

LET YOUR BBC MICRO
TEACH YOU TO
PROGRAM

by Tim Hartnell

Introduction

Welcome to this book on the BBC Microcomputer. Even if you knew
nothing about computers and programming when you begin, you
should end up with quite a degree of knowledge by the time you finish
working through it. And if you already know some BASIC, you should
know even more by the time you turn the last page.

I've assumed that you don’t know anything about programming, so
some of the material in here may seem a little simple to you. | make no
apology for this, as there is a time in all our programming lives when
we know nothing. We have all had to start from square one at some
stage or another.

| suggest you read through the material in this book in the order in
which it is presented. The development from topic to topic is carefully
graded, so working through the book, and — most importantly —
entering the material into your computer as you read, in the sequence
in which it is presented here should assist you in developing your
programming skills. Special thanks to Jeremy Ruston who provided a
substantial quantity of material for the latter part of the book, to Roger
Munford who prepared extensive notes on many of the functions of
the BBC Microcomputer, and to Graham Charlton for Microsoft
versions of some of the programs.

This book has been a pleasure to write, because the BBC
Microcomputer ‘co-operates well’ with a programmer, and the
computer shows the result of careful design. Your BBC
Microcomputer should be a companion for years to come. | hope this
book will assist you in making the most of your new machine.

Tim Hartnell,
London W12, 1982

LET YOUR BBC MICRO TEACH YOU TO
PROGRAM

First published in Great Britain by:

INTERFACE PUBLICATIONS,
44 - 46 Earls Court Road,
LONDON W8 6EJ

(c) Hartnell, 1982

First printing - June, 1982
Second printing - December, 1982
Third printing - February, 1983

ISBN 0907563 14 7

All rights reserved. No part of this
publication may be reproduced, stored
in a retrieval system, or transmitted
in any form or by any means, electronic,
mechanical, photocopying, recording or
otherwise, except for the sole use by
the purchaser of this volume, without
the prior, written permission of the
copyright holder. No warranty in
respect of the contents of this volume,
or their suitability for any purpose,
is expressed or implied.

Any enquiries regarding this book should
be directed by mail to the publisher.

INTERFACE PUBLICATIONS also publishes
THE BBC MICRO REVEALED, by Jeremy
Ruston, available from the above
address for £9.95 (inc. p & p).

The PRINT Statement

PRINT is probably the most-used command in BASIC. It is the
command which allows the computer to communicate with the user.

Type the following line into your computer, and then press RETURN:
PRINT 5

You'll see that the computer obediently prints the number five. You
can use the PRINT command to make your computer act as a
calculator. Enter the following and press RETURN:

PRINT 5 + 3

When you press RETURN, you’ll see it prints up the correct result.
This ‘direct calculation mode’ can work out problems as complex as
you wish. Try the following (remembering to press ENTER to make the
computer act on what you've typed in):

PRINT SQR (8 + 1)

This asks the computer to PRINT the square root (that's what SQR
means) of the sum of the numbers in brackets, that is, the square root
of nine. If your computer is functioning correctly, you should have got
an answer of three. Don’t worry about the SQR at this time. We wiill
come to it later on.

So you can see that PRINT can be used in the direct mode to print out
numbers, and the results of calculations. It can also print out words.
Type in the following, then press

RETURN:
PRINT HI THERE

Instead of happily printing HI THERE, the computer comes up with
what is called an error message. In this case, the error message reads
No such variable. We'll look at variables in due course, but for now,
keep in mind that if we want the computer to print out words, the
words must be enclosed within quote marks. Enter and run (that is,
press RETURN after typing it in) the following:

PRINT “HI THERE"

You"ll see the words HI THERE appear on the line below the one
which you typed in.

To recap quickly: Simply used as a command, typing PRINT 2 + 3 will
tell the computer to print out the result of that addition. Entering
PRINT “WORDS” will get the computer to print out everything which
Is within the quote marks.

Computers use programs, and it is now time to write our first, simple
program. Enter and run the following:

10 REM FPROGRAM ONE

20 PRIMTU"THIS I8 & DEMONSTRATIONY
30 PRINT 1

40 PRINT 2

G FPRINT "THIS IS THE END"

When you RUN this (which you do by typing in the word RUN, then
pressing RETURN), you should see:

>RUN
THIS IS A DEMONSTRATION

1
o+

:‘.’

THIS I& THE END

While we have this program in the computer, let’s learn a little more
about programs. Type in LIST, then press RETURN. You'll see the
program listing comes back. Notice that every line starts with a line
number. The first line, in this case number 10, starts with the word
REM. REM is computer talk for REMARK, and is used in a program
when you want to explain what is going on in within a program, or
what a program is (as in this case), so that when you return to it later,
you'll know what is going on. The computer ignores REM statements
when it comes to them.

A REM statement is made up of a line number, then the word REM,
and some text. The message can be made up from almost anything
you like — letters, numbers or punctuation marks — although it is best
to keep the messages as clear and brief as you can. Although anything
typed after the word REM is ignored by the computer when it is
running a program, a REM line still uses up memory.

REM statements are often like the following:
10 REM THIS WORKS OUT THE SCORE
10 REM FIND THE ANGLE

There is no reason why there should be just one REM statement, but if
the commentary you wish to add to a particular area of a program is
one which may take up more than one line of text, it is important to
place the word REM at the beginning of each new line. For example:

60 REM THE MULTIPLICATION ROUTINE IN WHICH
70 REM THE TWO VARIABLES A AND B
80 REM ARE MULTIPLIED TOGETHER

So long as each REMark line starts with the word REM, the computer
will ignore the text that follows on that line (although the complete
program listing, REMs and all, will be printed if a LIST is requested). If
you forget to place REM at the beginning of what is intended to be a
REM statement, the computer will assume the line is a statement it
does not understand, and reward you with an error message. Type in
the number 10, then press RETURN, then type in LIST, and press
RETURN again. You'll see your program reappear as follows:

20 PRINTY"THIS IS A DEMONSTRATION"
30 PRINT 1

40 FRINT 2

w0 FRINT "THIS I8 THE END"

Line 10 has disappeared. It is very easy to get rid of lines you don't
want in a computer, just by typing in the relevant line number, then
pressing RETURN. Try typing in line 10 again, as it was before, but
leaving out the REM statement. Enter the following line, then run the
program:

10 PROGRAM ONE

You'll get the error message ‘Mistake at line 10’, because the computer
does not know what to do when it comes across the word PROGRAM.
It has nothing within its instruction set which corresponds to the word
PROGRAM.

Editing

We can put the word REM back in, and illustrate how the BBC
Microcomputer’s editing facilities work. Type in 10 REM, then go to
the key with the arrow on it above the word RETURN. Press this once,
and you’ll see a solid square appear after the word REM and a flashing
line (the cursor) move up a line. Keep pressing the arrowed key until
you reach the line which reads 10 PROGRAM ONE. You will probably
find that the flashing cursor is underneath the space after the number
10. When you’ve done this, press the COPY key (under the RETURN
key) and hold it down until the words PROGRAM ONE are ‘copied’
after the word REM in your new line 10. Now press RETURN. This may
sound confusing if you're not reading this book while seated at your
computer, but should make sense if you are. Test that the new line is
in place by typing in LIST, and then pressing RETURN. The program
should reappear, with the word REM in the right position in line 10.
Check that it is correct by entering RUN, then pressing RETURN.

Just to recap, the REM statement has two uses. One is to act as an aid
so you and your friends can untangle programming webs you've
woven. The second use is to act as a separator between individual
routines in a large program; to split it into visually separate blocks.

At the end of the book is a chapter called ‘Improving your programs’
which discusses the concept of ‘structured programming’. The use of
REMs in this second way is described in more detail at that point.

LIST and RENUMBER

LIST is the BASIC command which we use to get the computer to
print out the whole of the program it is currently holding. You can
simply enter L., instead of the whole word. Try it now. Type in L. and
press RETURN. The program should list out in full. All lines in the
program are LISTed in numerical order, rather than in the order in
which they were entered into the computer. The computer
automatically sorts its lines into order. Enter the following, press
RETURN, and then LIST the program again:

15 PRINT “THIS IS A NEW LINE”

You'll see it stays at the bottom of the listing when you first press
RETURN, but after typing in L. and press RETURN again, you'll see it
snuggled into its proper position, as follows:

10 REM FPROGRAM ONE

135 FRINT "THIS XIS A NEW LINE"

20 FRINTY"THIS IS A DEMONSTRATION"
30 PRINT 1

40 PRINT 2

90 PRINT "THIS IS THE END"

The BBC Microcomputer has a very useful facility to renumber lines.
You can number lines with any interval you choose (like starting at
one, then going up in ones), but this does not leave any space for
additional lines to be inserted. If you type in RENUMBER, then press
RETURN, then LIST, then RETURN again, you'll see the following:

10 REM FROGRAM ONE

20 FPRINT "THIS IS A NEW LINE"

30 FRINT"THIS IS A DEMONSTRATIONY
40 FRINT 1

90 FRINT 2

60 FRINT "THIS IS THE END"

As you can see, line 15 has been changed to line 20, and all the
subsequent lines have been renumbered. RENUMBER is a useful
command to remember, and you can use it whenever you need
additional space between lines, or before you SAVE a program on
cassette, or print it out on a printer.

If you simply type LIST, the entire program will be listed by the
computer. However, by varying the listing format, a number of useful

variations can be achieved. These allow you to examine individual
portions of the program. Let’s add a few more lines before we do so.
Add the following:

70 FRINT "HI"
80 FRINT "THERE"
90 REM HI THERE
100 PRINT 4

LIST 10,50 will only allow the lines number 10 to 50 to be listed. Any
lines numbered higher or lower than this will not be included.

LIST 70 will only list line 70
LIST ,70 will print all the lines up to, and including, line 70
LIST 70, will print out all the lines above line 70, including line 70

You can halt a listing at any point by pressing ESCAPE.

RUN, STOP, END, NEW,
OLD

As you’ve no doubt realised, the RUN command is used to start the
computer operating on a program which you have entered into the
computer, either by typing it in, or by loading a program in from
casssette. The computer executes all the lines stored in its memory,
starting from the lowest number, and working through in order.
Various commands, as you shall see shortly, can make the program
loop back on itself, but in essence, the computer works through a
program in line number order, uniess told to do otherwise.

If you want the program to STOP at a particular point, you can use,
naturally enough, a command called STOP. Enter 35 STOP, press
RETURN, then run the program. It will print out:

THIS IS A NEW LINE

THIS IS A DEMONSTRATION

Then, after a blank line, will be the message ‘“STOP at line 35”". BBC
BASIC includes another word which does exactly the same thing, but

10

does not print out an error statement. Change line 35 to 35 END, press
RETURN, then run the program again. You'll find it prints out the two
lines as before, but does not print out a message like “’/END at line 35"
You can use these commands wherever you wish a program to
terminate. Other computers are not as tolerant as this. Some, like the
Acorn Atom, demand that an END statement ends each program, and
responds with a beep and an ‘Error’ message if the END is left off. You
do not need to worry on the BBC Micro. The END is optional.

We'll return to look at PRINT In a little more detail in a moment, but
there is one more (actually, two associated) command I'd like to

discuss first, NEW and OLD.

The command NEW will erase any program from the computer’s
memory, and should always be used to remove anything from the
memory before you start writing a new program. If you don’t do this,
and you use different line numbers for the second program, you’ll find
the lines may well be interwoven with the old program. The NEW
command is fairly brutal on most computers, causing it to dramatically
forget everything. Try it now on your computer.

Type in NEW, press RETURN, then enter LIST, and RETURN again.
You'll find the ‘greater than’ symbol beside the flashing cursor appears
immediately below the word LIST — but no listing. Try LIST 10, then
RETURN, and you’ll get the same nothing result. However, and this is
useful to remember, the BBC Micro has tucked the program away in
another part of memory, just in case you change your mind. Type in
OLD, then RETURN, then LIST and RETURN again and, as if by
magic, the program has been restored. OLD is pretty easy to
remember as the opposite of NEW.

11

PRINT formatting and
TAB

To complete our exploration of the PRINT command, type in NEW
again to get rid of the program. Now enter and run the following:

10
20
30
40
50
40
70
80
90
100
110

REM ®*XFRINT FORMATSXX
CLS

FRINT

FRINT

FRINT

FRINT "HI“60
FRINT 74/ “HI"“:70
FRINT 1 2 3
FRINT 1,2,3

FRINT 132
PRINT132:3

Follow this explanation carefully, and you should learn a lot about the
way the BBC Micro formats its print output, you can then use what
you’ve learned to arrange output of your own programs as you wish.
I'll go through the program line by line, a practice which will follow,
from time to time, in the rest of the book.

10
20
30-50

60

70

80

— Title REM statement

— CLS is the command to clear the screen

— Each of these words PRINT, with nothing following,
prints a blank line, moving the next print position down a
line. This explains the gap at the top of the screen before
anything is printed.

— This prints the word HIl and then, leaving a space, prints
the number 60. Note that the number can follow the word
but will not necessarily be printed immediately after it, as
does happen in the following line.

— The three apostraphes (shift the 7 key), as you can see,
have exactly the same effect as three blank PRINT lines,
and are far more convenient to use. Note also that the 70 is
printed hard up against the word HI. The semi colon (;)
between the close quote marks and the number ensure
they will be printed together in this way.

— This allows the numbers 1, 2 and 3 to be printed in neat
little rows. Note that there must be a space between them
or the computer will print them as 123 or 12 and 3 or 1 23.

12

90 — This line uses commas between the numbers ensuring
they will be printed in separate rows.

100 — The semicolons between the numbers ensures that,
after the initial space between the left hand side of the
screen and the numbers, the numbers will be printed hard
up against each other.

110 — The semicolon before the first number ensures the
printing starts at the extreme left hand edge of the screen.

You can use these within PRINT statements to create the effects you
need. Clear the current program with NEW, then enter and run the
next program, changing line 30 as shown, to produce the effects
shown. Don’t worry about what the rest of the program means at this
stage. It will be explained shortly.

10 REM XXPRINT TWOXx
20 FOR J=1 TO 10
30 PRINT J
40 NEXT J
*RUN

c N EIIONE

[y

10 REM XXFPRINT TWOxXxX
20 FOR J=1 TO 10
30 FRINT J}
40 NEXT J
*RUN

1
? 1

13

10 REM XXFRINT TWOxx
20 FOR J=1 TO 10
30 PRINT 3Ji
40 NEXT J
=RUN
12345678910

10 REM XXFRINT THOxX
20 FOR J=1 TO 10
30 FRINT $Ji" "3
40 NEXT J
*RUN
1 2 3 4 8 6 7 8 9 10

TAB (for tabulate) is a command which is very useful to combine with
the word PRINT. It moves the PRINT position across the number of
lines specified in the brackets following the number. Change line 30 so
it reads as in the following program, and run it:

10 REM XXFRINT THOxx
20 FOR J=1 TO 10
30 FRINT TAB(L 3J
40 NEXT J
*RUN
1

P

14

And then like this:

10 REM XXFRINT TWOxx
20 FOR J=1 TO 10
30 FRINT TAER(3xJ)3J

40 NEXT J
*RUN
1
2
3
4

b}

8

10

We are now going to introduce a program which will be used in a few
other places throughout this book to illustrate different aspects of the
computer’s actions, so | suggest you enter it, even though you may
not know what all the lines mean, and then SAVE it on tape, so you
can load it in again when we refer to it later (such as in the section on
READ and DATA).

