boolean function is required, thus:

 BOOLEAN FUNCTIONS
 SELECT ONE OF THESE FUNCTIONS BY TYPING ITS NUMBER THEN
 PRESS <RETURN>

 1 AND
 2 OR
 3 NOT
 4 EXCLUSIVE-OR
 5 EQUIVALENCE
 6 NAND
 7 NOR

Select the AND function by pressing key 1 followed by the RETURN key. The program

will then ask which output you want to provide this function:

 WHICH OUTPUT ?
 ENTER ONE OF W, X, Y OR Z
 THEN PRESS <RETURN>

Select output W by pressing key W followed by the RETURN key. The program now asks

 HOW MANY INPUTS ?
 ENTER 1, 2, 3 OR 4 AND THEN PRESS

Select two inputs by pressing key 2 followed by RETURN. Finally the program asks

 WHICH INPUTS ?
 ENTER TWO OF A, B, C OR D
 THEN PRESS <RETURN>

Select inputs A and B, by typing A followed by RETURN and then B followed by

RETURN.

 The screen clears to display a symbol for the AND gate, indicating your chosen inputs

and outputs. At the same time the logic board is set up to behave in the same way. Output

W will become the AND combination of inputs A and B. The display will show the logic

state of the inputs and the outputs as a 1 or as a 0.

 Connect the logic board to the switches as in Figure 4.3 and then investigate this AND

combination by switching inputs A and B HIGH and LOW. Note what happens to the LEDs

associated with W and with A and B. First make both inputs LOW and check on the W

output. Then make input B HIGH and input A LOW. Then make input A HIGH and input

B LOW. Finally make both inputs HIGH. Note that the screen display also shows the logic

state of these inputs and outputs (although there is a short delay after they are changed,

because the program is in BASIC and is rather slow).

Microcomputer timing and control

99

It is possible to summarize all the information about the AND gate with its truth table:

Input A Input B Output
LOW LOW LOW
LOW HIGH LOW
HIGH LOW LOW
HIGH HIGH HIGH

The 'HIGH' and 'LOW' in this table are voltages. Note that the output from the AND gate is

only HIGH if both of its inputs are HIGH. If only one or neither inputs are HIGH, then the

output is LOW. The reason for calling this an AND gate is now clear. The output is HIGH

only if both input A AND input B are HIGH.

 This program allows all the standard gates to be investigated as before, but with the

advantage of being able to compare different gates. For example it is easy to show that the

EQUIVALENCE gate is the inverse of the EXCLUSIVE-OR gate by giving them the same

inputs and two adjacent outputs.

 For later reference, the truth tables that can be investigated with these two programs will

now be discussed. First, note that there are two other ways of writing truth tables, as follows:

A B Output A B Output
0 0 0 L L L
0 1 0 L H L
1 0 0 H L L
1 1 1 H H H

The 'H' and 'L' stand for HIGH and LOW voltages as before, and the '1' and '0' have the

same meaning: they are called logic 1 and logic 0 to avoid confusion with the integers 0 and

1.

The NOT gate

Select the NOT function by entering key 3 when the menu is displayed. Make W the output

for this function in the way described above. A NOT gate only has one input, so make this

input A, by entering A as the required input.

 A switch can be used to make this input HIGH or LOW and the LED can be used to see

if the output is HIGH or LOW. The NOT gate produces this truth table.

Input Output
LOW HIGH
HIGH LOW

You will notice that the output is always the exact opposite or inverse of the input, which

gives this function its other name: the INVERTER.

The NAND gate

Create the NAND function by selecting 6 on the menu. Set up W as the output and A and

B as the inputs, exactly as for the AND function above. Two switches are needed to

The BBC microcomputer in science teaching

100

provide the inputs to this NAND gate, called input A and input B. The LED indicators show

the logic level of these inputs and of the NAND gate output. Try different combinations of

inputs A and B and note the effect on the output each time.

Input A Input B Output
LOW LOW HIGH
LOW HIGH HIGH
HIGH LOW HIGH
HIGH HIGH LOW

The OR gate

The OR function can be investigated after being selected with key 2.

Input A Input B Output
LOW LOW LOW
LOW HIGH HIGH
HIGH LOW HIGH
HIGH HIGH HIGH

The NOR gate

Select and investigate the NOR function with key 7.

Input A Input B Output
LOW LOW HIGH
LOW HIGH LOW
HIGH LOW LOW
HIGH HIGH LOW

The EXCLUSIVE -OR gate

Select the EXCLUSIVE-OR gate by entering key 4 from the menu.

Input A Input B Output
LOW LOW LOW
LOW HIGH HIGH
HIGH LOW HIGH
HIGH HIGH LOW

The EQUIVALENCE gate

select the EQUIVALENCE gate with key S and continue as before.

Input A Input B Output
LOW LOW HIGH
LOW HIGH LOW
HIGH LOW LOW
HIGH HIGH HIGH

Microcomputer timing and control

101

Boolean algebra

The language of Boolean algebra is used to describe the functions produced by different

logic gates. In this algebra only three relationships are used: AND, OR and NOT. 'NOT'

refers to the INVERTER. If the input to an INVERTER is called A then its output is NOT

A. The words AND, OR and NOT have particular meanings not to be confused with their

normal English usage. Let us therefore digress for a moment to study the meaning of these

terms as used by BBC BASIC. This will help to explain how AND, OR and NOT may be

used for controlling and monitoring external equipment.

 From the point of view of the microprocessor, data is processed as eight-bit bytes. Each

byte has eight separate logic levels giving 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 or 256 possible

combinations of 1 s and Os. Every piece of information, whether instructions like add or

AND or numbers like 99, are sent to the microprocessor as different combinations of bytes.

We have already seen how eight bits can be used to represent numbers in the binary code or

different alphabetic and graphics characters in the ASCII code. Interpreted as a decimal,

each byte can represent any one of the 256 integers from 0 to 255.

 When using Boolean expressions BBC BASIC interprets these bytes in yet another

different way. A number in a BASIC Boolean expression is regarded as a twos

complement integer, with a value between -128 and 127, according to the following

table:

Binary Twos complement Decimal
0000 0000 0 0

0000 0001 1 1

0000 0010 2 2

0000 0011 3 3

0000 0100 4 4

é. é. é é

é. é. é é

0111 1100 124 124

0111 1101 125 125

0111 1110 126 126

0111 1111 127 127

1000 0000 -128 128

1000 0001 -127 129

1000 0010 -126 130

1000 0011 -125 131

1000 0100 -124 132

é. é. é é

é. é. é é

1111 1100 -4 252

1111 1101 -3 253

1111 1110 -2 254

1111 1111 -1 255

It can be seen that adding 1 to any of these representations increases it by 1. When 1 is

The BBC microcomputer in science teaching

102

added to -1 , the binary number becomes 100000000 as its decimal equivalent goes from -1

to 0, but the register can only hold eight bits, so this ninth bit is lost and the result is zero.

 The only exception for twos complement coding is when 127 is increased by 1 to become

-128. This representation is often used at machine code level to represent negative integers.

For example, in Chapter 2, to make a *-character move backwards across the screen, we

subtracted 1 from its current screen address. In the equivalent machine code program in

Chapter 8, we achieve the same end by adding 255.

 Just to complicate matters, BBC BASIC uses four bytes to store integers, so that it actually

interprets the binary number

 11111111 11111111 11111111 11111111

as -1. However, since we only deal with eight-bit input and output devices, I shall ignore

this and pretend that the table above is the valid one. It makes no difference to the discussion

at all.

BASIC and the logic board
The logic operations of BBC BASIC follow straightforward rules, which seem to be

nonsense until these rules are understood. The BASIC statement Z = A AND B, performs

the AND operation between each bit of the number A and the number B. The corresponding

bits of Z are set or cleared accordingly. If A is 6 and B is 5, then the AND combination of

the two binary numbers is 4, thus:

A is 0 0 0 0 0 1 1 0
B is 0 0 0 0 0 1 0 1
Z is 0 0 0 0 0 1 0 0

The AND truth table is applied to each corresponding pair of bits in A and B. There is a 1

in Z wherever there is a 1 in the same bit position of both A and B. Thus the BASIC

command PRINT 6 AND 5, gives the result 4.

 AND is a very useful expression for turning a logic board output off without altering other

outputs. The logic board outputs share the same output address. Output Z is connected to bit

7 of the output port and has the decimal value of 128. Similarly, output Y is 64, output X is

32 and output W is 16. The statement ?outputs = 240 switches all outputs on and the

statement ?outputs = 0 switches them all off. To switch one particular output off, we AND

all the other outputs with logic 1 and the chosen output with logic 0. For example, to turn

off output Z, use

 ?outputs = (?outputs AND 112).

112 in binary is 0111 0000, so if output Z is already on (l), it will go off (1 AND O). If Z is

already off, it will stay off (0 AND 0). Output X will be unaffected since it is ANDed with

l. If X is on, it stays on (1 AND l). If X is off, it stays off (0 AND l).

Microcomputer timing and control

103

The BASIC statement OR behaves in a similar way. A 1 is placed in the result for each 1

in either A OR B at that bit position:

A is 0 0 0 0 0 1 1 0
B is 0 0 0 0 0 1 0 1
Z is 0 0 0 0 0 1 1 1

Thus the BASIC command PRINT 6 OR 5, gives the result 7.

 OR is useful for turning a logic board output on, without altering the other outputs.

 ?outputs = (?outputs OR 128)

will turn output Z on, irrespective of whether it is already on or off, yet the other output bits

are being ORed with O, so they are unaffected.

 The NOT operation is the most difficult to understand, since it is here that negative values

occur. Decimal zero is actually 0000 0000 in binary, so NOT 0 is the bit-wise complement

of this 1111 1111. BASIC interprets this as -1. This also explains why the BBC

microcomputer gives such funny results when asked to do comparisons between numbers:

 PRINT (1>0) which is TRUE and gives the result -1
 PRINT (0>1) which is FALSE and gives the result 0
 PRINT (X=X) which is TRUE and gives the result -1
 Oddest of all is the following:
 PRINT 1 AND -1 which gives the value 1.

The Boolean constants TRUE and FALSE can be converted to single bits by using the AND

operation above. This is because true is 1111 11111111 1111, which it printed as -1. To

get TRUE = 1 it (or the result of any logical expression) should either be ANDed with 1 or

alternatively the ABSOLUTE value can be taken.

 PRINT gives the value 1
 PRINT (0<1) AND 1 gives the value 1

If A is 1 then NOT A will have the value -2.

A is 0 0 0 0 0 1 1 0
NOT A is 0 0 0 0 0 1 0 1

It can be seen that the twos complement code interprets this as -2, which is the result that is

printed.

 To overcome such problems when using BASIC with inputs and outputs, it is necessary

to ensure that all input variables are single bits to begin with. The BASIC operations AND,

OR and NOT can then be used as required. Then, before the final result is printed, it should

again be ANDed with 1, to remove all the other bits. An inspection of the listing for LOGIC

TUTOR will show how this is actually achieved.

 The BASIC statement EOR behaves in the same way as EXCLUSIVE-OR discussed

above; a 0 is placed in the result for each corresponding bit position where A and B are the

same. A 1 is placed in the result if the A and B bits are different.

The BBC microcomputer in science teaching

104

A is 0 0 0 0 0 1 1 0
B is 0 0 0 0 0 1 0 1
 same same same same same same diff. diff.
Result 0 0 0 0 0 0 1 1

Thus the BASIC command PRINT 6 EOR 5, gives the result 3.

 This operation is also useful for manipulating an output. EORing it with logic 1 will make

it change state, since I EOR 1 is 0 and 0 EOR 1 is 1. So the statement ?output = (?output

EOR 128) will turn output Z on if it is off and off if it is on. The four outputs of the logic

board could thus be toggled in this way by EORing each of them with their corresponding

bit value.