10
20
30
40
50
60
70
80
20
100
110
120
130

140
150

REM TABULATOR ROCKET RANGE

MODEZ

FOR J=10 TO 1 STEF -1

FRINT “77J

T=TIME

REFEAT UNTIL TIME~T>50

NEXT J

REFEAT

QA=RND(Z9)+1

U=128+RND(5)

FOR rocket=1 TO 7ZIREAD ROCKET$
FRINT TAECO) SCHR$(LZ29) 3" ("3 TAE(Q)
CHR (U) ROCKET$ 3 TAB(36) SCHR$ (1293
NEXT rocket

T=TIME

REFEAT UNTIL TIME-T=2

15

160 SFACE =RND(10)

170 SOUND 16,~RND(5)~10,RND(3)~1,RND(20)
180 FOR print=1 TO SFACE

190 FRINT TAEC0) JCHREC129) §" ("3 TAR(37) ") "
200 NEXT print

210 RESTORE

220 T=TIME

230 REFEAT UNTIL TIME-T=2

240 UNTIL FALSE

250 DATA " 4 "," 44 M

260 DATA " 444 ", 4b O

:').70 D‘:.'TA " +++ ll,ll +++ n

2680 DATA " <x "

SAVE

You SAVE programs by typing in the program, connecting up your
cassette recorder as shown in the manual, then typing in SAVE
followed by the name of the program within quote marks. In this case,
| suggest you use the name ROCKET, so you would type in SAVE
“ROCKET", then follow the instructions given by the computer.

These mean you must turn your cassette recorder on, and start to
record, and once you’ve done this, press the RETURN key. You'll see
the word ROCKET appear, followed by a series of numbers as the
computer saves the program in blocks. When it has all been saved,
after a few seconds, the computer will beep to tell you it is finished,
and the ‘greater than’ symbol will reappear, followed by the flashing
cursor.

| suggest you make a habit of saving each program three times in a
row, on a C—12 or C—15 (i.e. computer) cassette, and you only put
one program on the side of each tape. Label the tape clearly with the
load name (i.e. with ROCKET In this case). Although it may seem
wasteful to use up the whole side of a cassette with just one program,
recorded three times, the frustration you will save yourself by not
having to search through tape after tape for a program you want will
more than compensate for using more cassettes than is strictly
necessary. The program is recorded three times just in case the tape

16

gets damaged at some point, or you accidentally erase part of the
tape, or — as sometimes happens — one SAVEing of a program just
refuses to load properly.

You should clean the recorder’s heads frequently (using liquid, not a
tape cleaner ribbon in a cassette) to ensure the clearest possible signal
is put onto the tape.

Now let’s return to our TABULATOR ROCKET RANGE.

TAB (X) and TAB (X.,Y)

The important lines for this discussion are 120 and 190, as these make
use of TAB in printing. Line 120 behaves as follows:

TAB (@) — This is not strictly necessary, but ensures that the first
PRINT is hard against the left hand edge of the screen

CHR$(129) — This ensures that the next thing printed will be red. The
colour commands are described in detail later on in the book

“("— This prints a (red) left hand bracket

TAB(Q) — Q is a number between 2 and 30 (chosen in line 90) which
determines how many spaces across the PRINT position will move
CHR$(U) — This determines the colour of the rocket which will be
printed

ROCKET$ — This is part of the rocket, selected by the READ statement
in line 110. Don’t worry about this at the moment, as we will be using
the ROCKET program again when discussing READ/DATA/
RESTORE in due course. For now, it is enough to realise that
ROCKETS is part of the series of plus signs which you see in lines 250
to 280.

TAB (36) — After the part of the rocket on that line has been printed,
the PRINT position moves across to the 36th position on the line,
where CHR$(129) turns the following *)*’ red to put a border down the
right hand side of the screen.

Line 1900:

TAB(@) — As above

CHR$(129);("* — As above

TAB (37);")"" — This moves the PRINT position across to the 37th

position, to print the bracket for the right hand border. Line 190 is used
a random number of times (between one and ten times, chosen in line
160) to put a space between the rockets.

17

So far we have only used TAB with a single number in brackets after
the word. Remember, TAB(A) will move the start of the PRINT
position A spaces across a line. You can have the word TAB followed
by two numbers, such as TAB(6,10) which will move the PRINT
position six spaces across, and 10 down. The top left hand corner of
the screen is zero, zero, so TAB(0,0) indicates that the printing will
begin in the top left hand corner of the screen. The left hand side of
the screen in numbered @, while the right hand side is 19, 39 or 79. We
have been working in Mode 7 to date (the mode your computer is
automatically in when you first turn it on), and in this mode, the screen
is 40 characters wide, so the position furthest to the right is numbered
39.

The following program, SQUASH, uses TAB(X,Y) to position a ball
(line 620) and a bat (line 530). You use the ““Z'" and ‘“M’’ keys to move
the slide (the bat) at the bottom of the screen right and left
respectively. The program keeps track of how long you keep the ball in
flight, and gives you a score at the end based on this time. Pressing
any key at the end of the game will give you a new game.

You can make the game easier by changing the zero after INKEY$ in
line 140 to a five or a 10, and add a delay loop between lines 170 and
180. A delay loop is simply something like 1775 FORQ = 1 TO 300:NEXT
Q. You may also wish to change the sound the ball makes when it
bounces. Simply change the third figure after the word SOUND in
lines 650 and 660. Try 120 + RND (130) or 240 + RND(14) for two
different effects.

This listing may well look pretty horrifying at the moment. Once you've
finished working through this book, you may wish to come back to
programs like this, and try and work out what each section of the
program is doing. You'll be surprised to see how much of it you can
decipher.

10 REM x SQUASH x

20 REM Move bat wsing the "Z" and "M" keys

30 MODE 7

40 HIGHSCORE=Q

50 FPROCset up

GO TR MK KK K 9K K S 3K K K K K

70 REFEAT

80 PRINT TAEBCD,23) 3 CHR$CL28+RNDCE))
$'"High score is " jHIGHSCORE

20 PRINT TARCO,S9) JCHRE(RND(S)Y+128)
"You have kept the ball in play®

100 PRINT CHR$(RNDC(S)Y+128) 3

"for "POTIME DIV 10)/103" seconds

18

110 A%=INKEY$(0)

120 XFX 15,1

130 IF A$="Z" OR A%$="M" THEN FROCMove_batl

140 PROCwmove_ball

150 PRINT TAEB(EB+11,19)5BATS

160 UNTIL end

170 IF TIME DIV 100:HIGHSCORE
HIGHSCORE=TIME DIV 100

180 TI=TIME

190 REFEAT UNTIL TIME:TI+90

200 xFX 15,1

210 FOR T=0 TO 3

220 SOUND T+16,-15,RNDC100)>+100,25%

230 NEXT T

240 TIME=0

250 REFEAT UNTIXL TIME:=1%0

260 xXFX 15,0

270 xFX 12

280 FROChnewgame

290 FE MK KK KM K K K M KK K KKK

300 DEF FROCset_up

310 LOCAL

320 FRINT TABC(L0,10)STRINGS(20,CHR$(255)

330 FOR T=0 TO 10

340 FRINT TAEBCL10,T+10)CHR%(255)3}
TABR(30,T+10) ;CHR$(255)

350 NEXT T

360 BATS="___"

370 NOBAT®=" "

380 X=1tY¥=1iL=13iM=1

390 TIME=0

400 B=10

410 PRINT TAE(11+E,19)3BATS

420 xFX 11,1

430 xFX 12,1

440 VDU 23;82023030303

450 ENDFROC

A0 FE MK KKK KKK K K XK K XK KKK

470 DEF PROCmove_bat

480 IF A%="M" AND E=16 THEN ENDFROC

490 IF A$="Z" AND E=0 THEN ENDFROC

S00 FPRINT TABC(LL1+E,19)iNOEBATS

19

910 IF af="M" THEN B=R+l

520 IF fA$="Z" THEN EBE=E-1

530 FRINT TaBCLLI+E,19)5BATS

5S40 ENMDPROC

TR0 I K OK S K K K KK KO K

B340 DEF PROCmove_ball

570 PRINT TABCLL+X, 1L+ v

580 TF LeXs18 OR L+X<0 THEN L=-L$
SOUND L,-1%,1%7,1

D20 TF MY 8 OR M+Y<0 THEN M=-Mt
SOUND L,~1%9,167,1

A00 XX+l

G100 Ys=YaM

620 PRINT TABCLL+X,Li+Y) " x"

430 TF Y=8 AND (X<BE OR X=(BE+2)) THEN
enc=TRUE ELSE end=FaLSE

4640 P=TIME

450 ENDFROC

G FE M MO ROK KK XK

H70 DEF FPROChHewgsme

480 FPRINT 77 CHRE(RND(S)+128) 3

"Fress any key for 3 new game"

690 A%=GETS

700 CLS

710 GOTO S0

720 ENDFROC

You can use TAB with either the PRINT statement or thg INPUT
statement. Experiment with TAB, and with the use of ; and , in FtRINT
statements, until you are confident you know what they are doing.

20

Random numbers

Random numbers are very useful for games playing, for creating
designs and sounds, and for changing the colour of PRINT
statements. We will look at their use in creating coloured PRINT
output in the section on graphics, and at their use in making sounds in
the SOUND part of the book. Right now we’ll examine the production
of random numbers, and use them in a few simple programs.

The BBC Microcomputer allows you to generate random numbers of
two types — floating point between zero and one, and integers. Both
these types can easily be set to be greater than, or less than, zero (i.e.
to be positive or negative numbers).

Enter and run the following to see a range of numbers between zero
and one:

10 PRINT RND (1)
20 GOTO 10

You'll get a list of numbers something like this:

1.918826409
0.266114519
0.102944293
0.295019549
3.66730662E-3
0.,386568779
0.264225042
0.31078644692
0.451954321
0.128487876
+ 220589199
0.440212717
U.749411825
0.521860198
0.,9467133116
0.7118946141
0.765480196
0.3546654011
0,98852G593
0.2746646697

21

You'll find that random integers are often of far more use than are
these numbers between zero and one. Most computers demand a
quite complex statement (like INT(RND(1)*30) +1) to get random
whole numbers, but a routine to do this already exists within the
computer. Change the 1 in line 10 to a 10, so it reads PRINT RND(10),
and run the program again. You're like to get a series of numbers such
as the following:

RESoOWNIUNYRO= NG

The computer takes the number in brackets (known as the argument
of the function) and selects numbers at random between one and that
number. To get negative random numbers, just put a minus sign in
front of the word RND. Try that, and run it again, to get a result like
this:

You can use the random number generator for any application where
you need to emulate a random activity in the real world, like the
distribution of weeds in a garden, the spread of clouds in the sky, or
the result of rolling die. The next program emulates the role of a
six-sided dice. Enter and run it a few times. Note that the single quote
mark in line 30 is found on the 7 key.

10 REM *xDICE ROLLERX
20 CLS
30 INFUT ‘77 "HOW MANY TIMES
WILL I ROLL THE DIE? "A
40 FOR E=1 TO A
90 PRINT RND(&)

60 NEXT E
*RUN
HOW MANY TIMES WILL T ROLL THE DIE? 7
4
2
]
G
4
2
5

While the theoretical distribution of numbers between one and six with
a six-sided die suggests each number has an equal chance of coming
up in a long, long series of rolls, the totals produced when you use two
dice, approaches the following distribution:

23

Total No. of ways Probability Percentage

Showing it can be thrown
2 1 1/36 2.77%
3 2 2/36, 1/18 5.55%
4 3 3/36, 1/12 8.33%
5 4 4/36, 1/9 11.11%
6 5 5/36 13.88%
7 6 6/36, 1/6 16.66%
8 5 5/36 13.88%
9 4 4/36, 1/9 11.11%
10 3 3/36, 1/12 8.33%
1" 2 2/36, 1/18 5.55%
12 1 1/36 2.77%

To test just how random the random number generator is, enter and
run the following program, which rolls two dice as many times as you
request.

10 REM xTWO DICEX
20 CLS
30 INFUT 72/ "HOW MANY TIMES WILL I
ROLL THE DICE? "D
40 CLS
w0 DIM ACL2)
460 FOR C=1 TO D
70 DIEL=RMD(&)
80 DIEZ=RNE(6)
20 PRINT TAB(Z,3),DIEL,DIER
100 SUM=DIE1l + DIEZ
110 ACSUM)=A(SUMI+1
120 FOR EB=2 TO 12
130 FRINMT TAB(S.EB+3) B
s ACED) ,INTCACE) /CX100) o
140 NEXT E
150 NEXT €

Here's the result of one run when | got the computer to roll the two
dice over 700 times. The top two figures (3 and 4) are the result of the
current roll. Next, from there down, the numbers 2 to 12 in the left
hand column are the totals we are looking for, followed by the number
of times that total has been rolled in the current run. The final column
shows the approximate percentage distribution of each of the totals.

24

3 4

2 23 3%
3 34 4%
4 58 7%
O ?0 12%
6 105 14%
7 133 17%
8 ?1 12%
9 7% 10%
10 73 %
11 38 ey 4
12 26 3%

You can see that this run has approach the theoretical distribution
fairly closely, which suggests the random number generator is
performing its task properly. The numbers produced are not totally
random, but are from a very long list of numbers, so long that no
pattern can be discerned.

Acey Duecy

Here's a very simple game which shows the random number generator
in action. You can see from the sample run how to play it. The game is
not really much of a game, but entering and running it is well worth
while. Once you've played a few rounds of the game return to this
book for a discussion of the program. You should be pleasantly
surprised at how much you have already learned.

10 REM *ACEY DUECYX

20 D=20

30 REFEAT

40 CLS

w0 A=RND(13)

60 E=RND(13)

70 IF ABS(E-A)Y<Z THEN 50

80 C=RND(13)

?0 IF A=C OR B=C THEN 80

100 FRINT 77"MY FIRST NUMBER IS "}A
110 PRINT "MY SECOND IS "B

120 PRINT “CHR$(133)3"YOU HAVE $"3D

25

130 FRINT 7/"HOW MUCH DO YOU BET MY NEXT"

140 FRINT "NUMBER LIES BETWEEN "jA3" AND "iB3"?"
150 INFUT E

160 TF EXD THEN 150

170 IF E<1 PRINT CHR$(129)3;"COWARD!'"

180 FRINT “"MY NUMEER IS "3iC

190 IF E<1 THEN 270

200 IF NOT (CxA AND C<B OR C<A AND C:xB) THEN 240
210 FRINT "WELL DONE, YOU WIN $"3ZxE

220 D=D+2XE

230 GOTO Z70

240 FRINT "SORRY, YOU LOSE $"jE

250 D=D-E

260 IF D<1 THEN 290

270 A$=GETS$

280 UNTIL FALSE

290 FRINT "YOU ARE EBROKE"

MY FIRST NUMEER IS 9

MY SECOND IS 11

YOU HAVE $20

HOW MUCH DO YOU EET MY NEXT
NUMEBER LIES BETWEEN 9 AND 117
?3

MY NUMEER I8 13

SORRY, YOU LOSE 43

MY FIRST NUMEER IS 8

MY SECOND IS 5

YOU HAVE $17

HOW MUCH DO YOU EET MY NEXT
NUMEER LIES BETWEEN 8 AND 57
4

MY NUMEER IS 10

SORRY, YOU LOSE $2

MY FIRST NUMEBER IS 1

MY SECOND IS 3

YOU HAVE $135

HOW MUCH DO YOU EET MY NEXT
NUMEER LIES BETWEEN 1 AND 37
?0

26

COWARD ! !

MY NUMBER IS 10

MY FIRST NUMEER IS 10

MY SECOND IS 13

YOU HAVE #1935

HOW MUCH DO YOU EET MY NEXT
NUMEER LIES BETWEEN 10 AND 137

7?18

MY NUMEER IS 3

SORRY ,

YOU LOSE 419

YOU ARE BROKE

Let us have a look at this program, line by line:

10
20

30
40
50

60
70

80
90

100-110
120

130-140
160
170
180
190
200

Title REM statement

Sets the variable D, which is the amount of money you
have to equal $20

Starts a REPEAT/UNTIL loop which terminates in line 280
Clears the screen

Sets the first number (A) equal to a random number
between 1 and 13

Does the same for B

Checks to see if the difference between the two numbers
to select two new numbers

Chooses a third number between one and 13 (C)

Checks to see if C equals A or B and, if so, goes back to
line 80 to choose a new number

Tells the player what the two numbers are, using the two
apostraphes after the word PRINT to creat two blank lines
Prints out, in purple, the amount of money the player has.
In mode 7, preceding a print line with CHR$(133) causes
the following material to be printed in purple (magenta).
Asks the player to enter a bet regarding the likelihood of
the third number lying between the first two

If the player attempts to bet more money than he or she
has, goes back to accept another entry

If the player enters a bet less than one, prints the word
COWARD in red (using CHR$(129)).

Prints out the third number, using an apostraphe to print a
black line

If the bet was less than $1, goes to line 270 to await a new
round of the game

Checks to see if the player has lost, and if so, sends action
to line 240

27

210 Congratulates the winner

220 Adds the winning amount (2*E, where E is the amount bet)
to the player's money (D)

230 Sends action to line 270 for the next round

240 Prints out the “SORRY, YOU LOSE" message

250 Deducts the loss (E) from the player’'s money (D)

260 Checks to see if the player has less than $1 and if so
goes to the “YOU ARE BROKE" message

270 Waits for any key press

280 Goes back to the line after the word REPEAT, in this case

line 40, to clear the screen for a new game

Reading through this explanation a couple of times, and looking
carefully at the line or lines it refers to, should teach you quite a bit
more about programming. There are a number of specific commands
which we will look at in more detail, but you're probably starting to
pick up quite a bit at this stage.

Variables

You will have noticed in the previous program that a series of letters
were used to represent numbers. The letter A was assigned (in line 50)
to a number between one and 13, B was assigned in the same way in
line 60 and C was assigned in line 80. The amount of money you had
was assigned to variable D in line 20. The letters A, B, C and D in this
program are called variables.

There are three basic types of variables: integer numeric, numeric and
string (alphanumeric).

Almost any combination of letters and numbers can be used as a
variable in BBC BASIC, so long as it begins with a letter, and there are
no punctuation marks or symbols within the name. So SMUDGEPOT
and D17 are valid variable names, while 2 SMUDGE and 1D7 are not.
Numeric variables, letters or combinations of letters and numbers
beginning with a letter, are simple to use. You can assign a variable of
this type to any number within the computer’s numerical range.

As you probably know, the computer uses scientific notation to
display numbers larger than nine digits long, with the number as a
single digit and eight decimal places, followed by the letter E (for
exponention) and the power of ten to which the number is to be
multiplied. Enter and run the following demonstration which shows
the variable A in use, being assigned to a number which is being
multiplied repeatedly by 10, and then printed.

28

100 REM XXSCIENTIFIC NOTATIONXX
110 A=1234

120 A=10%XA

130 PRINT A

140 GOTO 120

12340
123400
1234000
12340000
123400000
1,234E9
+234E10
1.234511
«2B4EL2
‘.$34[l?
1.234E14
1.;34?1
1.234E16
.0&34E17
+234E18
+234E19

You can see that after the number becomes nine digits long
(123400000), it is printed as 1 something, followed by E and a power of
10. Looking at the listing tells us another couple of things about
variables. The variable is assigned by just entering the name of the
variable (in this case, A), followed by an equals sign, and the value
which we want assigned to the variable. If we said A = 99, then
following this with PRINT A would produce 99. Line 120 looks a little
odd. The asterisk (*) stands for multiply in BASIC. Line 120 seems to
be saying that A is equal to 10 times itself, which — in terms of
standard arithmetic — is not true. Any line which assigns a value to a
variable has, as an optional word, LET in it. Some BASICs insist on the
word being used, so line 110 would have to read LET A = 1234, and
line 120 would read LET A = 10*A. BBC BASIC regards LET as
optional, but it is possibly easier to understand what is happening in an
assignment statement if you either use the word LET, or mentally
place it in position.

Try typing in things directly, such as LET B = 13, press RETURN, then
enter PRINT B, then RETURN again. A 13 will appear. Follow this by

29

entering B = 16, RETURN, PRINT B, RETURN. A 16 will appear,
showing that the LET is optional. Despite this, you may, as | suggested
a moment ago, prefer to use LET for the time being, until you are
familiar with assignment.

Integer variables can be used whenever whole numbers only (i.e. 8,
504, 33 or 2398) are used. These use up less memory, and are
processed more quickly than are ordinary variables, which can
accommodate floating point numbers. Integer variables are indicated by
the presence of a percentage sign following the name of the variable.

Enter and run this simple routine to see integer variables in action.

10 REM VARIAELES - INTEGER NUMERIC
20 AZ=4

30 FRINT A%

40 AZ=4,2

50 PRINT A%

You should see the number 4 printed out twice. The first time (line 30)
this is what you would expect, as the 4 had been assigned to A% in
line 20. However, in line 40, A% is assigned to 4.2 but the .2 is ignored
when the variable is printed. Although | pointed out that integer
variables used less memory, and were processed more quickly than
were floating point variables, in most cases the additional speed is not
significant. However you will find times when you want maximum
speed (as in programs using moving graphics), and in these the speed
difference can be quite significant.

30

String variables

String variables are a series of letters, followed by a dollar sign. Enter
A$ = “HELLO", press RETURN, then PRINT A$, RETURN, will give
you HELLO. ABECD$ = “THING A TRY A”, RETURN, PRINT
ABECD$, RETURN will give you THING A TRY A, complete with the
spaces. You can put anything, including numbers, symbols,
punctuation marks and letters within the quote marks, to be assigned
to a string variable. A series of letters and whatever, within quote
marks in this way, is known as a string.

The variable name does not have to be in upper case (capital) letters.
You can get lower case letters by pressing the CAPS LOCK key, next
to the CTRL key. Pressing the CAPS LOCK key again will return you to
upper case.

Crickets

There is, strange to say, a correlation between the temperature and
the number of times a cricket chirps each minute. The following
program converts the number of chirps per minute into the
temperature, in degrees Fahrenheit. Enter and run it a few times. Note
that the variable chirp is set equal initially to 80 in line 20. this is
converted into the variable temperature in line 30, and this latter
variable is used in the PRINT statement in line 40. The variable chirp is
incremented by a random number between one and seven in line 60,
there is a short delay (line 70) and then the program returns to line 30
to go through the whole process again. It will run for a long, long time
(until you exceed the highest possible number the BBC
Microcomputer can cope with) if you do not interrupt its running with
the ESCAPE key.

10 REM Chirp converter
20 chirp=80
30 temperature=INT((chirp/4)+40.5)

40 FRINT ‘"The temperature is "jtemperature
30 PRINT "when there are "jchirpi" chirps.”

60 chirp=chirp+RND(7)
70 FOR J=1 TO 800INEXT J
80 GOTO 30

31

»RUN
The temperature is 60
when there are 80 chirps.

The temperature is 62
when there are 87 chirps.

The temperature is 63
when there are 921 chirps.

The temperature is 64
when there are 29 chirps.

The temperature is 695
when there are 100 chirps.

The tempersture is 69
when there are 101 chirps.

Although it takes a little longer to type in long variable names, these
have a clear advantage over use of names like A, B and C2. You
know, without having to refer back, what each variable represents.
Here is another program which uses two variable names to help make
it clear what is going on. Enter and run this.

10 REM XXXVARTABLIESXX

20 WORD$="THE NUMBER IS

30 NUMEER=3

40 CLS

S0 PRINT 77 7WORD% ; NUMEBER

60 FRINT “"THE SQUARE OF " iNUMEBER
70 FRINT TAE(D) §"IS " INUMBERXNUMEER
80 FRINT “/"AND THE SQUARE ROOT™

90 FRINT "X& ";SQR(NUMEER)

32

To summarise:

(] Numeric variable — This can have any name, so long as it
starts with a letter and does not contain punctuation or
symbols

) Integer numeric variable — The name is as above, but with

a percentage sign at the end. This takes less memory, and
is processed more quickly than an ordinary numeric
variable, but can only be assigned to a whole [ie.
non-floating point) number

® String variable — This is a letter or combination of letters
and numbers, starting with a letter and ending with a dollar
sign, which is assigned to anything within quote marks.

Variable names of all three types may be of upper or lower case letters
(or a combination of these), but they do not mean the same thing.
That is, a$ is not the same as A$.

All variables can be assigned by use of a LET statement, which is
optional, followed by the name of the variable, an equals sign, and
then the value to be assigned to the variable.

INPUT

The INPUT statement is used to get information from a user while a
program is actually running. The computer stops when it comes to an
INPUT statement and waits for an entry of some kind from the
keyboard before it will continue with the execution of the program.

Enter and run the following, which shows numeric inputs in action.
The program will wait for you to enter one number, then press
RETURN, then wait for another number. After you have pressed
RETURN again, it will print the sum of the two numbers.

10 REM XxINFUTxxX
20 INFUT X

30 INFUT Y
40 Zm=X+Y
50 PRINT 2
=RUN
?3
74
9

33

As you can see, the computer generates a question mark while waiting
for your input in each case. That is OK so far as it goes, but you would
not have known what to do when you ran the program unless you
had read it in this book. There is a simple way to rectify this, by
programming in user prompts. The preceding program can easily be
rewritten so that the user has no doubt as to what he or she is meant to
do.

10 REM RKXINFUTXX
20 INFUT "GIVE ME A NUMEER",X
30 INFUT "AND ANOTHER",Y

40 Z=X+Y
B0 PRINT Z
=RUN

GIVE ™ME A NUMEBER?3
AND ANDTHER? S

-

Running this shows that the computer prints up the words within the
quote marks, adds a question mark, then waits for the input. If you
don’t want a question mark, then leave the comma betwen the end of
the material in quote marks and the name of the variable. You can
combine the inputs into a single line, as follows:

10 REM ®*xINPFUTXX

20 PRINT "GIVE ME TWO NUMEBERS,"

30 INFUT "FRESSING RETURN BETWEEN THEM",X,Y
40 Z=X+Y

50 FRINT Z

FRUN
GIVE ME TWO NUMBERS,
FRESSING RETURN BETWEEN THEM?3
766

69
Run this again, this time entering the numbers in one lot, separated by
a comma, before you press RETURN. That is, when it asks for the first
number, enter it as something like 3, 5 and you’ll see it will accept that
for the two numbers. Try it now and see.

The comma between the two numbers informs the computer that two
separate items of information have been entered. As it is looking for
two pieces of information, it will continue processing from this point.
You'll notice that the number you enter sits up hard against the INPUT
statement when it is printed. To get around this, you can put the

34

question mark within the quote marks, thep put a space or two, and
leave off the comma to suppress the question mark.

Here's a program now which shows a number of inputs. in action,
some using the idea mentioned above to move the entered figure away

from the input statement.

Bird Cage

The game is BIRD CAGE. In its first incarnation in England, this game
had the somewhat improbable name of Sweat-Cloth, and when
exported to the United States in the early years of the 19th century, it
was first known as Sweat. Its name changed through the years to
Chucker-luck, Chuck-Luck, Chuck-a-Luck or just plain Chuck.
Nowadays, because of the equipment used in the non-computer
version, the game is often called The Bird Cage.

The bird cage is an enclosed wire cage holding three dice. Players bet
on the likelihood of a particular number coming up. If, for example,
they place their money on six, and one of the three dice ends up with a
six showing, they get their money back. If all three dice show six, then
they get three times their money. It is a fairly simple game, but one
which arouses passion among bird cage devotees.

After the program listing is a line by line explanation of the program.