 Before the invention of the microprocessor, in order to make a new electronic system an

engineer would have to design a new circuit. It was most unlikely that new components

could just be added on to a previous circuit, so the whole system would have to be re-made

from the beginning. This is how digital systems were built in the 1960s and 70s, from

combinations of separate integrated circuits. They were all wired together in the correct way

to produce the desired function. Even if the system was sold in large numbers, each one had

still to be built up separately on a printed circuit board, so that the different gates could be

correctly wired together.

 The microprocessor changes this, because the same hardware can be made to do different

things merely by changing its program. The same microprocessor can thus be made to do

many different things, from shearing sheep to controlling a power station, making a teddy

bear speak or running a microcomputer or even space invaders. Because it is the same

microprocessor in each case, a very large number of them can be produced very cheaply.

 Program 3 (called LOGIC MAKER) shows this flexibility, allowing you to create your

own Boolean functions. In order to do this the required function must be entered as part of

the program. Begin by connecting the logic board to the BBC microcomputer user port and

then load LOGIC MAKER. This can be run, to produce the logic function A AND B, which

will appear at gate Z. On the screen the inputs and outputs of the logic board will be

displayed.

 To change the function, press key E, which will end the program, leaving lines 5000 to

5100 of the program displayed on the screen. You may now create any function of your

own, provided it conforms to the syntax rules of BASIC and the ways we have already

described for writing out Boolean functions.

 Change the function in line 5010 to any other function (and remember to press

<RETURN> to enter the new function). Then re-run the program and it will now execute

with your new function. For example,

 5010 Z = (NOT A OR B)
 or 5010 Z = NOT(NOT A AND NOT B)
 or 5010 Z = A EOR B

The variables should be A, B, C or D but you will not have to declare beforehand which you

have used. The final outputs should be W, X, Y or Z. It is possible to use other variables,

although you will not be able to find out what values they take. For example,

Microcomputer timing and control

105

5010 T = NOT A AND B
5020 S = NOT B AND A
5030 Z = T OR S

This example also shows that it is possible to put in more than one line for the function,

provided it does not have to work backwards. That is, you cannot put

5010 Z = NOT T
5020 T = NOT B OR A

because T does not have its correct value in line 5010 until after line 5020 has been executed.

This causes a 'no such variable' message to appear. A few more examples are given below,

but the fun in this program is to create your own functions and then see what you have

produced. Do this by stepping through the truth table with the switches and noting the

outputs in each case.

5010 Z = NOT (A OR B)
5010 Z = NOT (NOT A AND NOT B)
5010 Z = NOT (A AND B)
5010 Z = NOT (A EOR B)
5010 Z = (NOT A AND B) OR (A AND NOT B)
5010 Z = (A AND B) OR (NOT A AND NOT B)

The BBC microcomputer user port

The microcomputer communicates to humans in the outside world through its keyboard and

TV display. It communicates with electronic control systems through its user port. This

consists of eight lines through which digital signals can pass in either direction. These

signals are voltage levels on each of the eight lines, that are either HIGH or LOW. These

lines are connected to a VIA (versatile interface adapter), which is a special input/output

chip inside each BBC Model B microcomputer. The eight lines can be set up so that they

are all outputs, or so that they are all inputs or any combination of the two. The VIA is told

which lines are inputs and which are outputs through its data direction register (DDR).

This is an eight-bit register with each bit corresponding to one of the user port lines. If a bit

of the DDR is turned on (logic 1), then the corresponding line of the user port becomes an

output. If that bit is turned off, then the same corresponding line of the user port becomes

an input. The decimal values of each bit are as follows:

Line number Bit Decimal value
7 1000 0000 128
6 0100 0000 64
5 0010 0000 32
4 0001 0000 16
3 0000 1000 8
2 0000 0100 4
1 0000 0010 2
0 0000 0001 1

The BBC microcomputer in science teaching

106

The individual bits of the DDR are changed from BASIC by writing to its memory location

with the decimal equivalent of the bits. The addresses used are as follows:

DDR = 65122 (DATA DIRECTION REGISTER)
PRT = 65120 (USER PORT)

Figure 4.5 Configuring the VIA

?DDR=4 will turn bit 2 of the DDR on and all other bits off. So the user port will turn line

2 into an output, whereas the other seven lines become inputs. By adding these decimal

values together different combinations of input and output lines can be achieved (Figure

4.5). Thus ?DDR=240 (which is 128 + 64 + 32 + 16) will make the lines corresponding to

bits 7, 6, 5 and 4 into outputs and the lines corresponding to bits 3, 2, 1 and 0 into inputs.

Outputs

After being configured in the required way, the user port can then be used. Data can only

be sent out from a line if it has previously been configured for output. Since ?DDR = 255

will set up all eight lines for output, let us assume that this has been done. Now the user

port can be told which of its output lines are to be on (or HIGH) and which are to be off

(or LOW). A line goes HIGH if the corresponding bit of the user port (PRT) is a 1; the

line is LOW if the corresponding bit is a 0. Thus ?PRT = 1 will switch on line 0 and will

switch all other lines off. The decimal values of each line are as in the table above.

Combinations of lines may thus be made by adding these decimal values together, for

example,

?PRT=0 (in binary: 0000 0000) sends all lines LOW.
?PRT=53 (0011 1111) sends lines 0 to 5 HIGH and 6 and 7 LOW.
?PRT=127 (0111 1111) send lines 0 to 6 HIGH and line 7 LOW.
?PRT=255 (1111 1111) sends all lines HIGH

Microcomputer timing and control

107

Inputs

If lines have been configured for input (by executing ?DDR = O), then their voltage levels

can be read from the PRT address with

LET X=?PRT or X=?PRT

If any line to the user port is connected to a voltage between 2.4 and 5.5 volts, the user port

interprets this as a HIGH (or logic l) level. If the voltage applied to the line is between 0.4

and 0 volts, the interface interprets this as a LOW (or logic 0) level. This range, 0 to 5.5

volts represents the maximum and minimum voltages that can be applied to the user port.

Voltages outside this range can damage it, so care must be taken to keep input voltages

below 6 V and above 0 V. This implies that alternating voltages should not be input to the

user port without protective buffering circuits.

Sensing and controlling the environment

Increasingly in industry, the solution of problems in electronics is becoming one of adapting

a general purpose circuit to a specific application, rather than designing a special circuit each

time. Traditional control technology in schools has laid emphasis upon the second of these

approaches: the hardware solution. The user port of the microcomputer can be used to

demonstrate the more modern software approach. The first programs described below

demonstrate how the unit can be used to control the LEDs of the logic board. Note that in

each case, the electronic circuit remains the same, it is only the programs that are changed.

Switching outputs

This investigation enables you to switch the outputs on or off in any sequence. The first

example shows how any outputs can be switched on in any order. For this program it is

assumed that the top three LEDs on the right side of the logic board (Z, Y and X) represent

the red, amber and green traffic lights. The program shows how these lights can be

controlled by writing the numbers 128, 64 and 32 (and combinations of them) into the

correct address for the logic board. The data direction register in line 100 is used to set up

the lines of the user port (bits 4, 5, 6 and 7) as outputs.

 1 REM CONTROL EXAMPLE 1 - TRAFFIC LIGHTS
 10 DDR=65122:REM DATA DIRECTION REGISTER
 20 PRT=65120:REM USER PORT
100 ?DDR=240:REM SET UP INPUTS AND OUTPUTS
110 ?PRT=128:REM SWITCH ON RED
120 FOR T=1 TO 8000:NEXT T:REM LONG DELAY
130 ?PRT=128+64:REM SWITCH ON RED AND AMBER
140 FOR T=1 TO 1500:NEXT T:REM SHORT DELAY
150 ?PRT=32:REM SWITCH ON GREEN
160 FOR T=1 TO 8000:NEXT T:REM LONG DELAY
170 ?PRT=64:REM SWITCH ON AMBER
180 FOR T=1 TO 1500:NEXT T:REM SHORT DELAY
200 GOTO 110:REM REPEAT SEQUENCE

The BBC microcomputer in science teaching

108

Now try switching on the output LEDs in a different sequence with different delays. To

satisfy those critics of example 1, who say that they can do traffic lights just as well without

a microcomputer, example 2 is almost impossible to emulate with traditional hardware;

switching the LEDs on and off in random sequence. For this purpose a random number

between 0 and 255 is sent to the user port address. You may observe that this also switches

the bits corresponding to the input lines too, but that the input LEDs are not affected. A line

configured for input will not respond to outputs from the microcomputer.

 1 REM CONTROL EXAMPLE 2 - RANDOM LIGHTS
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120: REM USER PORT
100 ?DDR = 240:REM SETUP INPUTS AND OUTPUTS
110 R=RND(256-1)
120 ?PRT=R:REM SWITCH LIGHTS AT RANDOM
130 FORT=1 TO 500:NEXT T:REM SHORT DELAY
140 GOTO 110

The next program switches on the LEDs in a more orderly way, by adding sixteen to the

number written to the user port address each time. The LEDs thus count up in binary.

 1 REM CONTROL EXAMPLE 3 - BINARY COUNTER
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120: REM USER PORT
100 ?DDR = 240:REM SETUP INPUTS AND OUTPUTS
110 FOR R=0 TO 240 STEP 16
120 ?PRT=R
130 FOR T=1 TO 1000:NEXT T:REM SHORT DELAY
140 NEXT R
150 GOTO 110

Can you discover how to make the LEDs count down in binary instead?

A common chip used in microelectronics is the shift register, which is simulated by this

example. It is particularly useful for converting serial data, where the eight bits are sent

one after the other along a single pair of lines, into parallel data, where all eight bits are

sent simultaneously along a set of eight separate lines (or vice versa).

 1 REM CONTROL EXAMPLE 4 - SHIFT REGISTER
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120:REM USER PORT
100 ?DDR=24:REM SET UP INPUTS AND OUTPUTS
110 R%=4
120 R%=R%+R%
130 ?PRT=R%
140 FOR T=1 TO 1000:NEXT T:REM SHORT DELAY
150 IF R%<200 THEN 120
160 GOTO 110

Microcomputer timing and control

109

Pulse output

The simplest way of producing output pulses is by switching lines of the user port alternately

off and on, relying on delay loops to control the timing. In BASIC, the maximum rate at

which an output can be switched on and off is about 50 Hz. This is sufficient for a

metronome but not for much else. The program used is relatively simple as follows. It

produces pulses on bit 7 of the logic board (output Z), which may be connected to an

amplifier and loudspeaker if required. The sound could, more sensibly, be produced by the

BBC microcomputer's own SOUND statements. Here we are demonstrating the use of the

user port:

 1 REM CONTROL EXAMPLE 5 - METRONOME
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120:REM USER PORT
 50 CLS
100 INPUT "NUMBER OF BEATS PER MINUTE" N
110 LET limit = 6000/N
120 ?DDR = 128:REM BIT 7 AS OUTPUT
130 TIME = 0
140 ?PRT=128:REM BIT 7 HIGH
150 FOR T=1 TO 10:NEXT T
160 ?PRT=0:REM BIT 7 LOW
170 RET UNTIL TIME>limit
180 GOTO 130

 Using these principles you should now be able to control any system you wish. For

example, the logic board outputs could be connected via relays to a mobile crane to shift a

load. One output might be connected to switch a motor in the forward direction to lower an

electromagnet. Another output could switch the power to the motor in reverse to raise it

again. Another might drive the crane forwards and the fourth could drive it backwards. The

distances travelled could be controlled by the length of time that the motor is switched on.

 If such a system is tried out, you will discover one problem. A motor switched on for, say

ten seconds, in the forward direction might cause the crane to travel say fifty centimetres.

Ten seconds in the reverse direction produces a movement of say forty-five centimetres. So

each sequence results in the crane ending up in a different place. What is missing is

feedback. The microcomputer needs to know exactly where the crane has got to at any

instant. This is one reason for providing the microcomputer with inputs.