10 REMxxBEird CageXx

20 REMXXShowing wse of INFUTxX

30 MODEZ

40 M=30

50 GOSURZ?0

60 INPUT"Size of bet? "A

70 IF A>M THEN &0

80 FRINT ‘A%i"You are betting $"iA7’
20 M=M-A

100 INFUT"Which rmnumber will fall? "B
110 IF B<1 OR B:xé6 THEN 100
120 FOR C=1 TO 3

130 W=0

140 GOSUE 330

150 D=RND(&)

35

160
170
180
190
200
210
£20
230
240

250

260

FRINT ‘A%;"Died "3C:" fell "D

IF D=B W=AIFRINT‘A%;"ANnd you win *"iW
M=M+W

GOSUER 290

NEXT C

GCOSUER 330

GOSUE 330

CLS

IF M>0 THEN 30

FRINT/CHR$ (128+RND(SIISCHR$(141) 3
"The qame is over:; 8% Youw are broke'"
FRINT CHR$(1Z28+RND(6))3

CHR$(141) 1" The qame is over, as You are broke'"

270
280
290
300
310
320
330
340
350
360
370

SOUND 1,~1%5,RNDC(20)>+30,20

GOTOZ250

A$=CHR$ (L28+RND (&)
FRINTAS;CHR$(141)3i"8take is now $"M
FRINTA$;CHR$(141)3"Staske is riow $"M’
*¥FX 15,0

TIME=0

REFEAT UNTIL TIME-50

SOUND 1,-159,RND(128)+127,5

SOUND Z2,-153,RND(128)+127,5

RETURN

10—-20 REM statements for title, purpose

30
40
50

60
70

80

90
100

Sets the Mode to 7, the normal mode when you turn your
computer on

Sets the variable M, which is the amount of money you
have, to 30

Sets action to the subroutine starting at line 290
(sub-routines are discussed a little later in the book)

This INPUT statement gets the size of the player’s bet

If the player tries to bet more than he or she has, action
goes back to line 60 for another input

This PRINT statement uses A$ as the colour control code.
A$ is assigned in line 290. Assigning strings to control
colour in Mode 7 is discussed in the section of the book on
using the graphics

This line subtracts the size of the bet (A) from the player’s
stake (M)

This INPUT asks the player to predict which number
between one and six, will show when the dice fall

36

110

120200

210-220
230
240
250280
290
300-310

320
330-370

The player’s prediction is checked, and if it is greater than
six, or less than one, is rejected, and action goes back to
line 100 for a new input

This loop does a number of things. The variable W holds
the win, if any, and this is set to zero for each of the three
rolls. Line 140 sends action to the subroutine from line 330,
which makes a few noises, and delays a little while. A
delay like this is often used to enhance games. Too quick a
reaction is sometimes undesirable. Line 150 actually rolls
the die, and line 160 informs the player of the resuit of the
roll, using A$ to determine the colour of the line. Line 170
checks to see if the number shown on the die is the same
as the one predicted by the player, and if it is, prints out a
win message, and assigns W to equal the size of the
player’s bet. Line 180 adds this to the money total. If the
player has not won on that roll, W still equals zero (from
line 130) so the player’s total is not updated. Line 290 goes
to the subroutine which prints out how much money the
player now has.

The delay/noise subroutine is called twice, to give a longer
delay between rounds of the game.

Clears the screen

This checks to see if the player has any money left (i.e. if M
is greater than zero) and, if so, sends action back to line 50
for a new round.

If the player is broke, prints out an endless message to that
effect, in doubleheight letters. CHR$ (141) puts the letters
in double size.

Selects a colour code, which is assigned to A$

Prints out the money the player has left, using double
height letters again

Clears the input buffer.

This is the sound/delay subroutine which is called
throughout the program.

37

Compound Interest

Here is another program to show the INPUT statement in action. It
also shows the use of explicit names for variables, which make it easier
to understand what is going on. You may well want to save this
program on cassette, as it has a degree of practical application.

10 REM SIMFLE AND COMPOUND

20 REM INTEREST

30 CLS

40 INFUT ‘/ “PRINCIPAL",PRINCIFAL

S0 INFUT"INTEREST",interest

60 INFUT -"FOR HOW MANY YEARS",YEARS

70 CLS

80 FRINT /M e e e e e e e
?0 FPRINT"YEAR SIMFPLE COMFOUND DIFFERENCE
100 PRINT —~———— oo e e
110 FOR MONEY=1 TO YEARS

120 SIMFLE=FRINCIPAL+MONEYXFRINCIFALX(interest/100)

130 COMFOUND=INT(100XxFRINCIFALX(l+interest/100)~MONEY)/100
140 DIFFERENCE = INT(100x(COMFOUND-SIMFLE))>/100

150 PRINT;MONEY; TAE(8) jSIMFLESTAE(17) ; COMFOUND;

160 PRINT TAER(27);DIFFERENCE

170 NEXT MONEY

1]
"

=RUN

FRINCIFAL?100
INTEREST?8,.25

FOR HOW MANY YEARS?12

YEAR SIMFMLE COMFOUND DIFFERENCE

1 108.25 108.25 0

2 116.5 117.18 0.68

3 124.7% 126.84 2.09

4 133 137.31 4,31

5 141,25 148,64 7.+38

b6 149.5 160.9 11.39
7 Y37 .75 174.17 16.42
& 166 188.54 22.54
9 174,25 204.1 29.895
10 182.5 220.94 38.44
11 190,75 239.17 48,42
12 199 258.9 09.89

eas 4ean cess sase 400e ses eae s0ss 4TES 4ae S0e Sase 4G4t bbe ees cere S4RS SPNe SIS SHee Ple SHOE Sdee Sewe SE0S Shes Suse SIS S0ee ere Gete Fese aeee sees Sase

38

This program works out compound and simple interest, for a principal
and interest rate you determine, over the number of years you decide.
The variable ‘interest’ is written in lower case letters to prevent the
computer thinking it is the function INT followed by something
incomprehensible. From time to time you’ll notice that variable names
will be rejected by the computer. This is because you will have tried to
use a reserved word (i.e. a word from the vocabulary of BBC BASIC).

The final program in this section on INPUT is also a useful program.
You use it to determine the arithmetic, or harmonic, mean from a list
of numbers which you enter when the program is running. Again,
you'll see that explicit variable names have been used.

Arithmetic mean

10 REM ARTITHMETIC
20 REM AND HARMONIC MEAN
30 MODE 7
40 FROCMenu
IO RS IV NOK R KK K KK KK
60 REM ARITHMETIC MEAN
70 FRINT TARCLZ,3)3"ARITHHMETIC MEAN®
80 FRINT/VENTER THE NUMEBERS YOU WISH ME"
Q0 FRINT "TQ USE TO DETERMINE
THE ARITHMETIC MEANY
100 FRINT “ENTER E TO END YOUR INFUTY
110 INFUT Q%
120 IF Q$="" THEN 110
130 IF Q$="E" THEN 170
140 SUM=SUM+VAL (Q%$)
190 TalLY=TaLLY+1
160 GOTOLLO
170 FRINTZ/"THE ARITHMETIC
MEAN IS "iSUM/TaLLY
180 PROCwmeru
L0 RE MK MK K K K KKK
200 REM HARMONIC MEAN
210 PRINT TABRC12,3) 3" "HARMONIC MEAN"
220 PRINT/"ENTER THE NUMBERS YOU WISH ME"

39

230
240
250
240
270
280
290
300
310

320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

FRINT "TO USE T0O FIND THE HARMONIC MEAN"

FRINT "ENTER E TO END"

INFUT Q%

IF Q$="" THEN 2350

IF Q$="E" THEN 310

SUM=SUM+(1/VAL(Q%$))

TALLY=TALLY+1

GOTO250

FRINT/"THE HARMONIC MEAN IS "3
1/7(SUM/TALLY)

FROCmernu

TR IV 20 26 00 K 3K K K K XK

DEF FROCmerw

FRINT//"SELECT THE FROGRAM YOU WANT:"

FRINT/TAE(S) "1l - ARITHMETIC MEAN"

FRINT/TAB(S) "2 ~ HARMONIC MEAN"

FRINT/TAE(D)$1"3 ~ TO END THE PROGRAM"

Z=GET

Z=7-48

IF Z=3 END

CLS

TALLY=0

SUM=0

ON Z GOTO 40,200

ENDFROC

+RUN
SELECT THE FROGRAM YOU WANT?Z

1 - ARITHMETIC MEAN
2 — HARMONIC MEAN
3 -~ TO END THE FROGRAM

ARITHMETIC MEAN

ENTER THE NUMEERS YOU WISH ME

TO USE TO DETERMINE THE ARITHMETIC MEAN
ENTER E TO END YOUR INFUT

7100

234

?54.678

234

?-664.86

7234

PE

40

THE ARITHMETIC MEAN IS 31.96%9664667
SELECT THE FROGRAM YOU WANT?S
1~ ARITHMETIC MEAN
2 - HARMONIC MEAN
3 -~ TO END THE FROGRAM
HARMONIC MEAN
ENTER THE NUMBERS YOU WISH ME
TO USE TO FIND THE HARMONIC MEAN
ENTER E TO END
?100
7234
?04.678
7234
?-664.86
234
?E
THE HARMONIC MEAN IS 151.494768

GOTO

One important ability in programming is to be able to branch to
different parts of the program during execution. Without this, the
program would always run from the lowest line number to the highest,
and then stop. One statement which allows you to move around the
program at will is GOTO. The GOTO statement consists of a line
number followed by the word GOTO and another line number, or
followed by a calculation (such as GOTO 2*X, or GOTO 200 + 340).

If the computer came across 140 GOTO 190, it would jump
immediately from line number 140 to line 190. This is called an
unconditional branch. That is, it is a jump that does not depend on the
existence of any condition. Once at line 190, the program continues to
execute in order, until it comes to the end, or comes to another line
directing it somewhere else.

You can use GOTO to produce programs which run for ever. These

can be quite effective, especially at the end of a game. Run the
following to see this in action:

10 PRINT "YOU HAVE WON!!!! "3
20 GOTO 10

41

IF.....THEN GOTO

The IF statement has a similar function to GOTO, but it will only
reroute the program IF certain conditions are fulfilled. This creates a
conditional branch. The IF statement is made up of a line number
followed by the words IF and GOTO separated by a relationship which
must be determined before leaving the line. There are six relation
operators which can be used to compare two variables. These are:

equal to

greater than

less than

not equal to

greater than or equal to
less than or equal to

AVAAV
v

These operators are used to connect the IF. THEN statements to
form the condition to be determined.

Here's an example:
70 IFZ>= 10 GOTO 100 or 70 IF Z > = 10 THEN 100

This will be read by the computer to mean IF the value of the variable Z
is greater than, or equal to, 10 THEN the program will branch to line
100. If Z us less than 10, the program will continue normal execution,
with line 80.

This gives the computer decision-making power, the real source of a
computer’s apparent ability to think. You can use IF...GOTO to
terminate a ‘win condition’ message such as we used before after a
certain number of cycles. Enter and run the following:

10 X=0

20 PRINT "YOU HAVE WON!' ! "3

30 X=X+1

40 IF X<25%5 GOTO 20

This will ensure that YOU HAVE WONI!!!! is printed out a limited
number of times.

IF. .. is not just used to branch to new lines. NEW the program, and

enter the following. You'll see it has a similar effect, although the
IF.... is not just sending the program to a line number.

42

10 X=0
20 X=X+l
30 IF X<2%5 PRINT "YOU HAVE WON!'t: o
40 GOTO 20

This program is not as useful as the other one, as it will not terminate
even when it has finished printing out YOU HAVE WON!!!! You can
easily discover this by running it, then pressing ESCAPE, and then
PRINT X, RETURN.

This does not stop the program from demonstrating that IF can be
followed by a number of commands. You can chain the results of an IF
statement. If the initial condition is false, the computer will forget that
line, and move onto the next one. Try this example:

10 X=0

20 X=X+

30 TF X<23 FRINT "YOU HAVE
WON! L "3:GOTO 20

40 END

This will only execute the jump back to line 20 if X is less than 25. The
PRINT message and the GOTO 20 are both conditional on the result of
the IF statement. If X is not less than 25, the computer will not process
the rest of the line, but will move onto line 40, to END.

The BBC Microcomputer is a little more tolerant of syntax in
statements than are many other computers. The word THEN is implied
in an IF statement (IF the cat is hungry THEN feed it), but it is not
necessary to include it. IF X = 25 THEN GOTO 40 is accepted, as is IF
X = 25 GOTO 40 and IF X = 25 THEN 40.

It is perhaps worth mentioning that, in other areas, the BBC machine is
a fairly dogmatic creature. If you specify that a program branch is to be
made only if the value of Z, for example, is equal to 6, the program will
continue in a never- ending loop if Z is not exactly equal to 6, no matter
how close it is (like 5.999999). If you think the value might be
fractionally different from the one you want as a condition for
branching, make sure you specify that the relational operator should
be, say, greater than 5.5, or greater than or equal to 5.9, rather than
just equal to 6.

To show the flexibility of the IF statement, enter and run the following
program, then return to the book for a discussion of the various parts

43

of the program. This game is based on one which was played in the
film “‘Last Year at Marienband”’. There are a certain number of
‘matches’ at the start of the game, and you and the computer take it in
turns to take one or more away. The maximum number you can take is
shown at the top of the screen. The player who takes the last match
loses. The computer is not infallible.

Matchsticks

10 REM XMATCHSTICKSx
20 E=031Z=15+RND(9)$CLS
30 IF 2Zx(Z/2)=Z THEN Z=Z+1
40 H=Z+RND(2)
S0 FRINT /7"MAXIMUM TO TAKE IS "jH’
60 IF E>0 FRINT "YOU TOOK “3E}
TAEC(20) 3" TOOK "Q‘”
70 FOR K=1 TO Z
80 FRINT K3 "3
20 IF RND(4)=1 PRINT
100 NEXT K
110 INFUT/"HOW MANY WILL YOU TAKE",E
120 IF E>xH OR E<1 THEN 110
130 CLSiZ=Z-E
140 IF Z=0 PRINTZ777"1I WIN"IEND
150 Q=Z-1-INT((Z~1)/(H+1) IR (H+1L)+RND(4)~1
140 IF Q>Z OR Q<1 OR Q>H THEN 1350
170 Z=Z-Q
180 IF Z=0 FRINT “7"X TOOK "3
Q3" S0 YOU WIN"IEND
190 GOTO S0

Here is a sample run of it:

(L]

MAXIMUM TO TAKE IS 3
1 2 3 4
8 9 10 11 12
15 16 17 is8 19
HOW MANY WILL YOU TAKE?3

MAXIMUM TO TAKE IS 3

44

YOU TOOK 3 I TOOK 3
1 2
3 4 S 6
7 8
? 10 11 12 13

HOW MANY WILL YOU TAKE?2
MAXIMUM TO TAKE IS 3
YOU TOOK 2 I TOOK 3
1
2 3 4 S)
HOW MANY WILL YOU TAKE?1
MAXIMUM TO TAKE IS 3

YOU TOOK 1 I TOOK 2
1 2 3 4 5

HOW MANY WILL YOU TAKE?1

MAXIMUM TO TAKE IS 3

YOU TOOK 1 I TOOK 3
1

HOW MANY WILL YOU TAKE?1

I WIN

10 Title

20 Assigns the variables, E is the number of matches taken by
the human player, Z is the starting number of matches

30 This IF statement checks a condition, and if itis so (i.e. Zis
an even number) adds one to it

40 Assigns a value of 3 or 4 to H

50 Prints out the value of H

60 If the human has made a move (i.e. E is greater than 0)

then PRINTs

70—100 Prints the numbers corresponding to matches left, using

the IF in line 90 to randomly start a new line

110 Accepts the player’s input

120 Uses the IF statement to check the validity of the player’s
move

130 Clears the screen, deducts the player’'s number from the
matches left

140 Uses an IF statement to see if the game is over. The END is
ignored if the IF condition is found to be false

150 Works out the computer’s response

160 Uses an IF statement to check three conditions, any one of

which (if true) would mean the computer had thought of
an illegal move. If any of these three conditions is
evaluated as true, the computer returns to line 150 for

another move
170 Subtracts the computer's move from the matches

180 Uses an IF to see if the number of matches is zero, and if it

is concedes defeat, and ENDs
190 Sends action back to line 50 for another round

45

IF...THEN...ELSE

The BBC Microcomputer’s dialect of BASIC contains a very useful
variation of IF. It can be programmed to do something if the condition
being tested for is found to be true, and something else, other than
just go to the next line, if the condition is found to be false. Try the
following, entering a series of numbers from one to nine. Line 1020
determines that any number except five triggers the message THAT
WAS NOT FIVE, and entering FIVE triggers THAT WAS FIVE. Notice
that the THEN is not needed in the line, although its presence is
implied.