Using the inputs

The state of the user port is read from its address with the LET X = ?PRT statement. Only

bits 0 to 3 of the logic board can be inputs. The number read will, however, include the states

of the outputs too. It must be decoded to determine which particular inputs are HIGH and

which are LOW. If more than one line is HIGH, the value returned in X will be a

combination of the corresponding numbers above. Thus if the X value is 12, this means that

inputs C and D are HIGH and the others are LOW. Similarly if X = ?PRT yields the value

3, this means that inputs A and B are HIGH and the others are LOW.

The BBC microcomputer in science teaching

110

Individual inputs can be monitored with the AND statement.

 LET X = ?PRT AND 1

will look at input A only. If A is HIGH then X will become 1, otherwise it will be 0.

Similarly

 LET x = ?PRT AND 2 monitors input B,
 LET x = ?PRT AND 4 monitors input C
and

 LET x = ?PRT AND 8 monitors input D.

The inputs can be connected to different devices, such as photocells, trip switches, water

level indicators, temperature switches and the like. The outputs can be connected to lamp

indicators, heaters, water valves and pumps. It is thus possible to operate an automatic

washing machine with the logic board, given the necessary 'buffers' to obtain sufficient

power. For present purposes though, the different input devices can be simulated with

switches and the output devices represented by LEDs. The next example shows how the

state of each input can be echoed to the output LEDs. When this program is run, the input

and output LEDs will always show the same state, depending on the setting of the switches.

 1 REM CONTROL INPUT PORT INDICATOR
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120: REM USER PORT
 100 ?DDR=240:REM LAST FOUR LINES AS OUTPUTS, FIRST
 FOUR AS INPUTS
 110 X = (?PRT AND 15) * 16
 120 ?PRT=X
 130 GOTO 110

Burglar alarm

A traditional electronic circuit is the burglar alarm. This can now be made far more versatile.

The simple hard-wired version of this does not allow the owner to get out of the house

without setting off the alarm. This program introduces a delay, during which the alarm will

not operate. The owner has about ten seconds between switching on the system (i.e. starting

the program) and the system's being active. The presence of a burglar can be simulated with

a switch. The switch will have no effect for about ten seconds after the program is started.

 1 REM CONTROL EXAMPLE 7 - BURGLAR ALARM
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120:REM USER PORT
 100 ?DDR=240:REM LAST FOUR LINES AS OUTPUTS, FIRST
 FOUR AS INPUTS
 105 ?PRT=0:REM ALL LEDS OFF
 110 FOR T=1 TO 10000:NEXT T:REM DELAY

Microcomputer timing and control

111

120 N = ?PRT
130 IF N = ?PRT THEN 130:REM WAIT FOR BURGLAR
140 FOR I=1 TO 20
150 ?PRT=240:REM ALL ALARM LIGHTS ON
160 FOR T = 1 TO 200:NEXT T:REM DELAY
170 ?PRT=0:REM ALL LIGHTS OFF
180 FOR T=1 TO 200:NEXT T
190 NEXT I

Time measurement

The principle of measuring time intervals is as follows. The user port is read and stored in a

memory location called status. The current state of the user port is then monitored

continuously and compared with status. Normally it will be the same, but when it is different,

this is because an input has been activated. The microcomputer's internal clock is then

started and the new status of the user port is saved in status. When the user port again

changes its status, the current contents of the clock are noted. The time interval involved can

then be calculated and displayed. The BBC microcomputer has a centisecond timer, which

is available from BASIC with the variable called TIME.

 Time intervals exceeding a few tenths of a second are measured quite satisfactorily in this

way. This simple timer can replace the centisecond timers used in school laboratories in

most instances. The usual problems over 'make to start', 'break to stop', are avoided, since

the routine detects any change at the input. Accurate timing of short intervals must be

achieved by other means, since BASIC is too slow.

 1 REM CONTROL EXAMPLE 8 - A SIMPLE TIMER
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120:REM USER PORT
100 ?DDR = 240:REM LAST FOUR LINES AS OUTPUTS, FIRST
 FOUR AS INPUTS
110 LET status = ?PRT
120 IF status = ?PRT THEN 120
130 LET status = ?PRT:REM INPUT HAS CHANGED
140 TIME = 0:REM START CLOCK
150 IF status = ?PRT THEN 150
160 REM INPUT HAS CHANGED AGAIN
170 PRINT "ELAPSED TIME = ";TIME/100;" SECONDS"

Counting

The next example shows how the microcomputer can be used to count closures of a switch

connected to input A. It is possible to use hardware to prevent contact bounce, but in this

case we shall overcome such problems with a software solution. The program senses a

switch closure, waits for a while, and then checks to make sure that the switch is still closed.

If not, then no count is made. If the switch is still closed, the program records the count and

then waits until the switch is released again.

The BBC microcomputer in science teaching

112

 1 REM CONTROL EXAMPLE 9 - AN INPUT COUNTER
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120:REM USER PORT
 50 CLS
 60 PRINT TAB(5,5)"CURRENT COUNT = 0"
100 ?DDR=240:REM LAST FOUR LINES AS OUTPUTS, FIRST
 FOUR AS INPUTS
110 LET status = ?PRT:REM INITIALIZE SWITCH STATUS
120 LET count = 0: REM INITIALIZE COUNTER
130 IF status=?PRT THEN 130
140 REM INPUT HAS CHANGED
150 FOR T = 1 TO 100:NEXT T:REM DELAY TO DEBOUNCE
 SWITCH
160 IF status=?PRT THEN 130:REM CHANGE IS NOT VALID
170 LET count = count + 1:REM CHANGE IS GENUINE
180 PRINT TAB(5,5)"CURRENT COUNT = ";count
190 IF status<>?PRT THEN 190:REM WAIT FOR SWITCH TO BE
 RELEASED
200 GOTO 130

Interfacing the user port

So far, we have not considered how different external devices can be switched off and on.

Certainly, this cannot be done just by connecting the user port to the external device. The

output current from the user port is very small, just a few milliamps, so it cannot even drive

a lamp directly. It will drive the electronic units of the Nuffield Advanced Physics

'Electronics and reactive circuits', because these contain the necessary power amplification.

We shall now consider the methods of driving other devices also.

 User port interfaces are readily available. Some manufacturers make equipment which

connects directly into the user port and input and output lines are then accessed via sockets

on the front panel. Griffin and George Ltd have produced a digital interface unit, which has

been specifically designed for use in the school environment. It is fully isolated, so that even

if you inadvertently connect 250 V to the input terminals, the VIA should not be damaged.

Most of the programs given as examples in this book will run with the Griffin digital

interface directly. Other interfaces may need a few program changes, it just depends which

lines are configured as inputs and which as outputs.

 Another interface specially designed for use with the BBC microcomputer is the Unilab

interface. This has relay outputs, so it is capable of switching quite large currents on and off,

for example to small heaters and motors. More details of available interfaces for the BBC

microcomputer are given in the Appendix.

DIY int erfaces

To make your own interfacing equipment there are several ways of buffering the outputs of

the VIA for driving external devices. In Figure 4.6 each output buffer consists of a pair of

SN7404 INVERTERS, one of which drives the LED indicator The output from this is

sufficient to sink up to 16 mA, although it will source less than 1 mA.

Microcomputer timing and control

113

Figure 4.6 7404 buffers

Figure 4.7 Darlington driver

Figure 4.7 shows a Darlington driver, which is ideal for sinking the currents from LEDs,

relays, lamps and small motors. The integrated circuit version contains seven (RS 307-109)

or eight (RS 307-422) drivers and is thus an ideal buffer for the user port. The power supply

for some motors and relays may have to be more than the 5 V indicated but this Darlington

driver device will handle voltages up to 50 V, provided the power handling capacity of the

whole chip (l W) is not exceeded. Note that this device contains diodes, which protect it

when inductive loads (relays and motors) are being switched on and off.

 A suitable relay is the RS Components sub-miniature device (RS Components 348-526)

which can operate from the 5 V supply of the user port. A suitable amplifier circuit for large

currents can be made from a power transistor, itself driven by a smaller transistor in voltage

follower mode (Figure 4.8). This may be used with any output from the user port including

the CB2 output, which is described later. An 8 ohm speaker may be connected as the

amplifier load if sound output is required.

 Similar problems occur with inputs; different devices switch between different levels,

The BBC microcomputer in science teaching

114

Figure 4.8 Power amplifier

so there has to be some buffer between the user port and the external device to adjust its

inputs to TTL levels. Ideally such an input buffer would also protect the user port from

voltages outwith its allowable range, for example, negative voltages, which can easily

destroy the VIA.

 Input buffers are easily provided. The most useful are those that respond to either a

voltage change or to a change in resistance such as the LM324 op-amp circuit of Figure 4.9.

One of the problems with inputs is that the voltage might rise rather slowly. For example,

the input might be a sine wave voltage, whose frequency is being measured. This could put

a logic gate into its indeterminate state where it is neither HIGH nor LOW and (since it is

then in its amplifying region) this could result in unwanted oscillations. The op-amp circuit

allows for this by having a feedback resistor that forces the input either HIGH or LOW.

 This means that the external input voltage has to push a little harder to overcome this

feedback voltage and cause the op. amp. to switch over. The voltage at which it switches on

will therefore be slightly higher than the voltage at which it switches off. This effect is called

hysteresis. In some cases too much hysteresis is a disadvantage. For example when using a

photocell to make measurements of the speed and acceleration of trolleys, a card is fixed to

the trolley which then passes in front of the photocell. If the light level needed to switch the

photocell on is too different from that needed to switch it off, then the apparent length of the

card will be different from its actual length. This will cause serious errors in the

measurements. The larger the feedback resistor in the op-amp circuit, the less hysteresis

there is and the less serious is this error.

 An alternative transistor circuit is shown in Figure 4.10. The transistor drives an LED

indicator and is followed by a Schmidt trigger, part of an SN7414 integrated circuit. This is

an INVERTER, which also provides the necessary hysteresis for slowly changing inputs.

 With either of these circuits, if the input terminal is grounded through a resistance of less

than about 2000 ohms or if a voltage below about 2 V is applied to it, then the output

Microcomputer timing and control

115

Figure 4.9 Op-amp input buffer

Figure 4.10 Transistor input buffer

output goes LOW. If the input is left unconnected or if a voltage above about 2 V is

connected to it, then the line becomes HIGH. The state of the input is shown by the

associated LED indicator. The connection between the ground and the input can be a light

sensitive resistor, a photodiode, a thermistor, a temperature sensitive switch or a foot switch,

etc.

Switch inputs

One problem with simple switches like that of Figure 4.3 , is the contact bounce produced

when the switch is closed. This can create several pulses which cause problems in counting

circuits. Earlier we showed a way of debouncing the switch by adding a few lines of BASIC

to the program. The hardware solution to this problem is to use a two-way switch and a

bistable, made either from two NAND gates or from a J-K bistable (Figure 4.11). A

particularly useful device is the DM8833 line transceiver, which is used in the logic board.

In Figure 4.12 just one of these is shown connected to bit 7 of the user port. Each

The BBC microcomputer in science teaching

116

Figure 4.11 A debounced switch

Figure 4.12 Transceiver buffer

chip contains four of these with common disable and power supply lines. Each output can

sink or source up to ten milliamps, so it can drive LEDs directly. Either the input buffer or

the output driver can be disabled by taking their disable lines HIGH. In our use of this circuit

both the input buffers and the output drivers of chip 1 are permanently enabled by tying the

disable inputs to the 0 V line. The input buffers of chip 2 are not needed so they are disabled

by tying the disable input to the 5 V line. An alternative arrangement with the enable lines

connected to switches would allow all eight lines to be inputs or outputs as well as allowing

four of each. A point to point diagram for the logic board is given at the end of this chapter

(Figure 4.26).

Microcomputer timing and control

117

Isolation

Sometimes it is necessary to accept inputs from devices that run at voltages greater than 5

V. To protect the microcomputer and its user port it is a common practice to isolate the input

by using an optical communication link (RS Components 307-064). The high voltage device

is connected to an LED (through a suitable series resistor to limit the current). When the

device goes HIGH the LED comes on. Next to the LED (inside the same chip) is a

phototransistor, which can be used to provide correct TTL levels for the user port (Figure

4.13). When the LED comes on, it causes this phototransistor to conduct, so that a LOW

output is produced for the user port. Since there is no electrical connection between the LED

and the phototransistor, even several hundred volts applied to the input will not damage the

user port.

 The same device can be used to isolate the user port from devices connected to its output.

The user port will not drive the LED directly, so one of the output buffers mentioned above

should be used too. Isolation of this type should be used whenever large voltages are being

sensed or switched. For switching alternating voltages, particularly the mains voltage, an

optically coupled triac (RS Components 308-196) is more useful. This can be connected

directly to the device being switched provided this does not need too much current. For

larger currents the triac itself can be used to switch on a power SCR (silicon controlled

rectifier) (RS Components 308-001) (Figure 4.14).

Figure 4.13 Optical isolation

Figure 4.14 Optical triac

The BBC microcomputer in science teaching

118

Sensors

So far, we have only looked at photocells and thermistors as input sensing devices, but there

is much more that can be done. Mechanical switches include push button switches, float

switches for determining a liquid level, foot switches, tilt switches for determining if

something is being moved (useful for an anti-theft system), rotary and edge switches (for

choosing one of several options), pressure pads (for automatic door opening) and, of course,

keyboards. Electronic switches are even more numerous. The most useful are proximity

detectors that react to the presence of metals, non-metals, liquids and animals (human or

otherwise). An interesting device is the Hall effect switch which detects the nearness of a

magnet. The magnet could be fixed to a model train so that its presence could be determined

whenever it passed the switch mounted on the track. For temperature sensing the thermistor

needs some sort of buffering, but complete temperature switches are available for direct

connection to the user port.

 For school purposes the most useful input device is a photocell. This is a photodiode (RS

Components 304-346) or LDR (light dependent resistor) (RS Components 305-620),

which may be connected to the op-amp or transistor input buffers. When light falls upon the

photocell, its resistance is low, so the input is at logic O and the LED indicator will be off.

If the light is interrupted, the photocell resistance rises and the input goes to logic 1. The

LED indicator on the input should be used to check that this does happen. If not, then one

or more of the following may be true:

i) The light source is not powerful enough, move it closer or increase its intensity.

ii) The photocell is polarized the wrong way, swap over its connections to the input and

ground.

iii) The photocell is unsuitable for this application.

Note that the light dependent resistor (LDR) will do the job of a photocell quite well unless

it is required to respond quickly. LDRs should not be used for time intervals of less than a

few milliseconds. Faster switching is obtained with photodiodes connected to high speed

op-amps (RS Components 304-346, data sheet R/ 2135 Dec 81).

The 6522 versatile interface adapter

The BBC microcomputer user port is connected to a most remarkable device, the Rockwell

6522 versatile interface adapter or VIA for short. At the end of this chapter we will look

at a way of connecting another VIA to the I MHz bus of the BBC microcomputer. The

present description applies equally well to either VIA, but the emphasis is upon the one in

the user port. Those wishing to use the programs in this book for a VIA connected otherwise,

will need to rewrite them for the different addresses of the new VIA.

 The 6522 VIA contains sixteen eight-bit registers, each with an address: two input/output

ports (the A-port and the B-port), two data direction registers (DDRA and DDRB) to

control the flow of data in these I/O Ports, two sixteen-bit timers, timer 1 and

Microcomputer timing and control

119

timer 2 and the peripheral control register (PCR) and the auxiliary control register (ACR)

for selecting the VIA modes of operation.

 In the BBC microcomputer the A-port of the VIA is used for the printer interface, and the

B-port goes to the user port connector (together with + 5 V and 0 V lines). Connection to

the user port is best made with a ribbon connector cable and an RS Components SpeedBloc

PCB 20-way plug (Stock no. 467-970). The timers and the B-port control lines are all

accessible. The VIA is memory-mapped meaning that it can be read and written to just like

any other memory location. Its addresses in the BBC microcomputer are as follows:

Name Function Decimal Hexadecimal
BPRT B-port 65120 &FE60
APRT A-port (+ handshake) 65121 &FE61
DDRB Data direction reg B 65122 &FE62
DDRA Data direction reg A 65123 &FE63
TILLO Low-byte Timer 1- latch 65124 &FE64
TILHI High-byte Timer l - latch 65125 &FE65
TICLO Low-byte Timer l - count 65126 &FE66
TICHI High-byte Timer l - count 65127 &FE67
T2LO Low-byte Timer 2 - latch 65128 &FE68
T2Hl High-byte Timer2 - latch 65129 &FE69
SR Serial register 65130 &FE6A
ACR Auxiliary control reg 65131 &FE6B
PCR Peripheral control reg 65132 &FE6C
FLAG Interrupt flag reg 65133 &FE6D
IER Interrupt enable reg 65134 &FE6E
APRT A-port (no-handshake) 65135 &FE6F

Both the A-port and the B-port registers may be configured for input or for output. The

number written into the corresponding data direction register determines this (as described

earlier). However, the A-port is connected to output drivers (for use as a printer output) so

there is little point in configuring it as an input. If necessary, it may be used as an output,

with the advantage of already being buffered by an SN74LS244 device. This is capable of

sinking 8 mA and sourcing 0.4 mA, enough for transistors or Darlington drivers.

 To read the user port after it has been configured for input is simply a matter of loading

the contents of the correct address, exactly the equivalent of the 'X = ?PRT' used earlier.

Control lines

There are four control lines available, two for each port of the VIA, a CA1, CA2, CB1 and

a CB2 line. They are provided for a variety of functions, which are chosen by two Other

VIA registers, the peripheral control register (PCR) and the auxiliary control register (ACR).

On the BBC microcomputer user port only the CB1 and CB2 control lines are available.

One of their functions is like that of the linesman at a football match, to wave a flag to catch

the attention of the referee. Of course this could be done by simply

The BBC microcomputer in science teaching

120

having the microcomputer watch one of the user port lines until it changes. For example,

100 IF (?PRT AND 4)=0 THEN 100

will cause the microcomputer to wait until line 2 of the B-port goes HIGH. But even in

machine code it takes several microseconds for the microprocessor to loop round and read

the B-port again and a quickly changing input signal could come and go in the meantime

and so be missed.

This problem is solved by getting the VIA to set a particular bit in its flag register to catch

the attention of the microprocessor when it notices a change at its CA1 or CB1 input. There

are seven such bits (flags) in this flag register. Bit 1 is affected by changes to CA1 and bit 4

is affected by changes to CB1. Changes to the CA1 or CB1 logic levels can be produced by

an external device to tell the microcomputer that it is ready for something. A printer

connected to the BBC microcomputer printer port, has one of its output lines connected to

the CA1 input. When it changes this line from HIGH to LOW, the VIA interprets this as a

request for attention, so it flags the microprocessor accordingly. This is necessary because

the printer only prints about ten characters per second and the microcomputer is capable of

sending characters very much faster than this. The printer therefore tells the microcomputer

when it is ready for the next character by sending an appropriate signal along the CA1 line,

called the acknowledge input (ACK).

 A signal from an external device is often called a strobe and it may be a HIGH to LOW

i transition (negative strobe) or a LOW to HIGH transition (positive strobe). The PCR, at

the address 65132, has one bit for controlling CA1 and one bit for CB1. Either control line

can be used in two ways, chosen by the setting of its corresponding bit in the PCR. If this

bit is HIGH, the control line will set its flag whenever it receives a positive strobe. If the

PCR bit is LOW, the control line will set its flag for a negative strobe.

 ?65132=0 or ?&FE6C=0 will select HIGH to LOW transitions
 ?65132=16 or ?&FE6C=16 will select LOW to HIGH transitions

After being configured, the flag in the flag register (bit 4 for the CB1 flag, bit 1 for the CA1

flag) can be cleared by reading or writing the corresponding A-port or B-port. Thus or LET

X=?BPRT will clear the CB1 flag, and ?APRT=0 or LET X=?APRT will clear the CA1

flag.

These flags remain LOW until the CA1 or CB1 lines receive their correct transition, upon

which the corresponding flag will be raised. Like the football referee the microprocessor

does not immediately heed the flag but may wait for a more opportune moment.

Nevertheless, the flag remains up until some attention is paid to it, even when the strobe has

gone. This explains the advantage of this system over the simpler one of just watching the

user port until it changes.

 Consider one particular application of this idea, the classic problem of which contestant

in a quiz was the first to press his or her switch. It is no good just getting the microcomputer

to look occasionally at the individual switches, the time interval between two different

people pressing their switch might be too short to be discriminated. To solve this problem

we use the latching facility of the VIA to capture data into the user port as

Microcomputer timing and control

121

soon as it is received. This mode is selected by the auxiliary control register (ACR) at

address 65131. When bit 1 of this register is LOW, there is no latching of the input data to

the B-port, but when bit 1 is HIGH, the latching facility is enabled. When the B-port is

latched, any data on its lines is captured so that even if the original input signals are removed,

their logic levels will remain. The same is true for the A-port, except that it is bit 0 of the

ACR that has to be set HIGH. This is no use for the VIA in the BBC microcomputer, since

the A-port cannot be made into an input anyway.

 The latching of the data at the user port occurs when the corresponding CA1 or CB1 line

gets its expected HIGH-LOW or LOW-HIGH transition (as determined by the PCR). Figure

4.15 gives the circuit diagram for solving the quiz problem. The eight push button switches

are normally HIGH. They are connected to the lines of the user port and also to an eight-

input NAND gate (SN7430). The output from the NAND gate is thus LOW and is connected

to the CB1 line.

 10 REM INPUT DATA LATCHING
 20 BPRT = 65120:REM USER PORT
 30 DDRB = 65122:REM DATA DIRECTION REGISTER
 40 ACR = 65131 :REM AUXILIARY CONTROL REGISTER
 50 PCR = 65132:REM PERIPHERAL CONTROL REGISTER
 60 FLAG = 65133:REM FLAG REGISTER
 100 ?DDRB = 0:REM B-PORT IS INPUT
 110 ?ACR = 2:REM ACR SET TO ENABLE B-PORT LATCH
 120 ?PCR = 16:REM PCR SET TO LATCH ON LOW-HIGH
 TRANSITION
 130 IF(?FLAG AND 16)=0 THEN 130
 140 X = ?BPRT:REM READ B-PORT AND RESET LATCH

Now, whenever any of the switches is pressed, it goes momentarily LOW, so the output

from the NAND gate will go HIGH, thus activating the CB1 line. The state of all switches

will then be latched into the user port and held there indefinitely. The microcomputer can

read them at its own convenience, thus discovering which one was activated first (unless,

Figure 4.15 Input latching

The BBC microcomputer in science teaching

122

of course, there were simultaneous switch closures). On reading the user port, the flag is

again lowered and the CB1 latching facility is reset ready for the next time. Alternatively,

the flag can be deliberately lowered by writing its decimal value to the flag register. Another

application of this latching facility is the connection of a concept keyboard to a

microcomputer. This keyboard has pressure sensitive pads, the function of which can be

changed with suitable overlays. When pressed each keypad places a seven-bit byte of data

on its parallel port and signals this by sending a negative strobe to the CB1 line of the

microcomputer user port. The VIA has to be set up so that when the CB1 line goes LOW

(indicating a key press), the number on the data lines is latched into the user port. This can

then be read at leisure by the microcomputer, upon which the latch is automatically reset,

ready for the next key closure. If the CB1 line is pulled LOW, bit 4 of the flag register in

the VIA is set, so the program simply waits for this flag to go HIGH and then it reads the

contents of the user port.

Interrupts

In several instances so far we have been content to let the microcomputer sit around

watching the user port or the flag register waiting for something to happen. In the past,

computers cost so much that nobody could afford to waste computer time in this way and

the special technique of the interrupt was developed. This is similar to when I am reading

a book and the telephone rings. I immediately place a marker into the book and attend to the

call. When I have finished I return to the task I was doing when interrupted, using the

bookmark to find out which page I was on.