1000 REM IF THEN ELSE

1010 INFUT"ENTER A NUMEER FROM ONE TO NINE"A

1020 IF A=5 PRINT "THAT WAS FIVE" ELSE FRINT "THAT WAS NOT FIVE"
1030 GOTO 1010

Graphs

You can use IF...THEN...ELSE to produce some very interesting
graphs. You simply enter the function you would like graphed, in
terms of X, in line 100. This is not the most efficient method of
graphing on the BBC Microcomputer, but it is useful at this point to
illustrate IF...THEN...ELSE. Try the formulae given, then create a
few of your own. It is probable that you will have to change the scaling
for certain formulae.

10 REM GRAFH

20 MODEZ

30 REM Enter the function gou would like
40 REM graphed, in terms of X,
%0 REM amd Y, im lirme 100
60 FRINT

70 FOR Y=10 TO - 10 STEPFP -1
80 FRINTY?

20 FOR X=-10 TO 10

100 IF Y-X%X<.95 FRINT "x"i ELSE FRINT "."%
110 NEXT X

120 FRINT

46

130 NEXT Y
140 FRINT TAE(L10)3"098765432101234567890"

FRUN

T OMKOKMMMI 5 5 0 o 0 0 o KKIOKKNKXK
QUMAMANONN & o 0 o o KKK KKIKNK
EVMMMMMMMN 3 o o o o KHHOKKKOKK
FROKMOKKROKK o 4 o o o BOKOKNOROKK X
SRMMKMMENK o o 0 ¢ o KHEKKKKKK
ERKHKEKMK o o o o o KKKKKKKK
%MK MROKMROK 5 o o JCHOK KKK AOK K
TIMOUNORMOMNOKNK o o o 3 K M KM K
2RMAOKROR MK ¢ ¢ o 2K M ROROK RO K
L3RR NG N KKK K o K KK KK K K
0 34 35 3% 2K 3K 306 K KKK K K 3K 3K K 0 K KK K
e L 3K KKK KKK KKK OO K K KKK X
e 22 3 3K K KKK K 3K 3K 3K K 3K K 3K 3K K K K
e T3 KKK KK DK 3K 3 K 3K 3K 3K 3K 3K K K
e 4 350 33K K0 B DK 3K 3K K O KK K K K K
e S50 3K 3K K K 3K KK 3K KK K K 0K KK K K
ey S K KKK KK 3K DK K K 3K K 3K 0K K K K K
e 7KK KK TR RO K K KK K K K KKK K
== £3 K K K KK 30 M K O K K K K KKK K
e G 3K K 3K KK KK 3K 3K K 3K K 3K K KKK K K K K
e)06 3K 2620 K D1 9K MC 3K 2K 386 3K 3K 9K 0 O K K K
098765432101 234567890

-

47

100 IF
=RUN

Y-~ XXX

10.

P
8.
7
6
S
4.
3

2

1.
0.

""1¢

""20
""30
"“40

""50

""10 ¢

100
*RUN

IF

10,
P
8.
7
b
e
4.
3.

2,

1,
0.
-1

-2

L]

L]

+

+

L]

*

]

*

L]

<

+

*

oS

o FMKMKAOK MWK

<

<

-

°

<

+

]

+ 0 4 @

-

-

FRINT

o KEKKXKX ,
o KMAOKK
o HOKKXKK ,
¢ XKXXKXKX
@ KHKKK ,
e XXX,
« KHXK
e XXX,
O)KOQ

*

L4

¢

*

]

*

+

L

+

*

]

®

ABSCY) ~XXX,

¢

.

+

L4

*

*

o

+

¢

*

+

+

]

*

+

+

+

¢+

L]

¢

¢+

*

+

+

®

]

+*

L]

LK 28 4

o KIHKKKXK 4 o
o o MEKKNK o o o
o o HOKAOKK o
o KHKKXKX ,
» KEKXKXKXK o
+ HAOKKK o
o KXKX,
» XXX,
¢ KXKX

0‘*00

*

+

<

*

L4
¢

+

LN 2 2 2 J

v e Xy
e KXKX

L3

¢

+

o

*

¢

+

4+

¢

+

+

¢

¢

*
¥

+

+

<

L]

ELSE FRINT ".

*

+

* e o

0987654321012345467890

FRINT

]

+

llxll ;

ELSE FRINT

"ne
#

*

3
4

100 IF

RUN

SQR(ABS(YXXXZ)) ~X<, 5
llxll ;

10.
e
.
7

({30

e

4

3,

2.

1
0.
....1 .
-2 .
""3 ¢
b}
""t} »
....6 »
....7 .
"‘8 *
-
”10¢

098

+

L4

76

¢

¢

&

FRINT

ELSE PRINT ",

LKA

+ e
32

.x’?
P X,
QXQ
Q*’
e Ky
e X,
0o X
e X,
Qxé

e Xy
+ Ky
e Ko
e Xy
« X,
e Ko
o XKy
e X,
+ X,

10123

49

®

+

*

*

+

+

+

+

*

L

+

+

L]

L4

L 4

+

L}

¢

4

+

®

L 2K B B AN J

R
v 00 XX
o KKXXK

o HKAKKK XK
o MOROKOKOKOKK K
o ORI MK 3OO
o KK K NCOK K K XK K
o KK KK HCONEK KON0OK XK
o KAH K XK XK XK
o o o KEKXKHKKK
+ 00 KKXKK

+

¢

14

*

*

*

L]

+

¢

L4

¢+

+

s 2 o XX
* ¢ e 0
s a0 e
L R K IR 2R
v a0 e e

+ ¢ *

B67890

100 IF AES(YXX)-XxXx,5 FRINT

"x";

*RUN

ELSE FRINT

"nooae
LA 4

10 & ROUROKMMOKK KM KKK KKK
o WROEMROMMA o KA MMMABHKNK
o MACKMOK KK 4 HAOKNOKKXK 4
o MACHAOKN o ROKMMMNK 4 o
o MOMOKROK o MHKKKXK ,
o MMHKE L MKNK 5 o
e KKK o KKK ,

P
8,
7
(-
S
4,
3

2

1.
0,

100 IF YXX-XKX/1.130,25
T

FRIN

FRUN

¢

]

®

°

?

+

L}

®

]

*

¢

L4

*

¢

¢

*

*

+

<+

+

L4

¢

¢

¢

*

*

<+

-

o XK, KK, o
Q‘xOXQOQ
L B R B B BN 4
L B I R A 2

EEEEEEE
2 e KoKy g

o KK 4 HKXK o
oo HOKOKH L KEKKK 5 o
o KORMKK o KKKKK 4
o HOKMKKK o HORMKMKNK 4
o MOKOKIKAKOKK o HKMKMAOKK o o
o KKK K o HK AN
=10 ¢ KORAMMOKAOKEKK o HOKKK KK KKK o

098765432101234567890

llx‘l ;

¢+

¢

*

+

®

¢

L]

2

L]

L

+

L4

+

4+

ELSE FRINT

L

L]

°

¢

L]

+

¢

¢

¢

L4

®

*

oo s o KKK M KKK N

* © ¢ @
< L - L4
L < > <

<>
s
»

0000****00
0000"**000

?000**0000

L 2K 2R K 2K 2K 2R 2K 2% 1

50

¢

@

+

L]

*

L4

L]

]

+

¢

*

o FOKOMOKMOKHOKK o
o HOKKNOK KKK & o
o KEKEKMKK o
o ROKHNNK o &
o KUOKNKK

L]

L4

*

¢+

1]
L]

°
¢

Deocoteeesoscsocovcase
Ll ecto st e ottt 00 e
” .
A Y I R

“B3eeoco s o KEK s o cooovson

e s e e o KEXX, 4 s s o e s 0

e e b s s MEEKK, L s e s a e

”é»coexmxmxxooooboooooo

“70@@*****#*00000099000

=8 HEAOKKKHKK s 6 s 00 000000

P MAOKMAMAMENK ¢ o ¢ 6 0 0 ¢ 0044

“1U*mmm*mm***¢¢0¢+0¢eooo
09874654321 01234567890

FOR/NEXT loops

FOR/NEXT loops are additional useful parts of your BASIC working
tools on the BBC Microcomputer. It makes sense to study them now,
because the last series of programs relied heavily on two FOR/NEXT
loops, the Y loop which started at line 70 and end at 130, and the X
loop which ran from line 90 to line 110. Because these are slightly more
complex than the simplest FOR/NEXT loops, we'll leave the
discussion of those alone for the time being.

A FOR/NEXT loop is made up of two statements used to control a
series of cycles of a part of a program. FOR begins the loop, specifying
how many times the loop is to be executed, and the NEXT statement
occurs at the end of the sequence, returning the program to the
statement line following the one containing the FOR command.

FOR statements are made up of the line number, following by the
FOR, a numeric variable (a single letter, or any combination of letters
and numbers starting with a letter, but without punctuation marks or
symbols), an equals sign, a numeric expression (a number, or a
previously assigned numeric variable), the word TO and finally,
another numeric expression (number of previously assigned numeric
variable) which is different from the first one. That may sound
incredibly complicated, but it is really quite simple.

51

The FOR line reads:

100 FORJ = 1 TO 100

or

100 FOR CAR = ATO B

The NEXT line, which terminates the loop, is of the form:
200 NEXT J

or

200 NEXT CAR

You can omit the control variable (the J or the word CAR) after the
word NEXT, but it is best in the early stages of your programming to
keep it there, just so you know what is going on.

The NEXT statement then, is made up from a line number, the word
NEXT, and the variable set as the control in the FOR statement, earlier
in the program. The NEXT sequence is used solely to tell the computer
when the sequence of programming which is being repeated is to stop.
When the value of the control variable (J or CAR) reaches the value set
in the FOR statement (the second numeric variable set in the FOR
statement), the program passes through the loop for the final time and
then continues with the line following the one containing the word
NEXT.

Enter and run these simple examples:

10 FOR A=1 TO 10
20 FRINT ,0,2XA, AXA

30 NEXT A
=RUNM
1 2 1
2 4 4
3 b6 9
4 8 16
t¥) 10 25
6 12 36
7 14 49
8 16 64
9 i8 81
10 20 100

10 A=5

20 B=1é

30 FOR conmtyrol=a TO B

40 FRINT ;control;2xcontrol,controla?
50 NEXT control

*RUN
S 10 23
é 12 36
7 14 49
& 16 64
9 18 81
10 20 100
1l 22 121
12 24 144
13 26 169
14 28 196
1% 30 225
16 32 206

In the first example, the control variable is A, and line 20 prints out A
itself, two times A and A squared. Note that the limits of the control
loop are stated explicitly in line 10 (1 TO 10). In the second example,
the control variable is a word, ‘control’. It performs exactly the same as
A does in the first example, with line 40 printing out the value of
control, or two times control, and of control square. Notice that the
little up arrow (found two keys to the right of the zero key) means
‘raising to the power’, so using this arrow followed by a 2 is the same
as multiplying something by itself (as at the end of line 20 in the first
example).

Note that the limits of the FOR/NEXT loop are two variables, A and B,
which have been previously defined. You will find there are many
programs when you will want a limited FOR/NEXT loop, with the
limits a result of things that have occurred elsewhere in the program.

53

Nested loops

As you've just seen, a FOR/NEXT loop allows us to alter the value of
one variable (by a count of one in the cases we’ve studied), to repeat a
programmed series of events a specified number of times. Now,
suppose there were two or more variables to be operated upon. In this
case, you would need to vary both values. This can be done quite
simply by nesting loops, in which one loop, controlled by one set of

FOR/NEXT statements, operates within another set.

Enter and run the following program, which nests a B loop within an A
loop. It also contains a third loop (M), to slow things down, but the

important loops for this demonstration are A and B.

10
20
30
40
50
60
70
a0

When you run this, you’ll see it prints out the multiplication table, from
1 X1, to 12 X 12, pausing slightly between each set of numbers. The M

REM FOR/NEXT - NESTED LOOFS
FOR A=1 TO 12
FOR EB=1 TO 12

FRINT B3
NEXT E

FOR M=1 TO 1000INEXT M

FRINT 7
NEXT 6

times

II;A;II

is

";ﬁXB

loop puts the pause between each set. Part of the run is:

LM

times
times
times
Limes
times
times
times
times
times

NN NN N NN N

Limes §
times 8
times 8

54

is
is
is
is
is
i
is
is

i

i
is

is

28
e

9
42
49
5é
&3
70
77
84

a8
1é
24

4 times 8 is 32
Botimes 8 dis 40
6 Limes 8 is 48
7 btimes 8 dis Sé

In this program, the control variable A stays at one, while the loop
controlled by B runs from one to 12. After the pause (line 60), the
control variable A increases by one, and the B loop runs through
again, this time with the A equal to two, and so on, until the B loop has
run through with the A equal to 12. There is no reason why you should
have only two nested loops.

It is vital that the control variables of nested loops be in the correct
order, that is, the first loop begun is the last one to end. Try swapping
lines 50 and 80 of this program,and see what happens. You should find
it prints out the ‘one times table’, and then stops with the error
message ‘No FOR at line 80'.

Remember that the control variable for the NEXT statement need not
be stated when programming on the BBC Microcomputer. The clever
machine automatically knows which NEXT corresponds with which
FOR, thus removing the possibility of incorrectly nesting loops.
Change lines 5@ and 80 into just NEXT, and delete the M from the end
of line 60. You should find the program runs perfectly. Although you
can omit the NEXT control variable, | repeat the suggestion given
earlier to leave it in, just to make it clear in your mind what is
happening.

55

STEP

For this next discussion, we need the program TABULATOR ROCKET
RANGE which was introduced earlier. You'll recall | suggested that
you should save it on tape so you could load it in again when needed.
in case you did not do so, here is the listing again.