 The microprocessor has a similar facility. When it receives an interrupt signal, it finishes

its current instruction and services the interrupt. Afterwards it returns to its original task

from where it left off. An interrupt request can be sent to the microprocessor when a CA1

or CB1 line gets its correct strobe. There are also five other ways in which an interrupt can

be generated by the VIA; by the CA2 or CB2 control lines, time-outs by either of the timers

and shift-outs by the shift register, each controlled by a flag in the flag register. If any flag

goes up, an interrupt request could be sent to the microprocessor along its IRQ line. We do

not always want this to happen, so it is possible to prevent it. The interrupt facility is only

enabled if one of the bits in the interrupt enable register (IER) is HIGH, the bit

corresponding to the flag concerned.

Bit 6 5 4 3 2 1 0
Flag T1 T2 CB1 CB2 SR CA1 CA2
IER T1 T2 CB1 CB2 SR CA1 CA2

 In the BBC microcomputer the interrupt facility is used a great deal by the

microprocessor, for example, to deal with inputs from the keyboard, which occur at very

irregular intervals. It is not, therefore, possible in BASIC for the user to make use of it too,

nor is it actually necessary in machine code routines. The main reason for mentioning it is

so that you will be aware of what can happen during timing routines, etc. You may carefully

calculate that a timing loop should last one hundred microseconds only to find that it is some

five per cent longer than this. The reason is that the microprocessor is being interrupted by

a timer every hundredth of a second to update the

Microcomputer timing and control

123

clock in the microcomputer. There is a simple solution; to switch off the interrupt facility

completely before starting the machine code timing loop. This is done with the instruction

SEI (set the interrupt mask). The interrupt facility is restored with the instruction CLI

(clear the interrupt mask). These instructions occur quite often in succeeding programs.

 To prevent individual interrupts from occurring without disabling the whole facility, the

requisite bits of the IER can be cleared.

CA2 and CB2 control lines

The CA2 and CB2 lines can be used as inputs just like the CA1 and CB1 lines by configuring

the PCR and ACR correctly. They can therefore also be used for sending interrupt requests

to the microprocessor. They have many more functions than CA1 and CB1 and are more

versatile. Their particular advantage is that they can also be turned into output lines. They

are switched HIGH or LOW by setting the correct bits of the PCR. Bits l, 2 and 3 control

CA2 and if bits 2 and 3 are both set, this selects the direct output mode. Thereafter if bit 1

is set, CA2 will be HIGH and if bit I is cleared then CA2 will be LOW. CB2 is controlled

in the same way by bits 5, 6 and 7 of the PCR.

?PCR = 12:REM SET CA2 LOW
?PCR = 14:REM SET CA2 HIGH
?PCR = 192:REM SET CB2 LOW
?PCR = 224:REM SET CB2 HIGH

This facility effectively increases the number of available output lines, although those

already there are usually enough. The CA2 line is available as a strobe at the printer

connector.

The 'concept' keyboard

This soft keyboard can be used for inputting data without using the standard QWERTY

keyboard and all its attendant problems. As described in Chapter 1 a soft keyboard can have

its keys altered (or disabled) to suit each particular application. The concept keyboard

(available from Star Microsystems) is one particular board that is easily fitted to the BBC

microcomputer (Figure 4.16).

Figure 4.16 Connecting the concept keyboard

The BBC microcomputer in science teaching

124

Figure 4.17 'Concept' key arrangement

 The keyboard consists of a washable surface beneath which are 128 pressure sensitive

keys (Figure 4.17). When pressed, each key sends a number along seven parallel lines, which

can be connected to bits 0 to 6 of the user port. A separate 'strobe' line is connected to the

CB1 line and configured inside the connecting cable such that it goes LOW, when a key is

pressed. The data on the lines is then latched into the B-Port and the flag set in the flag

register. It is necessary to use the latching facility since, if no key is being pressed, the data

lines are open circuit and present a random number. Finally bit 7 is grounded for

convenience, the keys thus providing data numbers from 0 to 127. The keys are ASCII coded

but this is only for ease of reference.

 The procedure for reading the keyboard waits for the flag to go HIGH, whereupon the

data is read, thus resetting the flag ready for the next keypress.

 1000 DEF PROCreadconceptkeyboard
 1010 REPEAT
 1020 UNTIL
 1030 LET Q%=?BPRT
 1040 ENDPROC

Q% returns with the data for the key pressed since the last time PROCreadconceptkeyboard

was called. Initially the VIA must be configured as follows:

 1 REM CONCEPT KEYBOARD CONFIGURATION
 2 BPRT= 65120:REM USER PORT
 3 DDRB = 65122:REM DATA DIRECTION REGISTER
 4 ACR = 65131:REM AUXILIARY CONTROL REGISTER
 5 PCR = 65132:REM PERIPHERAL CONTROL REGISTER
 6 FLAG = 65133:REM FLAG REGISTER
 7 IER = 65134:REM INTERRUPT REGISTER

Microcomputer timing and control

125

10 ?DDRB = 0:REM B-PORT IS INPUT
11 ?ACR = 2:REM ACR SET TO ENABLE B-PORT LATCH
12 ?PCR = O:REM PCR SET TO LATCH ON HIGH-LOW TRANSITION
13 ?FLAG = 24:REM RESET CB1 and CB2 FLAGS
14 ?IER = 24:REM DISABLE INTERRUPTS FROM CB1 and CB2
15 LET Q% = BPRT:REM CLEAR FLAG INITIALLY

 The way that the keyboard routine is used within the body of the program depends upon

the requirements of the program. For example, suppose the program was training a child to

recognize colours. The board could be divided into four parts, each differently coloured.

The program would proceed as follows:

 560 PROCreadconceptkeyboard
 570 LET N = 1 + AND 8) + AND 64)
 580 ON N GOTO w, x, Y, z

N will end up with the values 1, 2, 3 or 4 depending on which quadrant of the board is being

pressed. Alternatively, for finer discrimination, adjacent keys could be distinguished by

checking on bit 0 of the value in Individual keys may, of course, simply be checked by

number directly.

Handshaking

One useful purpose of the Cl and C2 lines is for handshaking. When data is sent from one

machine to another, the sender needs to tell the receiver when the data is available. Similarly

the receiver needs to signal the sender to indicate that the data has been received. As an

example of this procedure a technique for transferring data from one BBC microcomputer

to another is now described. The two machines are connected as shown in Figure 4.18.

 After configuring the registers the receiver toggles its CB2 line to send a negative pulse

to the CB1 line of the sender. The CB1 line sets its flag, telling the sender that the receiver

is now ready for data (RFD). The sender responds by collecting the byte of data to be sent

and writing it into the user port. The sender then signals data available (DAV) by toggling

its CB2 line, sending a negative strobe to the CB1 line of the receiver. Upon receiving this

strobe (or more accurately the negative transition of the strobe) the CB1 line sets its flag and

at the same time latches the data into the user port. The receiver notes that the flag is

Figure 4.18 Parallel data transfer

The BBC microcomputer in science teaching

126

raised and reads the data, thus resetting the flag and re-enabling the latch for the next byte.

 In this program the byte to be sent is merely input to the sender from the keyboard and is

displayed on the receiver's screen. This allows the user to type on one machine and have the

characters appear on the other at the same time. The end of a line of text is signalled by

sending a carriage return (character 13) and this is sensed in line 230 of the sender's program.

It is, however, necessary to precede this with a line feed (character 10), which is the purpose

of the subroutine at line 500. These ideas can be extended to any communication between

the two microcomputers. Clearly one very important application is the transfer of program

and data files from one microcomputer to another. I used a routine like this to transfer

programs from a PET to the BBC microcomputer. Unfortunately, the process was not

particularly valuable in most instances. For example, MASTERMIND prints everything in

upper case letters (as in the original PET program) so it would have been better to have

rewritten the program from the beginning on the BBC microcomputer.

 1 REM PARALLEL TRANSFER-SENDER ROUTINE
 10 BPRT = &FE60
 20 DDRB = &FE62
 30 ACR = &FE6B
 40 PCR = &FE6C
 50 FLAG = &FE6D
 60 IER = &FE6E
 70
100 REM INITIALIZE REGISTERS
110 ?IER = 16:REM DISABLE CB1 INTERRUPT
120 ?DDRB=255:REM USER PORT AS OUTPUT
130 ?ACR = 0:REM DISABLE LATCH
140 ?PCR=236:REM SET CB2 HIGH
150 X = ?BPRT:REM RESET CB1 FLAG
160
200 REM SEND BYTE
210 IF(?FLAG AND 16) = 0 THEN 210:REM WAIT FOR RFD
220 A$=GET$:REM GET BYTE TO SEND
230 IFA$=CHR$(13) THEN 500:REM SEND LINE FEED
240 ?BPRT=ASC(A$):REM SEND VALUE OF CHARACTER
250 ?PCR = 192:REM SET LOW
260 ?PCR = 224:REM HIGH AGAIN
270 GOTO 200:REM DO NEXT CHARACTER
500 REM SEND CARRIAGE RETURN
510 ?BPRT = 13:REM SEND Ascii VALUE OF CARRIAGE RETURN
520 ?PCR = 192:REM SET CB2 LOW
530 ?PCR = 224:REM SET CB2 HIGH AGAIN

Microcomputer timing and control

127

540 IF(?FLAG AND 16) = 0 THEN 540:REM WAIT FOR RFD
550 ?BPRT = 10:REM NOW SEND LINE FEED
560 GOTO 250

1 REM PARALLEL TRANSFER-RECEIVER ROUTINE
10 BPRT = &FE60
20 DDRB = &FE62
30 ACR = &FE6B
40 PCR = &FE6C
50 FLAG = &FE6D
60 IER = &FE6E
70
100 REM INITIALIZE REGISTERS
110 ?IER = 16:REM DISABLE CBI INTERRUPT
120 ?DDRB = 0:REM USER PORT AS INPUT
130 ?ACR = 2:REM ENABLE LATCHING FACILITY
140 ?PCR = 224:REM SET CB2 HIGH, HIGH-LOW TRANSITION ON CB1
200 REM RECEIVE BYTE
210 ?PCR = 192:REM SET CB2 LOW FOR 'READY TO RECEIVE'
220 IF (?FLAG AND 16) = 0 THEN 220:REM WAIT FOR FLAG
230 X = ?BPRT:REM GET BYTE AND RESET LATCH AND FLAG
240 PRINT CHR$(X);:REM DISPLAY RECEIVED CHARACTER
250 ?PCR = 224:REM SET CB2 HIGH AGAIN
260 GOTO 200:REM GET NEXT BYTE

Timer 1

The VIA possesses two sixteen-bit counter/timers with a variety of modes. These provide a

great facility for measuring time intervals and for counting pulses. Note that, although the

clock rate of the BBC microcomputer is 2 MHz, the VIA timers run at 1 MHz. The different

modes of the timers are selected by sending a particular bit-pattern to the ACR.

Bit 7 6 5 4 3 2 1 0
 Timer 1 Timer 2 Shift register B-latch A-latch

Auxiliary control register functions

Bits 6 and 7 control timer 1 and bit 5 controls timer 2, but the modes available for each timer

are very different. Not all modes are equally useful either, so only a few will be

described.

 As a sixteen-bit counter each is capable of counting to 65 536, or rather counting down

from 65 535 to zero, which is the way they work. Upon reaching zero a time-out signal is

sent to the flag register (FLAG) in the VIA. Time-outs on timer 1 affect bit 6 of FLAG and

time-outs on timer 2 affect bit 5. These bits can be inspected and if one is set, then a time-

out has occurred. Alternatively, the interrupt enable bits can be set, thus generating an

interrupt request upon time-out.

The BBC microcomputer in science teaching

128

 There are two parts to each timer, the counter itself and its input latches. These are

necessary because in some modes the counters automatically restart upon reaching zero.