10 REM TABULATOR ROCKET RANGE
20 MGDEY

20 FOR J=10 TO 1 STERF -1

40 FPRINT 777

D0 Te=TIME

S0 REPEAT UNTIL TIME-T:>50

J0 MEXT J

80 REFEAT

D0 QA=RND(Z9Y+L
100 U=128+RND (S
110 FOR rocket=1 TO 7IREAD ROCHETY

120 FRINT TABCO) SCHRECLZ29Y SV CUSTAB Q) SOHRS (D

ROCKETS s TAB (36 SCHRECL2ZYy
13230 NEXT roclket
140 T=TIME
150 REPEAT UNTIL TIME-T=2
160 SFACE =RND(L0)
120 SOUND Lo, ~RND(S)~10,BND(3)Y~1,RND(Z0)
180 FOR print=1 T0O SFACE
120 PRINT TABCOYSCHRECLZ92§ ("3 TARE7 Y 1y
200 MNEXT print
210 RESTORE
220 T=TIME
£30 REFPEAT UNTIL TIME~T=2
240 UNTIL FALSE
250 DATA " 4+ MY s M
260 DATA M 444 V" gt M
2?0 D‘:‘.TA 1" +++ Il,ll +.‘.+ "
280 DATA v xs v

The important lines for our discussion at this point are 30, 40 and 70.
You'll see when you run the program that this causes the numbers 10
down to 1 to appear on the screen. The word STEP (in line 30) after
the 1 controls this. Change the —1 following the word STEP to -2,
and see what happens. If no STEP is specified, the computer assumes

56

you want a positive STEP of 1, which is what has been needed in the
earlier examples in this section.

The STEP command, then, is used within a FOR/NEXT loop to allow
the user to specify the value of the increment (or decrement) of the
control variable. The STEP does not have to be a whole number,
although you must ensure — if the number which follows the word TO
in the initial FOR statement is lower than the number before the TO —
that the STEP is negative. Try the following examples:

10 FOR A=100 TO 1 STEF ~12.9
20 FRINT A
30 NEXT A
RUN
100
87.59
7%
2.5
a0
375

Y~
Yiaw]

12.5

10 FOR A=10 TO 1 STEF ~0.719
20 FRINT A
30 NEXT A
*RUM

10
9,281
8.062
7.843
7.124
6400
S.686
4.967
4.248
3.5929
<481
2.091
1.372

57

REPEAT/UNTIL

Whereas a FOR/NEXT loop should always run its full course, another
pair of statements — REPEAT/UNTIL — are available on the BBC
Micro which will cycle through a loop only until a specified condition is
satisfied. You'll see, if you look back at the listing of TABULATOR
ROCKET RANGE, in lines 50 and 60, the REPEAT/UNTIL sets a
variable T to equal the value of the internal clock (TIME), then holds
the program with a REPEAT UNTIL until the difference between T and
TIME is 50. Also within this program is a master REPEAT/UNTIL loop,
which starts in line 80 and terminates (UNTIL FALSE) in line 240. A
REPEAT loop which terminates with UNTIL FALSE will run for ever, or
until BREAK is pressed.

10 MODEZ2

20 REFEAT

30 GCOL 0,RNDCL1&)-1

40 MOVE RND(LZ280) ,RNDC1024)

90 FLOT 835,RND(1280) ,RNDC1024)
40 UNTIL FALSE

You'll find this simple program (which you should run in Mode 2
changing line 10 to Mode 5, if you have a Model A) produces a
splendid demonstration of chaotic triangles. Note that the REPEAT
(line 20) and UNTIL FALSE (line 60) makes the program run forever.

Now try the next program, which uses the UNTIL as a specified
control. The program is written for a Model B machine, but will work
adequately in Mode 5 on a Model A. It produces some startling results,
as though a stone has been thrown at the centre of the TV screen.

10 REM ®XxXEroken glass¥XXx
20 REFEAT

30 MODEOD

40 REFEAT

S0 A=RND8) -1

G0 B=RND(8)-1

70 UNTIL AR

80 VDU 19,0,E8,0,0,0
0 VDL 19,1,48,0,0,0
100 REFEAT

110 C=RND(1280)

120 D=RND{1024)

58

130 MOVE 640,500

140 DRAW C,D

1E0 UNTIL RND(S50)=25
160 UNTIL FALSE

There are three REPEAT/UNTIL loops. The first one starts at line 20
and terminates at line 160. This is the master loop, which continues for
ever. The second loop starts in line 40 and ends in line 70. A and B, the
random numbers calculated in lines 50 and 60, control the foreground
and background colours for the ‘broken giass’, and this loop cycles
until A is different from B (see line 70). The third REPEAT/UNTIL
operates from line 100 to 150, and cycles until the random number
generated in line 150 is 25. You can work with this program to produce
a number of variations. One variation would ensure that every line
plotted was in a random colour, so that the background changed
colour slowly, but the foreground colour changed for every line.

GOSUB and RETURN

A subroutine is a block of program within a larger program which
performs one specific task. The main program is executed, line by line,
until the subroutine is called, by the GOSUB command. The computer
goes to the specified number, works through in line order from that
point, until it hits the word RETURN. This is the signal for the
computer to return to the main program, to the line after the one
which sent it to the subroutine.

A subroutine is useful if a particular set of calculations has to be carried
out a number of times within a program, and at different places within
the program. For example, in a financial program, there may be a
number of VAT calculations to be done at different points within the
program. Whenever this need arises, the program is told to GOSUB,
and it stays in this subroutine until it hits the word RETURN, when it
returns to the line after the GOSUB command.

A subroutine is written exactly like the main program, except thatitis a
program within a program, and is bounded by two lines, one
containing the GOSUB and the other is the RETURN line. The GOSUB
command is made up from a line number, followed by the word
GOSUB, and another line number. The line 40 GOSUB 100 tells the
computer to branch to line 100 and continue executing the program in
order, just as if line 40 had said GOTO 100. However, when the
program reaches a line containing the word RETURN, the action

59

reverts to the main program, at the line number which follows the one
containing the GOSUB statement (in this case, the first line number
after 40).

A simple example, showing GOSUB and RETURN, is as follows. Enter
and run it a few times, then come back to the book for a discussion on
it.

10 REM xxxgosub/return demoXxx
20 CL.S

30 REFEAT

40 INPUT /" "Enter & number "A

S0 GOSUER 100

60 UNTIL FALSE

70 FEM 000K 3K K K K K K K K KK K

80 REM Subroutine follows

QU REM 22 5K MK K K K KK K K XK K

100 FPRINT ‘"Your number is "iA
110 PRINT A" squared is "JAXA
120 PRINT “"The square root of "iA

+ 1 15 [TIE Y o]

130 RETURN PSAR<A)

=RUN

Ernter a number 4573

Your number is 4373

4573 squared is 20912329

The square root of 4573 is 67 .62392603

After line 20 clears the screen, lines 30 and 60 set up the master
REPEAT/UNTIL loop. Line 40 asks you to enter a number, using
INPUT, then line 50 transfers control to the subroutine starting at line
100. The required calculations are carried out, and the results of them
printed, within the subroutine, then line 130 returns control to the line
after the one which sent control to the subroutine that is line 60. As
line 60 is the termination of the REPEAT/UNTIL, action goes back to
line 40, where a new number is requested, and the whole merry dance
begins again.

Enter and run the following program, which plays a kind of
BLACKJACK, to see subroutines doing something a little more
interesting than the demonstration we’ve just run.

The card game Blackjack is, as | suppose you know, pretty popular. In

his book Beat the Odds, Microcomputer Simulations of Casino
Games, (Hayden, 1980), Hans Sagan says it is “‘probably the most

60

popular and widely-played banking card game in the States. It is
played in gambling houses, private clubs, political clubrooms,
barracks, troops transports, back rooms of all kinds, and places you
may never have heard of'’. With a recommendation like that, how
could the program fail?

Mr Sagan'’s opinion is backed up by John Scarne, who points out in
his authorative work Scarne’s Encyclopedia of Games: ''Blackjack is
the most widely-played banking card game in the world”. Sagan
points out that Blackjack is ‘‘the one casino game where the player
may have a chance”’. Part of that chance is based on the fact that the
cards removed from a pack as a game is played change the odds of
other cards appearing — and knowing the odds can be of some benefit
in deciding what to do. The player’s slight advantage is stymied in this
version, because the BBC Micro has somehow acquired an infinite,
constantly-replenished deck of cards.

Despite this, the computer plays reasonably well, and will certainly
give you a run for your money. There is no direct betting in the game
and this is a feature you may well want to add in due course. You may
also, when you feel confident of your programming ability, change the
program so that it goes through a pack of cards before there is a need
to reshuffle. Enter and run the program, then return to the book for a
discussion on it.

10 REM xxElack jackxx

20 REM xx(C) Hartnell 1982xx

30 EB$="The BEC Microcomputer has "

40 C$="The mere human has "

50 M=0:MODE7:GOT0230

60 CA=RND(11):{IF M>0 FROCsketch

70 IF CA=11 AND D+CAx»21 CA=1

80 D=D+CA

2?0 IF M>1 AND CA<>1 AND CA+11 FRINTCHR$(128+
RND(4));CA}" has been dealt”

100 M=M+1!RETURN

110 CA=RND(11):PROCsketchiIF CA=11 AND E+CA>21 CA=1

120 TIME=0{REPEAT UNTIL TIME:»100:E=E+CA

130 IF M>1 AND CA<>1 AND CA<11 PRINTCHR$(128+
RND(6))3CA}" has been dealt”

140 RETURN

150 Z=128+RND(6)

160 FRINT’CHR$(Z)}"Enter A for another card"

170 FRINT TAEB(3)3;CHR(Z)"or S to stand"

180 G=0:G$=GET$:C=-(G$="A")

190 RETURN

200 PRINT ‘’‘/CHR$(128+RND(4))}"Do you
want another qame? (Y or NIV

210 A$=GET$:IF ASC(A%$)>=> ASC("N") RUN

220 FRINT “‘‘‘CHR$(128+RND(6))3"0K, thanks for playing"!
SOUND RND(3),-15,RND(100),1:G0T0220

230 PRINT’’‘/$D=03E=0:GOSUBL0H=CA

240 GOSUE&0:A=CA:GOSUE110:E=CA

250 GOSUE110:F=CA

61

260 PRINT/CHR$(128+RND(6))ES$JH
270 FRINT/CHR$(128+RND(4Y)ICS$3E}" and “3F
280 FRINTCHR$(128+RND(6));"totalling "jE+F
290 D=H+AIB=E+F
300 GOSUE1S50:IF G=1 THEN 380
310 IF D<17 THEN 430
320 IF D<>21 PRINTCHR$(128+RND(4))}E$;D’'CHR$(128+RND(46))3C$}E
330 IF EB=D AND E<>»21 FPRINTCHR$(128+RND(6))}
"so this round is 3" jCHR$(128+RND(4))}"draw"
340 IF E»21 OR D>21 THEN 200
350 IF E>D PRINT‘CHR$(128+RND(4))ITAB(?)3"You win!"
360 IF E<D PRINT/CHR$(128+RND(46))3TARC1I1) "I win!'™
370 GOTO200
380 GOSUER110
390 FRINT CHR$(128+RND(&));C$;CA}", total is "B
400 IF E»21 PRINT CHR$(129);"You’ve busted, so I win!!":iGOTOZ00
410 GOTO300
420 TIME=0!REFEAT UNTIL TIME>»150
430 FRINT ‘CHR$(128+RND(4))}3E$;D
440 TIME=0!REFEAT UNTIL TIME>150
450 GOSUES0
460 FRINT CHR$(128+RND(6))3"The total is now "}D
470 TIME=0!REFEAT UNTIL TIMEX>100
480 IF D>21 FRINT CHR$(129)3"I1’ve busted, so you win!'!'"i1GOTOZ200
490 IF D<17 THEN 450
S00 GOTO 320
S10 END
520 DEF FROCshketch
530 IF CA=1 FRINTCHR$(129);"ACE"{ENDFROC
540 IF CA<11 ENDFROC
9590 T=RND(3)
560 IF T=1 FRINT CHR$(130);3"Jack"
S70 IF T=2 PRINT CHR$(131);"King"
980 IF T=3 FRINT CHR$(132);"Queen"
590 ENDFPROC

+RUN
8 has been dealt
3 nas been dealt
The BEC Microcomputer has 2
The mere human has 8 and 3
totalling 11
Emter A for another card
or S to stand
9 has been dealt
The mere human has 9, total is 16
Ermter A for another card
or 8 to stand
3 has been dealt
The mere human has 3, totsl is 19
Enter A for another card
or 8 to stand

62

The BBC Microcomputer has 11
S has been dealt
The total is now 16
8 has been dealt
The total is rnow 24
I’ve busted, so gou win!!
Do gou want another qgame? (Y or N)
6 has been dealt
4 has been dealt
The BEC Microcomputer has 6
The mere human has 6 and 4
totalling 10
Ernter & for another card
or 8 to stand
6 has been dealt
The mere human has &6, total is 16
Ermter A for another card
or § to stand
The BBC Microcomputer has 13
2 has been dealt
The total is now 195
ACE
The total is now 16
8 has been dealt
The total is now 24
I’ve busted, so0 gou win'!
Do you warnt another game? (Y or N)
? has been dealt
O hes been dealt
The BBC Microcomputer has 5
The mere human has 9 and
totalling 14
Enter A for another card
or 5 to stand
3 has been deslt
The mere human has 3, total is 17
Enter A for aznother card
or § to stand
The BEC Microcomputer has 8
6 has been desalt
The total is now 14

63

3 hes been dealtl

The total is now 17

The BEBEC Microcomputer has 17
The mere human has 17

g0 this round is adraw

Do you want znother game? (Y or N)
0K, thanks for plaging

0K, thanks Tor plavging

0K, thanks for plaging

O, thanks for plasing

0K, thanks for plaging

Look at line 230. It includes an instruction to GOSUB 60. Referring to
line 60, we see CA=RND(11). CA is the card from one to 11, with one
as an ACE, and eleven a picture card. Line 70 checks to see if the
number dealt is an eleven, and if it is, checks to see if this would bring
the total over 21. If it does, the eleven is changed to a one. Line 100
includes the RETURN instruction, which sends action to the H=CA at
the end of line 230, the instruction after the one to GOSUB. The
computer is well able to find a RETURN destination like this buried
within a multistatement line, but the GOSUB destination must always
be at the start of a line. Your programs will be much easier to read if
they do not include any multistatement lines, but will take up more
space than necessary. It may well be worth writing a program initially
in single statement lines, then ‘tightening it up’ later, by joining lines
together.

ON GOTO....ON GOSUB

The word ON, preceding either GOTO or GOSUB, produces a special
kind of branching, related to the IF/THEN result. An ON...GOTO or
ON...GOSUB statement is made up from a line number followed by
the word ON and the result of a previous calculation. This value is
followed by the words GOTO or GOSUB and a list of numbers,
separated by commas.

For example 150 ON X GOTO 200,300,400,550 will send action to line
200 if X equals one, to line 300 if X equals two, to 400 if X equals 3 and
to line 550 if X equals 4.

When a GOSUB is used instead of a GOTO command, the same thing
happens as with an ON...GOTO, except that at the end of the
subroutine, action reverts to the line after the ON...GOTO. Try the
following simple example:

64

1

1

1
*RU
ONE
TWO
TWO
TWO
THR
THR
TWO
ONE
THR

10 REMxXxo0onr Qosub demoXX
20 REFEAT

30 X=RND(3)

40 FOR J=1 TO S00INEXT J
B0 ON X GOSUR 70,920,110
60 UNTIL FaALSE

70 PRINT "ONE"

80 RETURN

90 PRINT "TwWO"

00 RETURN

10 FRINT "THREE"

20 RETURN

N

EE
EE

EE

This routine converts the value of X generated randomly in line 30 into
a word, using the ON...GOSUB in line 50.

Finally in this section, here are two ‘poetry’ programs which use

ON..

.GOSUB (see line 80) to randomly join words together. As you

can see from the sample runs, the ‘poetry’ produced is pretty awful,
although some lines (such as SPIRIT IS NEAR HUMAN HIGHROAD)
suggest a new era in the creation of old wise sayings.

10
20
30
40
50
40
70
80

?0
100

REM XXXFoetXXX

REM Showing ON GOSUER

FOR J=1 TO RND(D)

FRINT

NEXT

TIME=03REFEAT UNTIL TIMEX>40

D=RND(13)

ON D GOSUE 110,120,130,140,1%0,160,
170,180,190,200,210,220,230,230

TIME=0{REFPEAT UNTIL TIME:»9

IF RND(3)=1 THEN 30 ELSE 70

65

110 PRINT"WATCHING "3 IRETURN
120 PRINT"HUMAN "} RETURN
130 PRINT"DNELLING "3 RETURN
140 FRINT"IS NEAR "”RETURN
150 PRINTYFEARING "3 {RETURN
160 FRINT"SFIRI ""RETURN
170 FRINT"ALIEN "} !RETURN
180 PRINT"SMOKY "3 IRETURN
190 FPRINT"HIGHROAD "3 {RETURN
200 FPRINT"SEL ""RETURN

210 PRINT"DREAMER "3 {RETURN
220 PRINT"COMES "3 !RETURN
230 PRINT"WAITS THEN FOR "3 iRETURN

+RUN

SELF FEARING SMOKY

SELF

DHELLING SMOKY

WALITS THEN FOR IS NEAR

SFIRIT IS NEAR HUMAN HIGHROAD
WATCHING

SELF SFPIRIT HIGHROAD SFIRIT COMES
SELF DHELLING

SMOKY ALIEN SFIRIT

SELF SELF WAITS THEN FOR

IS NEAR HUMAN HIGHROAD

FEARING DREAMER

COMES

WATCHING DREAMER WAITS THEN FOR COMES SMOKY
DREAMER

SELF HUMAN

HUMAN HIGCHROAD ALIEN SMOKY IS NEAR
HIGHROAD COMES

FEARING DREAMER SMOKY WATCHING
FEARING SFIRIT WAITS THEN FOR SMOKY
FEARING HUMAN IS NEAR

10 REM XXXFoetXXx

20 REM Showimg ON GOSUE
30 FOR J=1 TO RND(3)

40 PRINT

66

G0 NEXT

60 TIME=0IREFEAT UNTIL TIMEX-40

70 D=RND(13)

80 ON D COSUE 110,120,130,140,150,160,170,
180, 190,200,2[0,h°0,230,230

?0 TIME=0IREFEAT UNTIL TIME:9

100 IF RND(3)=1 THEWN 30 ELSE 70

110 FRINTYVERDANT GLADES ":IRETURN

120 PRINTYWHISFERING HILLS "3 iRETURN

130 FRINTUSOFT "3 tRETURN

140 PRINT"HUSHED "3 3IRETURN

150 PRINT"SHADOWED O‘ER "3 iRETURN

160 PRINTV"SILENT "§iRETURN

170 PRINT"FATHWAY " 3§ IRETURN

180 FRINT"LEAVES "jiRETURN

190 PRINT"WAVING "3 iRETURN

200 FRINT"FALLING "3 3IRETURN

210 FRINTYYEARNING "33RETURN

220 PRINT"LOVERS “33IRETURN

230 PRINT"TREADING HOFTL "3 IRETURN

LOVERS

LOVERS

WHISFERING HILLS

TREADING SOFTLY VERDANT GLADES HUSHED

HUSHED FALLING TREADING SOFTLY
VERDANT GLADES FATHWAY VERDANT

VERDANT GLADES VERDANT GLADES
FATHWAY

LOVERS

WAVING L.OVERS FPATHWAY

67

WHISFERING HILLS
VERDANT GLADES YEARNING WHISFERING HILLS

HUSHED

L.EAVES

LOVERS SILENT
VERDANT GLADES YEARNING WHISFERING HILLS
TREADING SOFTLY VERDANT GLADES

LEAVES FALLING TREADING SOFTLY

DIM and ARRAYS

The DIM statement is used to set up a /ist which you can easily access.
You may find it necessary, in some programs, to refer to elements of a
long list of numbers, such as if you INPUT a quantity of DATA, and
you wish to use it in certain ways, such as PRINTing it in order or
magnitude.

An ARRAY is a set of memory spaces reserved in the computer, and
referred to by the name of the array, and by a subscript. To produce an
array to hold three elements, you enter DIM A(2) which creates spaces
for an array called A. To hold four elements, you enter DIM B(3). On
the BBC Microcomputer, there is always one more element of an array
than the number in brackets which follows the DiMensioning of the
array.

Enter and run the following program which should make it a little easier
to understand.

10 REM %X ARRAYS DEMO xx
20 DIM B(3)

30 FOR A=0 TO 3

40 BEC(AY=RND(10)

90 NEXT A

60 FOR A=0 TO 3

68

J0 FRINT “"E("iA3") XI5 "iIB(A)
80 NEXT A

BECOY XS 4
B(1) IS 2
B(2) 1S 4
BEC3) IS 10

BC0) IS
B(L) XIS
B(2) I8
B(3) IS

W oM

As | pointed out, an array contains one more element than the number
which is used to dimension it, so the array B in the sample program
contains four elements. You may well find it easier to ‘forget’ that the
subscripts start at zero, and dimension an array with the number of
elements you need, ignoring array element subscripted zero. Note that
elements of an array are called subscripted variables.

As you can see from line 20 of the program you’ve just run, the
computer needs you to DIMension an array before you can use it, with
a DIM statement. The DIM statement is made up of a line number
followed by the word DIM, and the name of the array, with the size of
the array enclosed in brackets.

You can dimension more than one array at a time by using a line as
follows: 100 DIM A(4),B(2),S(60). Just separate each of the array
names with a comma.

The arrays we've been talking about so far are one-dimensional arrays,
suitable for such things as holding a list of numbers. However, you can
have arrays of more than one dimension. These arrays are called,
reasonably enough, multidimensional arrays, and are set up with a
DIM command having more than one subscript. Enter and run the
following program:

10 REM XX MULTI-DIMENSIONAL
20 REM ARRAYSXX

30 DIM A(3,3)

40 FOR E=0 TO 3

50 FOR C=0 TO 3

60 ACE,C)=RND(9)

70 FRINT "AC"3E;","3C3") IS "3ACE,C)
80 NEXT C

69

90 NEXT E

100 PRINT ‘" 0 1 2 3"/

110 FOR E=0 TO 3

120 FRINT3ES" "3ACE, 003" "}
ACE, 13" "JACE,2)3" "3ACE,3)

130 NEXT B

When you run it you'll see something like this:

ACD,0) IS
ACD,1) IS
A(0,2) IS
A(0,3) IS
ACl,0) IS
ACl,1) IS
ACL,2) IS
A(L,3) IS
A(Z,0) IS
A(Z,1) IS
AC2,2) IS
A(Z2,3) IS
A(3,0) IS
A(3,1) IS
A(3,2) IS
A(3,3) IS

NEOODIDOOOWORNUWNDIW

0

[y
3

3
3
3
l}

WN=o
3 00 s I 41 8 73]
WO ND
= 00N

7

Firstly the elements of the array will be filled with numbers between
one and nine, and these are printed out by line 70 so you can see what
is held by each element of the array. The little table printed below them
shows how the elements of the array are organised. Any element can
be accessed by giving its co-ordinates within the array. If this is so,
element 3, 3 should lie where the two threes intersect, i.e. on the
number 7. You'll see from looking above in our sample run that, in
fact, A(3,3) does equal 7.

DIMensioning an array consumes memory, so do not set up an array
larger than you need. The number of elements in an array is the first

70

number within the brackets plus one, multiplied by the second number
plus one. Therefore, the array A(3,3) has 16 (3 plus 1 times 3 plus 1)
elements. You can see from our sample run that this is so.

There is no reason why you should not have arrays with more than two
dimensions, except for the fact that they can quickly become quite
difficult to handle, and the number of elements rockets quite
alarmingly. Here is a program to DIMension and fill a
three-dimensional array. Although the array is only A(2,2,2), you can
see the number of elements is quite large(3*3*3)

10 REM ®xx MULTI-DIMENSYONAL

£0 REM ARRAYSXX

30 DIM Al2,2,2)

40 FOR BE=0 T0O

50 FOR C=0 TO

60 FOR D=0 TO 2

70 A(E,C,DI»=RND(?)

80 PRINT "AC'SES", 303", 5D}

0 FRINT ") I5 "ia(E,C,D)

100 NEXT D

110 NEXT C

120 NEXT E
FRUN
ACO,0,0) IS
ACD,0,1) I8
Al0,0,2) I8
ACD, 1,00 IH
ACD,1,1) I8
ACD,1,2) X8
Al0,2,0) IS
ACD,2,1) I8
ACD,2,2) IS
ACL,0,0) IS
ACL,0,1) X8
AL, 0,2) IS
All,1,0) I8
ACL,1,1) IS
AlL,1,2)0 IS
ACL,2,0) IS
ACL,2Z2,1) I8
Al 2,2) IS

ACZ,0,0) I8

3 P

SHWONOCERNMNNEGIIDUONNIDQOANL

71

AC(Z,0,1) IS
A(2,0,2) IS
ACZ,1,0) IS
AC2,1,1) IS
A(Z,1,2) IS
A(Z,2,0) I8
A(Z,2,1) I8
A(&."u’&.) IS

Increase the number of dimensions to five, as in our next example, and
although it is only A(1,1,1,1,1), there are now 32 (2*2*2%*2*2)
elements.

S0 RN W

10 REM %X MULTI-DIMENSIONAL
20 REM ARRAYSXX

30 DIM AC1,1,1,1,1)

40 FOR E=0 T0 1
50 FOR C=0 TO 1
60 FOR TO 1
70 FOR E=0 TO 1
80 FOR F=0 TO 1

90 ACE,CyD4E,F)=RND(9)

100 F‘F\IINT llﬁ(ll:ﬂ;ll’“;c;ll'Il;D;II,II;E;II’";F;
110 FRINT ") IS "3ACE,C,D,E,F)

120 NEXT F

it

mo
oo

F
130 NEXT E
140 NEXT D
150 NEXT C
160 NEXT B

>RUN

ACD,0,0,0,0) IS

Pn(O,U,0,0,l) IQ

ACD,0,0,1,0) IS

ACD,0,0,1,1) IS

Al0,0,1,0,0) IS

ACD,0,1,0,1) I8

ACD,0,1,1,0) I8

A(D,0,1,1,1) IS

ACD,1,0,0,0) IS

ACD,1,0,0,1> IS

AC0,1,0,1,0) IS

ACD,1,0,1,1) IS

V= ARV =N

72

ACB,1,1,0,0) IS
ACO,1,1,0,1) IS
AC0,1,1,1,0) IS
ACD,1:20,:1,:1) I8
ACL,0,0,0,0) IS
Aall,0,0,0,1) IS
ACL,0,0,1,0) IS
ACL,0,0,1,1) I8
AC1,0,1,0,0) IS
Al 0,1,0,1) X8
ACL,0,1,1,0) IS
ACL,0,L1,1,1) IS
A(L,1:,0,0,0) I8
AlL,1,0,0,12 IS
ACL:1,0,0,0) I8
ACL,1,0,1,1> I8
adCl,1,:,1,0,0) IS
AlLl,L,1,0,1) IS
Al lelels0) IS
Adl,1:1,1,1> XS

CONODIDOFONMNEWONS IO~

Here is a version of the game MASTERMIND (the name is copyright
Invicta Plastics) to show single-dimensional arrays in use. The game is
simple to play. The computer ‘thinks of’ a four-digit number, and you
have ten guesses to work it out. A correct digit in the wrong position
within the code gives you a ‘white’, while a correct digit in the correct
position gives you a ‘black’.

10 REM XXMASTERMIND
20 MODE7
30 DIMC(4),G(4)
40 CL.S
50 FRINT 7 /CHR$(133)3
“T am bthinking of a8 fouwr-digit number,"
60 FRINTCHR$(133) $"which you
have 10 qoes to discover"’
70 PRINT//CHR$(129)3"All four
digite are different "’’’
80 FRINTCHRH(129){"Fress any key to begin
90 A%=CGET$
100 CLEIPRINT
110 COLY=RND(9)

73

120 FOR Z=27T0435C(Z2)=RND{(D)
130 FORJ=1TOZ~-L3IXFCC) =CZ)THENLLO
140 NEXTINEXT
150 FORG=1LTOLOSFRINTCHR® (1333
"Ernter quess number 306
160 INFUTAIAL=ATFRINT
CHRES (LI SCHRE (LI FCHRSCL L)
170 FORZ=1TOA:G(Z)=A~10XINT(A/L0)
180 A=INTOAZLD) INEXT
190 BresQ g W)
200 FORZ=1TOASIFC (L) =Gy THENZ2Z20

210 B=Bel $G(Z)=0

220 NEXT

230 FORZ=1TO43TIFG(Z)=0THENZ270

240 FORJ=1TO4ITFC GO <G O THENZSO
250 Wb+

260 NEXTJ

270 NEXTZ

280 FRINTALCHR$CLIZ2) i'scored”
CHRS$CLZP) 3B black"i3IFB<:1 FRINT"s"}

290 FRINTCHR$ (132) 3" and" 1CHRS (129 3W}
" owhite") iXFWEL FRINT"g"

300 TFW=1FRINT

310 TFE=4 FPRINTCHR$(133)3"You guessed it..
cin gust "IGEY quess" i IIFGHL PRINT “eg"

320 IFE=4NEXTG

330 FRINT CHR$(134)3"The code was"}
CHRECLZD)SCCASCINIC(2Y3C (L)

The next program, to keep your personal finances in order, uses the
array A to hold the relevant amounts of money.