Thus timer 1 can be set to count down from, say, 1000 to zero and on reaching zero the

number 1000 is reloaded into the timer from the latches and the countdown repeats. This

produces a series of time-outs, at intervals of about one millisecond.

 In addition to the time-outs a digital signal can be made to appear at bit 7 of the B-port

(irrespective of the setting of DDRB). The logic level of this line (PB7) changes from HIGH

to LOW or from LOW to HIGH, whenever a time-out occurs from timer 1. The selection of

this mode is made through bit 7 of the ACR. If ACR7 is set, then the digital signals will be

output through PB7. If ACR7 is cleared, then no signals appear at PB7.

 ACR bit 6 controls whether timer 1 generates a single time-out signal or continuous

signals as follows:

i) ACR6 LOW: the one shot mode

After timer 1 has been loaded with some number, it is decremented at the I MHz clock-pulse

rate. When it reaches zero, the time-out occurs and a signal is sent to bit 6 of the flag register

to say so. If ACR7 is also HIGH, then the logic level of PB7 is changed. PB7 will go LOW

as soon as the high byte is loaded into timer 1. Countdown begins at the same instant and,

on the time-out signal, PB7 will go HIGH again.

ii) ACR6 HIGH: free running mode

After timer 1 has been loaded, it is decremented at the clock pulse rate until it reaches zero,

exactly as before. A time-out signal is sent to bit 6 of the flag register also as before. But the

number originally loaded into the latch of timer 1 is then automatically reloaded and the

countdown begins again. If, at the same time, ACR7 is HIGH, then the logic level of PB7

changes, as described above. In this mode the PB7 line goes alternately HIGH and LOW

with every time-out signal. The countdown of timer 1 begins as soon as its latch is loaded

with its starting number. Since it is a sixteen-bit register, it must be loaded in two halves.

The low byte is written into T1LLO (address = 65124) and the high byte into T1LHI (address

= 65125). The countdown begins when the high byte is loaded, so the low byte must be

loaded first. For a particular time interval (t in microseconds) the required numbers are

loaded into T1LHI and T1LLO by

?T1LLO = (t-2) MOD 256
?T1LHI = (t-2) DIV 256

Applications of timer 1

i) Generate output pulses on PB7

In free running mode the PB7 logic level changes once every time-out. Thus, if it is desired

to make PB7 generate a frequency of I kHz, time-outs must occur every 500 microseconds.

Timer 1 thus needs to be loaded with 500. However, this number must be reduced by 1.75

to allow for the reloading time etc. of the system. The pulses cannot therefore be quite as

accurate a one might hope. This gives 498 to be loaded into the T1 latches, a low byte of

242 into T1LLO and 1 into T1LHI.

 Note that it is not necessary to set up PB7 as an output beforehand ð this present

Microcomputer timing and control

129

function overrides its configuration by DDRB. The pulses can be stopped by loading 0 into

the ACR (?ACR = ()). Since this is a sixteen-bit timer, pulse frequencies between 250 kHz

and a few hertz can be produced with this method. This includes the audio range and so is a

possible method of producing audio-frequency square wave pulses. This idea is also used in

PULSE TIMER (11) to determine the length of a square pulse (Plate 23).

ii) Generate a single (negative) pulse on PB7

To generate a single time-out requires ACR6 to be LOW. Timer 1 should be loaded with

the length of the time interval required (less 1.5 machine cycles), so for an output pulse of

1 millisecond duration, timer 1 should be loaded with 998, a high byte of 3 and a low byte

of 230. This idea is used in FREQUENCY METER (12) to open a gate for a specified length

of time (Plate 22).

100 SET ACR7 HIGH and LOW
110 LOAD LOW BYTE
120 LOAD HIGH BYTE AND BEGIN PULSE

iii) Provide an internal clock

The BBC microcomputer clock is only a centisecond timer. Timer 1 may be used to provide

accurate time-outs at shorter intervals. Rather than use the interrupt system of the

microcomputer, it is usually quite easy to inspect bit 6 of the flag register to see if it is set.

If so a time-out has occurred and T1LHI can be reloaded to start a new countdown.

Plate 22 FREQUENCY METER instructions

The BBC microcomputer in science teaching

130

Plate 23 Timing of short intervals

Plate 24 Centisecond timer ï STOPCLOCK

Microcomputer timing and control

131

 This use of timer 1 is illustrated by STOPCLOCK(5)(Plate 24). This is a centisecond

clock that is started by an event (a change in logic level) at either bit 0 or bit 1 of the User

port. The current time is displayed in minutes, seconds and centiseconds in large digits on

the screen, using the machine code subroutine developed in Chapter 7. Another event stops

the clock, which then displays the elapsed time. The whole program illustrates the freedom

given by using the timer instead of microprocessor delay loops to do the timing. The latter

can then get on with other tasks, like sorting out where the digits have to go and displaying

them.

 When the countdown in timer 1 reaches zero, it sets a flag in the flag register, reloads

itself from the latch and carries on counting down. Thus if the latch contains the number

10000, timer I gives out a steady stream of one centisecond signals. STOPCLOCK actually

reads the centisecond clock provided by the operating system at address 662 (OS 1.0 and

above) or 594 (OS 0.1). This works in the way just described except that it uses the 'other'

VIA.

Timer 2

Timer 2 modes are controlled by bit 5 of the ACR and thus it only has two modes. When

ACR5 is LOW, timer 2 acts rather like timer 1 in its one shot mode. Since no output pulses

are produced, this mode is of no special interest to us. The other mode is a pulse counting

mode and is more valuable. It is selected when ACR5 is HIGH. Timer 2 is then loaded with

the number to be counted. Every time that line 6 of the B-port (PB6) goes LOW, timer 2 is

decremented. When it reaches zero, it has counted the required number of pulses and a time-

out occurs. Bit 5 of the flag register is set HIGH to show this time-out.

Applications of timer 2

i) A clock

By getting timer 1 to generate continuous output pulses on PB7 at, say, 10 millisecond

intervals and subsequently counting these pulses by timer 2, then quite long time intervals

can be produced. To do this PB6 and PB7 should be connected together.

 Then, after selecting the pulse counting mode, timer 2 is loaded with the required number

of centiseconds to be counted. Upon time-out timer 2 sets bit 5 of the flag register. A BASIC

program simply sets up the ACR and the timers and then waits until this flag has been set,

thus indicating that the required time has elapsed. By altering the numbers loaded into the

timers initially, time intervals as low as one millisecond may be produced, which is about

as low as BASIC can handle. Timer I set to produce tenth-second pulses and timer 2 set to

count 60 000 of these, gives a 100 minute interval.

 The following example generates an interval of one second. It measures this time interval

by counting a thousand one millisecond pulses. PB7 and PB6 should be connected together

for this application.

 100 ?ACR=224:REM SET ACR5,6 AND 7 HIGH
 110 ?T2LO=232:REM SET TIMER 2 LOW
 120 ?T2HI=3:REM SET TIMER 2 HIGH
 130 ?T1LLO=230:REM LOAD TIMER 1 LOW
 140 ?T1LHI=1:REM START TIMER AND RESET FLAG

The BBC microcomputer in science teaching

132

150 X = INSPECT FLAG REGISTER
160 X = X - 192
170 IFX<32 THEN 150
180 RETURN

Since we are using timer I too, bits 6 and 7 of the flag register will also be set, hence line

160.

ii) A frequency meter

Timer 1 is set to produce a single negative pulse on PB7. This is inverted and opens a gate

to allow pulses from an alternating voltage of unknown frequency to reach PB6 to be

counted by timer 2. Upon observing time-out on timer 1, the microprocessor reads timer 2

to see how many pulses had been received (Figure 4.19)(Plate 22). This number is then

converted into a frequency and displayed.

 100 REM FAST FREQUENCY METER
 320 ?IER = 127:REM DISABLE INTERRUPTS
 330 ?ACR=160:REM PB6 TO COUNT PULSES, PB7 TO PROVIDE ONE-
SHOT PULSE
 340 ?PCR=0:REM TURN OFF LATCHES AND SERIAL REGISTER
 350 ?T2LO=255:?T2HI=255:REM INITIALIZE COUNTER
 360 ?DDRB=128:REM BIT 7 AS OUTPUT (THIS INSTRUCTION
UNNECESSARY)
 380 ?FLAG=127:REM CLEAR FLAGS
 390
 500 GOSUB 1000:REM OPEN GATE FOR 50 MILLISECONDS
 510 freq=(256 * (255 - ?T2HI) + (255 ?T2LO)) * 20
 530 PRINT freq
 540
 1000 REM OPEN GATE FOR 50 MILLISECONDS
 1010 ?T1LLO=79
 1020 ?T1LHI=195:REM OPEN GATE AND RESET LATCH
 1030 IF(?FLAG AND 64)=0 THEN 1030:REM WAIT FOR TIMEOUT ON
TIMER 1
 1040 RETURN

A frequency below 2 kHz will provide less than a hundred counts in timer 2 and is thus

inaccurately measured. For these low frequencies the internal clock is used just to provide

a time interval of one second, during which time the gate is opened to allow the input

frequency to be measured.

 800 REM LOW FREQUENCY OPTION
 810 ?ACR=32:DISABLE OUTPUTS ON PB7
 820 ?DDRB=128:REM PB7 AS OUTPUT
 830 ?PRT = 128:REM SET PB7 HIGH
 840 ?T2LO=255:?T2HI=255:REM INITIALIZE COUNTER

Microcomputer timing and control

133

Figure 4.19 Gating input pulses to PB6

 850 ?PRT=0:REM OPEN GATE
 860 TIME=0:REM START CLOCK
 870 REPEAT
 870 UNTIL TIME=100
 890 ?PRT=128:REM CLOSE GATE
 900 freq=256*(255 - ?T2HI) + (255 - ?T2LO)
 910 PRINT freq

The following line can be added to the above program, so that it automatically runs this low

frequency section if the frequency is too low for the first method.

 520 IF freq<2000 THEN 800

The full listing of this program is given in FREQUENCY METER (12).

iii) A pulse timer

The same technique can be used in reverse to measure the length of a pulse. In this case the

unknown pulse is used to open the gate to allow through millisecond pulses from PB7 to be

counted via PB6 (Plate 23).

 One difficulty about the automatic nature of this program is to determine when the pulse

has finished. For this reason it is also connected to PB1, which can then be monitored (Figure

4.20). Timer 1 should be loaded with 500-2 to provide one millisecond pulses through PB7

(the number is reduced by two to allow for the reloading time described above).

Figure 4.20 Pulse measuring circuit

The BBC microcomputer in science teaching

134

 100 REM PULSE TIMER
 110 ?IER=127:REM DISABLE INTERRUPTS
 120 ?ACR=224:REM PB6 TO COUNT,
 PB7 TO PROVIDE CONTINUOUS PULSES
 130 ?PCR=0:REM TURN OFF LATCHES AND SERIAL REGISTER
 140 ?T2LO=255:?T2HI=255:REM INITIALIZE COUNTER
 150 ?FLAG=127:REM CLEAR FLAGS
 155 ?DDRB=128:REM BIT 0 AS INPUT
 160 ?T1LLO=242:REM LOAD TIMER 1 WITH 500
 170 ?T1LHI=1:REM AND START CLOCK AND CLEAR FLAG
 180 IF(?PRT AND 1)=0 THEN 180:REM PULSE HAS NOT
 YET STARTED
 190 IF(?PRT AND 1) THEN 190:REM PULSE HAS NOT YET FINISHED
 200 time = 256 * (255 ð ?T2HI) + (255 ð ?T2LO)
 210 PRINT time;" milliseconds"

The full listing is given in PULSE TIMER (11).

The serial register

This register, SR, (at address 65130) outputs its contents to the CB2 line, one bit at a time.

There are eight modes for this, determined by bits 2, 3 and 4 of the ACR. If ACR4 is cleared

then the bits are shifted into the SR and if ACR4 is set they are shifted out. The advantage

of the system is that, once initiated, the bits are output automatically, thus freeing the

microprocessor for other tasks.

 The main use of the SR is for serial data transfer. Parallel transfer requires all eight bits

to be sent at once along eight separate lines but only one is needed for serial transfer (in both

cases another line for ground return and two more for control signals are also needed). Thus

it is possible to send data from one computer to another, with only four lines instead of the

eleven needed for parallel data transfer (Figure 4.21). To illustrate the principles the

following BASIC program transfers bytes from one BBC microcomputer to another.

 The contents of the serial register can be shifted out in four different ways:

1 Mode 100 ð free running, which is discussed later.

2 Mode 101 ð under the control of timer 2. This is the mode we shall actually use for data

 transfer. The contents of the shift register are shifted out bit by bit on the CB2

Figure 4.21 Serial data transfer

Microcomputer timing and control

135

 line starting with the most significant bit. At the same time the bit is shifted back into

bit O of the SR. Thus after eight shifts, the byte in SR has been rotated completely. A

new shift-out occurs when timer 2 reaches time-out, which depends upon the value

loaded into T2LO initially. Note that T2HI is not used, so the timer is only eight bits

wide, giving a maximum interval between shifts of 255 microseconds. The process is

initiated by writing the byte to be sent into the serial register. After eight shifts the

corresponding flag (bit 2) in the flag register is set. This can be used to give an interrupt,

or alternatively as in this application, can simply be inspected until it goes HIGH. This

can be the signal for the microcomputer to get the next byte to be shifted out. The flag

is reset at the same time as the next byte is loaded into SR to begin the next byte transfer.

 Time-outs on T2 cause the contents of the T2 latch to be reloaded into the timer

itself ready for the next bit shift. At the same time a pulse is output through the CB1

control line for strobing the receiver. The CB1 line goes LOW when the next bit has

stabilized at the CB2 output. Note that this is the only condition for which CB1 is an

output.

3 Mode 110 ð under the control of the system clock. This is similar to the method

 above, except that the shift-out rate is controlled by the system clock.

4 Mode 111 ð under the control of external clock pulses. This time it is the external

 receiver that generates the clock pulses and sends these to the VIA through the CB1

 control line.

There are similar ways for shifting the data into the SR in the receiving microcomputer

(modes 001 to 011). In this application it is mode 011 that is used, which shifts the bits in

from the CB2 line under the control of external clock pulses along the CBI line. These are

the clock pulses generated by mode 101 above. Thus the CBI lines of the two machines are

connected together to communicate the shift pulses, as are the CB2 lines, which are used to

carry the data itself (Figure 4.21).

 There has also to be some signal from the receiver to the sender to initiate the process

each time. The line used is bit O of the user port in both cases. The receiver holds this line

HIGH until it is ready to receive data and then it sends it LOW. The sender waits for its line

to go LOW before loading its SR and thus starting to send the byte. In use, this allows

characters to be typed in on one keyboard to appear on the screen of the other. It terminates

when the character @ is typed in. It is necessary to generate a line feed whenever a carriage

return is pressed and this is done by the subroutine at line 500.

 1 REM SERIAL TRANSFER-SENDER ROUTINE
 10 BPRT = &FE60
 20 DDRB = &FE62
 30 T2LO = &FE68
 40 SR = &FE6A
 50 ACR = &FE6B
 60 PCR = &FE6C
 70 FLAG = &FE6D
 80 IER = &FE6E

The BBC microcomputer in science teaching

136

 90
100 REM INITIALIZE VIA
110 ?DDRB=0:REM BIT 0 IS INPUT
120 ?IER=0:REM DISABLE SHIFT INTERRUPT
130 ?ACR=20:REM ACR IN SHIFT-OUT MODE
140 ?PCR=236:REM CB2 HIGH INITIALLY
150 ?T2LO=100:REM SHIFT OUT AT ONE BIT PER 100
MICROSECONDS
160
200 REM SEND BYTE
210 A$=GET$
220 IFA$=CHR$(13) THEN GOSUB 500
230 IF(?BPRT AND 1) THEN 230:REM WAIT FOR SIGNAL FROM
RECEIVER
240 ?SR=ASC(A$):REM SEND BYTE
250 IF(?FLAG AND 4)=0 THEN 250:REM WAIT FOR SHIFT-DONE FLAG
260 GOTO 200:REM GET NEXT BYTE READY
270
500 REM LINE FEED SUBROUTINE
510 IF(?BPRT AND 1) THEN 510:REM WAIT FOR SIGNAL FROM
RECEIVER
520 ?SR=10:REM SEND LINE FEED
530 IF(?FLAG AND 4)=0 THEN 530:REM WAIT FOR SHIFT-DONE FLAG
540 RETURN

 1 REM SERIAL TRANSFER-RECEIVER ROUTINE
 10 BPRT=&FE60
 20 DDRB=&FE62
 30 SR=&FE6A
 40 ACR=&FE6B
 50 FLAG=&FE6D
 60 IER=&FE6E
 70
100 REM INITIALIZE VIA
110 ?IER=0:REM DISABLE INTERRUPTS
120 ?DDRB=1: REM BITO IS OUTPUT
130 ?ACR=12:REM SHIFT IN MODE
140 ?BPRT=1:REM NOT READY FOR DATA
156 X=?SR:REM INITIALIZE FLAGS, ETC
160
200 REM GET BYTE
210 ?BPRT=0:REM READY FOR DATA

Microcomputer timing and control

137

220 IF (?FLAG AND 4)=0 THEN 220:REM WAIT FOR SHIFT-DONE FLAG
230 ?BPRT=1:REM NOT READY FOR DATA
240 X=?SR:REM COLLECT BYTE
250 IF X=64 THEN STOP:REM @ CHARACTER IS END-OF-DATA
260 PRINT CHR$(X);
270 GOTO 200:REM GET READY FOR NEXT BYTE

Continuous pulse output

This is mode 100 mentioned above. It is very like mode 101 and utilizes T2LO in exactly

the same way. The only difference is that once all eight bits have been output from SR along

the CB2 line, the process is immediately restarted, so that the contents of SR are repeatedly

output. The data in the serial register can thus be made to produce pulses of a particular

shape continuously output via CB2 (Figure 4.22). To select this free running output requires

ACR bits 4, 3 and 2 to be set to 1 , O and O respectively and T2LLO should be loaded with

the required time interval between the shift-outs of the individual bits. Suppose we require

a frequency of I kHz for the selected pulse shape. With eight bits to be output, we require

one bit every 125 microseconds, so we load the low byte of timer 2 with 124 (one less than

125) to get the correct time interval. The routine is as follows:

100 ?SR=15:REM SET UP SR WITH PULSE SHAPE
110 ?T2LLO=128:REM LOAD TIMER 2 LOW
120 ?ACR=16:SET UP ACR FOR FREE-RUNNING OUTPUT

To switch off these pulses, the simplest way is to load SR with zero, thus retaining the mode

without outputting any pulses.

Figure 4.22 Pulse waveforms

 Because this method only uses the low byte of timer 2, the lowest frequency available is

when timer 2 is loaded with 255 and SR with 15, giving about 200 Hz. The maximum

frequency is when timer 2 is loaded with O, giving 31 kHz (since the routine takes 1 cycle

per bit). This can be raised to 125 kHz if SR is loaded with four pulses at once, that is with

85 or 170. This is not as good as that available by using timer 1 and outputting through PB7,

and so is not actually much use. Its main application is in providing asymmetric pulses.

The BBC microcomputer in science teaching

138

The 1 MHz bus

As an alternative to connecting inputs and outputs to the user port, the BBC microcomputer

provides the 1 MHz bus. In order to make use of this some knowledge of the way the

microprocessor works is helpful. As we shall see in the next chapter, the microprocessor

reads and writes to memory or to the user port through two sets of lines, called the data bus

and the address bus. When the microprocessor wants to collect the contents of a particular

location, it places the address of that location on the address bus. This consists of sixteen

separate lines, each of which is made HIGH or LOW. For example, to read the user port, the

microprocessor sets the lines of the address bus like this:

Address line Status Address
A15 HIGH

F
A14 HIGH
A13 HIGH
A12 HIGH
A11 HIGH

E
A10 HIGH
A9 HIGH
A8 LOW
A7 LOW

6
A6 HIGH
A5 HIGH
A4 LOW
A3 LOW

0
A2 LOW
A1 LOW
A0 LOW

These address lines go through a series of logic gates (in the ULA of the BBC

microcomputer) and only the B-port of the 6522 VIA is enabled to respond. All other

locations are ignored. This is called decoding the address. Since there are sixteen address

lines, there are 65 536 possible locations that can be separately addressed.

 When the addressed location sees its own address on the address bus, its response is of

two kinds. Either the data in the location is read or new data is written into it. To tell the

location which is to occur, the microprocessor signals along a separate R/NW line (read/ not

write). When this line is HIGH, the data will be read, when this line goes LOW, new data is

written into the addressed location. Either way, it is the data bus which carries the data. This

consists of eight separate lines, one for each bit of the data.

 There also has to be careful control of when the data is available. In a data write

instruction, the address is placed on the address bus, the data is placed on the data bus and

the R/NW line is made LOW, but still nothing happens until the microprocessor sends the

action signal. This is very much like an orchestra, where the conductor keeps everyone

together by regular beats of the baton. The microprocessor does the same with clock

Microcomputer timing and control

139

pulses. These are carried to all parts of the microcomputer along the clock pulse line

(CLK).

 All of these lines appear at the connector of the 1 MHz bus. To add more memory or

another device of our own to the microcomputer is ideally a matter of connecting the power

supply, address, data, R/NW and CLK lines to the correct pins of the device.

Unfortunately there are a few problems.

 The first of these is that the selected address for the device must be different from any

others that have already been chosen for the operating system of the microcomputer. This

whittles the choice down from 65 536 to 63! Actually the BBC microcomputer sets aside

512 spare addresses, which run in the memory from &FC00 to &FDFF. Unfortunately some

of these are scheduled to be used by add-on units, such as the teletext adaptor and the

sideways ROM. Since you can never be sure which of these devices will be added to your

machine in the future, it is safest to stick to the 63 that have not been booked (so far!). These

are from &FCC0 to &FCFE. (&FCFF has a special use.)

 All these addresses start with &FC, and so the BBC microcomputer automatically

decodes the top eight address lines for us. When any location beginning with &FC is

addressed, a special line in the 1 MHz bus connector (called FRED) goes LOW to signify

the fact. FRED is therefore used instead of the top eight address lines. The lower eight

address lines may be decoded as required.

 To illustrate the principles, Figure 4.23 shows how sixteen separate select signals can be

obtained from the SN74154 decoder. This has five inputs (address lines A4, A5, A6 and A7,

and FRED) and produces sixteen device select lines ð &FC0x to &FCFx ('x' can be any

number from 0 to F). Of these only &FCCx, &FCDx, &FCEx and &FCFx can be used

alongside the other add-on devices mentioned above. As the following truth table

Figure 4.23 Decoding the 1MHz bus

The BBC microcomputer in science teaching

140

indicates, only one of these select lines goes LOW at any one time, when the binary address

of the required line is sent to the address inputs (A4, AS, A6 and A7).

A7 A6 A5 A4 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 L H H H H H H H H H H H H H H H

0 0 0 1 H L H H H H H H H H H H H H H H

0 0 1 0 H H L H H H H H H H H H H H H H

0 0 1 1 H H H L H H H H H H H H H H H H

0 1 0 0 H H H H L H H H H H H H H H H H

0 1 0 1 H H H H H L H H H H H H H H H H

0 1 1 0 H H H H H H L H H H H H H H H H

0 1 1 1 H H H H H H H L H H H H H H H H

1 0 0 0 H H H H H H H H L H H H H H H H

1 0 0 1 H H H H H H H H H L H H H H H H

1 0 1 0 H H H H H H H H H H L H H H H H

1 0 1 1 H H H H H H H H H H H L H H H H

1 1 0 0 H H H H H H H H H H H H L H H H

1 1 0 1 H H H H H H H H H H H H H L H H

1 1 1 0 H H H H H H H H H H H H H H L H

1 1 1 1 H H H H H H H H H H H H H H H L

Figure 4.24 Connecting another VIA

Microcomputer timing and control

141

If the other add-on units are not being used, each of these output lines can be used to select

a different VIA, giving a possible 256 extra input/output lines for control. Figure 4.24 shows

how one of these (address &FCC0) is connected to the device select input of just one of

these VIAs. The lower four address lines are connected to the four address inputs of the VIA

and the R/NW and CLK lines are connected too. Pin 21 of the VIA is left unconnected, it is

an interrupt request line and the use of this has not been considered in this book. I have yet

to find how the BBC interrupts work and, in any case, very few of my applications require

interrupts. The technique of occasionally checking an input is nearly always satisfactory.

Pin 34 of the VIA is connected to the RESET line. When the BREAK key of the BBC

microcomputer is pressed, the RESET line goes temporarily LOW and clears all the registers

of the VIA.

 This VIA may now be used in exactly the same way as has just been described, except

that it responds to different addresses, as follows:

Name Function Decimal Hexadecimal
BPRT B-port 64704 &FCC0
APRT A-port (+handshake) 64705 &FCC1
DDRB Data direction reg B 64706 &FCC2
DDRA Data direction reg A 64707 &FCC3
T1LLO Low-byte Timer 1 - latch 64708 &FCC4
T1LHI High-byte Timer 1 - latch 64709 &FCC5
TICLO Low-byte Timer 1 - count 64710 &FCC6
TICHI High-byte Timer 1 - count 64711 &FCC7
T2LO Low-byte Timer2 - latch 64712 &FCC8
T2Hl High-byte Timer2 - latch 64713 &FCC9
SR Serial register 64714 &FCCA
ACR Auxiliary control reg 64715 &FCCB
PCR Peripheral control reg 64716 &FCCC
FLAG Interrupt flag reg 64717 &FCCD
IER Interrupt enable reg 64718 &FCCE
APRT A-port (no-handshake) 64719 &FCCF

There are other input/output devices that may be connected to the 1 MHz bus, but I am a

firm advocate of the 6522 VIA. It is not much more expensive than simpler devices that just

latch data in or out, yet it is far more powerful. In the next chapter we shall return to the 1

MHz bus to connect other devices also.

 This chapter has tried to show the principles of environmental monitoring and control.

Using the input and output buffers described in this chapter, almost any system can be either

simulated or realized in a practical way. It is, however, most unlikely that a microcomputer

would be used in a real situation. Chapter 9 discusses more realistic ways of producing

control equipment.

Practical details

The practical wiring details for the two input board and the logic board are shown in Figures

4.25 and 4.26 respectively. The logic board requires two DS8833 quad line

The BBC microcomputer in science teaching

142

Figure 4.25 Two input board

transceivers (not available from RS Components but from Farnell Ltd). Each output driver

is used to drive an LED indicator. The inputs of the four transceivers used for the output

terminals are not used, so they are disabled. Connection to the BBC microcomputer user

port is via a 20-way cable, each end which requires a 20-way cable mounting socket (RS

467-289). One end plugs into the user port and the other end plugs into a PCB mounting

plug (RS 467-346), which may be soldered directly onto each logic board. The eight data

lines and the +5V and 0V lines should then be connected as shown in Figure 4.26. The pin

connections to the user port are shown in Figure 4.27. This configuration assumes that you

have lifted up the front of the BBC microcomputer and are looking underneath at the socket

directly from the front.

Specific applications of timing

Now that we have looked at the general principles of timing, let us examine a few specific

timing applications in physics. The BBC microcomputer can be made to measure the time

interval between logic level changes at either input. These changes can be caused by

switches or, more importantly, with photocells, one connected to bit 0 and the other to bit 1

of the user port through a suitable op. amp. or transistor driver (Figures 4.9 and 4.10), For

some programs only one of these is needed.

 Events or logic level changes at the inputs are used to measure time intervals in exactly

the same way as in CONTROL EXAMPLE 8. The inputs are read and stored in a memory

location called status. The current state of the inputs are then monitored continuously and

compared with status, Normally they will be the same, but when they are different, this is

because one or other of the photocells has been activated. At this point the contents of a

clock are noted. When the timing is finished, the time intervals involved can be calculated

and displayed.

 There are three ways of achieving the clock. The first is to make use of the BBC

Microcomputer timing and control

143

Figure 4.26 Logic board

Figure 4.27 User port connections

The BBC microcomputer in science teaching

144

microcomputer's own clock, which runs at 100 Hz, thus enabling time intervals of 10 ms

to be counted. The technique is illustrated by this primitive reaction timer, which assumes

a push button switch connected to one of the inputs.

 1 REM CONTROL EXAMPLE 10 - REACTION TIMER
 10 ?65122=60:REM CONFIGURE USER PORT
100 PRINT"WHEN THE SCREEN GOES BLANK,"
110 PRINT"PRESS THE SWITCH."
120 max=5000+RND(10000)
130 FORT=1 TO max:NEXT T
140 CLS
150 now=TIME
160 status=?65120 AND 3
170 IF status=?65120 AND 3 THEN 170
180 PRINT "REACTION TIME = ";(TIME-now)/60

The more sophisticated REACTION TIMER (6) uses the same timing technique, but it

displays the results in large digits for all to see (Plate 26). It also replaces the switch input

with a keyboard input, so an interface is not needed for this program (Plate 25).

 STOPCLOCK (5) accesses the same centisecond clock from machine code and

continually updates the display to show the elapsed time. This has to be done with a

machine code routine, because the display of the large digits would be too slow in BASIC.

All the machine code routine in this section are described in Chapter 8, only their uses in

teaching are discussed here. You do not have to be a machine code expert to make use of

machine code programs, as long as you know how to call them and how to pass values

from them back to BASIC. As already mentioned, programs like STOPCLOCK have

many applications, for example they can replace centisecond timers in most instances. A

simple photocell connected to bit 0 will operate STOPCLOCK for experiments on

kinematics, etc.

 Unfortunately, for intervals shorter than a second, the BBC centisecond clock is not

sufficiently accurate. In this case the timers of the VIA can be used in the manner already

discussed. A third way of timing relies on the fact that the BBC microcomputer is itself

under the control of a crystal oscillator, which produces clock pulses at a rate of roughly 2

MHz. Each machine code operation of the microprocessor inside the BBC microcomputer

requires a given number of such clock pulses. These can be counted, thus giving a

measured time interval. This counting can be done with the VIA timers as discussed

above, or by machine code loops as discussed in Chapter 8.

 FAST TIMER (7) uses the latter technique to measure intervals up to milliseconds in

ten-microsecond units. It is of universal application and can easily be used in other

programs without knowing how it works; for example:

i) Speed of a rifle pellet

Bits 0 and 1 should be grounded through the thin pieces of foil as in Figure 4.28. When the

pellet breaks the first foil, the clock starts and when it breaks the second foil, the clock

stops. The program will then stop the clock and display the elapsed time in large digits on

the screen.

Microcomputer timing and control

145

Plate 25 REACTION TIMER instructions

Plate 26 REACTION TIMER result

The BBC microcomputer in science teaching

146

Figure 4.28 Foils

Plate 27 Contact bounce when a switch is closed

Microcomputer timing and control

147

Figure 4.29 Switchover time of a switch

ii) Contact bounce

Some idea of the speed of the timing routine can be gained by using a single push button

switch connected to one of the inputs. FAST TIMER is run and when the display says it is

ready, the switch is pressed once. In most instances the program will display a result,

indicating that at least two input changes have been detected. There were probably many

more changes than this, caused by the contact bounce in the switch, when it is closed. FAST

TIMER is more than fast enough to measure this contact bounce time. The same

arrangement with a fast voltage measurement program (Chapter 5) produces Plate 27.

iii) Switchover time

Using this program with a two-way switch as indicated in Figure 4.29, enables the

changeover time of this switch to be measured. An interesting experiment is to see if the

switchover time is dependent upon the speed at which the toggle is operated.

iv) Camera shutter speed

Instead of switches to produce changes in the input status, this can also be done by the

interruption of a beam of light focused on a photocell, with the photocell connected to one

of the inputs. It then becomes possible to measure the effective shutter speed of a camera.

The photocell should be mounted inside the camera at the image of an external light source,

When the camera is operated, the time measured by this program is a good indication of the

exposure time that the film receives.

v) Trolley speed measurement

If a card attached to a trolley crosses a light beam focused on the photocell, the time taken

for it to do so may be measured by this program and displayed for all to see. In this instance

both changes take place at the same input. If the length of the card is entered into the program

beforehand, the microcomputer will automatically compute the speed of the trolley.

Unfortunately, this program cannot be used with two photocells, i.e. one

The BBC microcomputer in science teaching

148

connected to each input. This would be very useful, since the speed of the card could then

be measured over a much greater distance. However, as the card crossed the first photocell,

it would start and then stop the clock at this point. A more sophisticated timing routine is

needed to measure the time between two different photocells.

Advanced timing

The advanced timing routine used in the following programs needs some explanation so that

it can be used even without a knowledge of machine code. A full assembly listing is given

in Chapter 8. To enable multiple measurements of speed for studying the law of conservation

of momentum, there must be two photocells. Furthermore, in this experiment, it is possible

for a second trolley to begin a transit of its photocell before the first has finished crossing

the other photocell. Thus it must be possible to detect the two inputs independently and to

keep their results separate. We still only need the one clock, but at the start or finish of an

event, the time on the clock is copied into a store. In fact up to sixteen stores are available

for each input. Thus, in the conservation of momentum experiment, it is possible to have

two trolleys approach from different directions, to collide in the middle and both go off in

one particular direction at different speeds. This involves two events at one input and six

events at the other, but the routine can easily cope with this. (An event is any change in logic

level at either of the inputs.)

 This advanced timing routine can be called from a BASIC program in a variety of ways,

to measure time and speed as above and also to measure period, frequency and acceleration.

All measurements are displayed in large digits on the screen using the large digits machine

code routine described in Chapter 7.

 Program 8 (TIME, SPEED AND ACCELERATION METER) makes use of this routine

for a number of purposes. Firstly, it measures time intervals of up to twelve minutes in units

of fifty microseconds. Speed measurements are based upon the photocell technique using a

card length of 40 mm. By changing lines 5070 and 6070 of the program this may be changed

to any other length. However, there is considerable inaccuracy introduced by the photocells,

because the point at which they switch on is not necessarily the same point at which they

switch off. So a 40 mm card may not necessarily look like a 40 mm card to the photocell.

The error is only a few mm, and this is only important if very short cards are being used. If

great accuracy is desired, then 100 mm cards or longer should be used. The advantage of

short cards is that some meaning can then be given to the difficult concept of 'instantaneous'

velocity.

 A double card such as that shown in Figure 4.30 enables acceleration to be determined

and displayed directly. This quantity is computed from the standard equation

 acceleration = (final speed ð initial speed)/ time taken

 An interesting experiment is simply to drop this double card vertically in front of a

photocell using the acceleration option of program 8. The display gives the acceleration due

to gravity directly (Plate 28). (But see the educational note later.) If different lengths are

used for this double card, then line 5070 of the program should be changed. It is only the 40

mm lengths that are important, not the distance between them. The double card provides the

two measurements of speed required in the calculation.

Microcomputer timing and control

149

Figure 4.30 Double card

Plate 28 Measurement of acceleration due to gravity

By connecting two photocells in series, they can be placed any distance apart, and then a

single card can pass in front of both photocells to provide the initial and final speeds for this

calculation. This would be a good way to introduce the function of the double card.

 The advanced timing routine of program 8 was designed to be used for measuring the

speeds resulting from trolley collisions. It is used for this purpose in program 9

(CONSERVATION OF MOMENTUM). The same restrictions on card lengths apply as

above. The speeds are displayed for each photocell separately, with the readings in

chronological order for each separate channel (Plate 29).