It is a fairly simple, but very useful, personal accounts program. When
you first RUN it, you’ll see that the balance — naturally enough — is
zero. You can work out a series of accounts by using GOTO 70,
instead of RUN, to keep the ‘previous balance’ (variable B) intact.
Note that the Centronics printer has turned all the pound signs into a
single apostrophe (’). Enter these as pound signs.

The program is set up to deal with six categories — cheques, credit
cards, rates, mortgage, standing orders, and monies in — as well as a
seventh, salary earned, but can easily be modified to handle as many
categories as you like. Simple change the six in line 40 (M =6) to the

74

number of categories you need. As well as this, you’ll have to add
additional data on the ON F GOSUB line, line 180, so the computer will
have extra destinations for additional categories. Simply add the
categories before the start of the initialisation procedure (line 400).
Note that ‘monies in’ are recorded as negative numbers, and will be
shown as such in the display, which is updated after each entry is
made.

It would be very easy to modify this program to give you an option to
dump the accounts onto a printer. The modification should be entered
between lines 210 and 220.

Note the use of the GET function in line 540, to stop the program until
any key is pressed.

10 REM xFersonal sccountsX

20 REM () Hartnell/Ron Jones

20 MODE 7

40 M=4

50 DIM AMM)

60 PROCiInitislise

70 GOSUREZ30

80 INFUT "aAny changes (Y or NI“"Z4%
90 IF Z$="N" THEN 200

100 SOUND 1,-7 ,RND{S0Y+75,3

110 INPUT/ "Number"H3IIF KM OR K<1 THEN 110

120 SOUND 1,~7:RND(B0)+75,1

120 INFUT/ "New amount"E

140 IF K=é E=-—E

130 A(K)Y=E

160 GOTO 70

170 PRINT F3

180 ON F GOSUER 330,340,390,360,370,380
1920 PRINTTABC4AY 3" " 3A(F)

200 INFUT"Salary"SiG08URBZ30 I R=G~-T+E
210 FRINT"Bslance “"jRiBE=R

220 END

230 T=0iCLSIFPRINT "TAR(LZ) SCHRS (LZ2B8+RND{E)) §

"Fersonal sccounts"
240 FPRINT/TARB(DY }"Frevious bhalance "B~
250 FOR F=1 TO M
260 SOUND INT(F/2),;-RNDCLS) ,FX20, RND{F)
270 PRINT ‘F3

75

280
2920
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
4940
500
G910
dt. 0
530

540

ON F GOSUE 330,340,3%0,360,370,380

FRINT" *"i1A(F?

T=T+A(F)

NEXT F

RETURN

FRINT CHR$(133)3"Cheques oul" i IRETURN

FRINT CHR$(129)i"Credit card(s)";IRETURN
FRINT CHR$(130)i"Raetes" § IRETURN

FRINT CHR${1317"Mortasge" i IRETURN

FRINT CHR${(13223"Standing orders" i IRETURN
FRINT CHR$ (133> "Monies in"§IRETURN

FOEM 3K 0K K K 0K K K K K

DEF PROCinitislise

B 0

SOUND 1,-5,100,7

FRINT///vThis is a personal sccounts program"
FRINT’"To save the balance after an earlier”
FRINT “pun, use GOTO 70 rather than RUN."
FRINT’ "The proaram is selt up at present"
FRINT “"to cater for six items. I gou need"
FRINT "to have more, change the value of M"
FRINT TAR(&Y$"in line mumber 40."

FRINT "Note that"jCHR$(1Z29)Y3"mondes in"
FRINT "is shown as s negative rumber"

FRINT’ "Press any key to start the programe..
Z=GET

ENDFRQOC

So far we’ve been looking at numeric arrays. Note that the name of the
array does not have to be a simple variable like A, B or C. Here are
some sample valid array names:

10 REM VALID ARRAY NAMES

20 REM KK KK KM K XK K 3K KK K ¥ KK

30 DIM ARRAY(9)

40 DIM array(?)

S50 DIM end_of_the_world(32,3)
60 DIM My_dog_is_black(30,44,2)
70 DIM AZ34(76)

76

Notice that the array called ‘ARRAY’ is quite different from the one
called ‘array’. The arrays ‘end_of__the__world’ and
'My__dog__is__black’ contain the underline character (shift on the £
key), not the hyphen or minus sign. Line 70 shows another valid array
name. So long as it starts with a letter, and does not contain symbols
or punctuation (apart from the pound sign and the underline) it will be
accepted as a valid array name.

String arrays

You can also have string arrays, which are very similar to numeric
arrays. Enter and run the following program to see the string array in
practice, entering five words (each followed by RETURN), when
prompted.

10 REM STRING ARRAYS
20 DIM A%()
30 FOR B=0 TO 4
40 INFUT ASCED
90 NEXT E
60 FOR EB=0 TO 4
70 FRINT A%(E)
80 NEXT E

*RUN

PHATER

PREASON

PHASTE

PTERROR

PANGLOFHILE

WATER

REASON

WASTE

TERROR

ANGLOFHILE

The BBC version of BASIC is far more tolerant of array names than
most other BASICs. Here, for example, are some of the valid string
array names:

10 REM VALID ARRAY NAMES
20 REM 00K KK KK KKK K KK XK XK XK

77

30 DIM ARRAY$(77)
40 DIM TESTINGS(87,23)
50 DIM better_man_than_gsous(lzZ,2,2)

Note that the main difference between a string array and a numeric
array is the dollar sign immediately following the name. This tells the
computer the name refers to a string.

Here's a string sort program to show string arrays in use. As set up,
and as demonstrated in the sample run, the program caters for five
words. To adapt it for more, change the 5 in lines 20, 30 and 40 to the
number of words you need to sort. This introduces a slight redundancy
as a string array (like a numeric array) starts at zero, rather than one,
but it is simpler to pretend to forget about the zero element when
analysing how a program of this type works, than it is to try and keep
the zero element in mind.

10
20
30
40
a0
60
70
80
?0
100
110
120
130
140
150
160
170
180

REM XXSTRING SORTXX
DIM W$ (D)

=03 6=0

FOR A=1 TO 3

INFUT W$(A)

NEXT A

Z=1

B=Z+1

IF B:xG THEN 1460

IF WHIEI WS (Z) THEN 120
Z=Z2+1:G0TO80

QAe=WE ()

WH(Z)=W$ (B

WE (B =Q%

GOTO110 *RUN

FRINT W$(G) ?LATCH

G=G~1 PEREATH

XF G=0 THEN 70 TEREAD
PDRALIN
PDRAGON
BREAD
BREATH
DRAGON
DRATN
LATCH

78

There are, then, two primary uses of the DIM statement, to create
arrays for (a) numeric arrays; and (b) string (alphanumeric) arrays.
There is a third use of the DIM statement which is used to reserve bytes
in memory. To reserve n bytes, you enter DIM A n-1. There must be a
space between the A and n-1, and there are no brackets. Use of the
DIM statement for this purpose is outside the scope of this book, but is
mentioned for completeness.

String Handling

Our discussion of string arrays leads us neatly into strings, and string
handling. As you've probably realised by now, a string is a collection of
alphanumeric characters within quote marks (including symbols and
spaces, if desired). It is assigned to a variable whose name ends with a
dollar sign. The same names which were given as valid for string arrays
are valid for string names. So A$, niggle$, WORD$ and
HI_THERE__BOBS are all valid string names. Strings are assigned in
much the same way as are numeric variables, by a statement of the
form A$ = “HI"”. The LET (as in LET A$ = “HI"”) is optional, but
makes for greater sense in the earlier stages of programming.

There are a number of very useful string functions, which can be used
for manipulation of strings, and for extracting parts of the strings. The
functions are:

ASC(X$) This gives the ASCII code of the first character in
X$, so if X$ equalled BBCMICRO, ASC(X$) would
give 66.

CHR$(66) We can check to see if, in fact, 66 is the code of the

first letter of X$ (i.e., if it is the code of B) by asking
the computer to PRINT CHR$(66). This goes give a
B. In effect, CHR$ is the opposite of ASC, and
turns a code back into a character.

LEFT$(X$,n) This gives a string containing the n leftmost
characters of X$, so LEFT$(X$,3) will give “‘BBC"".

LEN(X$) This function gives the length of a string, so using
our string, X$, of “BBCMICRO", we get LEN(X$)
of 8.

MID$(X$,n,m) This string function produces a string from X$
which is m characters long, starting from character
number n. MID$(X$,3,4) gives "“CMIC".

RIGHT$(X$,n) This function is the opposite, as may be expected,
of LEFT$, and gives the n rightmost characters in
the string. RIGHT$(X$,5) gives “MICRO"

79

STR$(A) This turns a variable (A) into a string, so if the
variable was 234, the string version would be
#234". This may not seem to be much use, but
allows certain manipulation of numbers when they
are strings which would be extremely difficult in
their numeric form.

VAL(X$) This is the ‘opposite’ of STR$(A) and takes the first
numeric value found in the string and turns it into a
number. Thus VAL(X$), where X$ equals 22 +
34" would return 22. In some BASICs, the VAL
function evaluates the whole of the string, so VAL
(“22 + 33") would give 55. On the BBC Micro
however, it gives 22.

Here is a printout from the BBC Microcomputer showing the string
functions in operation.

XE="RECMICROY

*FRINT ASC(X$)
66

*FRINT CHR%(&6)
(3]

*FRINT LEFT$(X%$,3)
BEC

*FRINT LEN(X$)
8

SPRINT MIDS(X$%,3,4)
CMIC

*PRINT RIGHT$(X%$,%9)
MICRO

FXp="12+43"

*FRINT X%

12+43

FFRINT VAL (X%$)
12

FX=18+43

80

#FRINT X
99
*X$=8TR$ (X)
*FRINT X$
a9
SFRINT LEN(X$)
2

FX$="22+54+43"
PP X%
22+54+43
FX=UAL(X%$)
P X

22

*Xg=n22/7220
*X=VAL (X$)
P e X

22

Now we have a version of the program ALPHA, which shows ASC
and CHR$ in use. The computer ‘thinks of’ a letter of the alphabet, and
you have to try and guess it. This program runs in Mode 7, and has a
‘highest score’ feature. In this case, it is a lowest score feature, as you
are trying to guess the computer’s letter in the shortest number of
goes.

Run the program, then return to the book for a discussion on it.

10 REM XXXAlphaXxx
20 REM Showing the use of ASC and CHR$
30 CLS
40 D=0
S50 C=1{A=64+RND(26)
60 SOUND 1,-15,120,20
70 FRINT’/CHR$(128+RND(6)) "I am thinkina of a3 letter...”
80 FPRINT’’/CHR$(128+RND(6))3"Try to quess itses"
90 FRINT’/CHR$(128+RND(6))3"Enter ygour quess numbher “C
100 INFUT A%
110 IF ASC(A$)=A THEN 180
120 FRINT/CHR$(128+RND(6))3"No, it is not "A$
130 FRINT/CHR$(128+RND(6))3"Try closer to the "
140 IF ASC(A$)><A PRINT CHR$(128+RND(6))}"end"}
ELSE PRINT CHR$(128+RND(&))3"st.art"}
150 FPRINTCHR$(128+RND(6))3"of the alphabet"
160 C=C+1
170 GOTO 90
180 FRINT/CHR$(128+RND(6)):"Yes, I was thinking of "AS$

81

190 FRINT/CHR$(128+RND(6));"That took "C" quesses"
200 IF C<D OR D=0 THEN D=C
210 PRINT/CHR$(128+RND(6))}"Your best
score this qame is "D’’’/
220 TIME=0
230 REPEAT UNTIL TIME>300
240 GOTOSO

The variable for the ‘highest score’ is D, and this is set to zero line 40.
The number of guesses is controlled by the variable C, set in line 50.
The balance of line 5@ chooses a letter. What it is actually doing is
choosing a number between 65 and 90, because 65 is the code of A
(PRINT ASC “A” would give 65) and 90 is the code of Z. Line 60
produces a short burst of sound to indicate that the computer is ready,
and lines 70 to 80 announce that it is ‘thinking of a number’. Line 90
requests the guess, giving the number of the guess (C) as it does so.
Line 100 accepts the player’s guess as a string (A$). The code (ASC) of
this guess is compared with the computer’s number (A), and if they
are the same, action is sent to line 180 where the ‘congratulations’
message is printed out.

Line 140 uses the IF/THEN. ... ELSE we learned about earlier to tell
the player to try closer to the beginning or the end of the alphabet.
Line 160 adds one to the guess count, and line 170 sends the computer
back to line 90 for the next guess.

The next program — Music Maker — uses other string functions
which allow you to enter your melody as a string, which is then
interpreted, and the music played.

The principle of the program is very simple. The BBC Micro’s sound
command has four parameters, and is written in the form SOUND 1,
—15, 128,4. The first number after the word sound chooses the
channel (@ to 3), the second is the volume (—1 to — 15, with — 15 the
loudest), the third number is the pitch (@ to 254) and the fourth is the
duration (from one upwards).

The channel (parameter one) is fixed in this program to be channel one
(the first number after the word SOUND). The volume varies randomly
from — 11 to — 15, the pitch and duration are set by the melody which
you enter as a string. (The SOUND command will be looked at in more
detail a little later).

Lines 40 and 50 set the initial display to tell you to ‘Enter your song’,
and — once you have done this — to determine the speed, from one
(very fast) to nine (slow). The speed is accepted in lines 80 and 90.

The main REPEAT/UNTIL loop, which actually turns the elements of
the string into ‘music’, runs from line 110 to 200. Line 120 calls up a
procedure (PROCdisplay) to print the words ‘Music Maker’ in a
random colour, on a randomly coloured background, on the screen.

82

How to enter a song:

The program works by accepting the notes you need as letters,
running as follows: CDEFGABcdefgabx, Note that the highest ‘c’ is
accepted as an ‘x’. After each letter comes a number, which
determines the duration on the note. A rest is shown by a P (for
‘pause’), so a string which read “A3B4c5P2¢3" would play the note A
for a count of three, followed by B for a count of four, c for five, a rest
of two then c again for three. The program will play the music over and
over again until you press BREAK.

There are three sample songs, which you can enter by typing MODE 4,
RETURN, then GOTO 270. The program will quickly stop with an error
code. To play the first song, enter — as a direct command — A$ = Z$,
then follow this by GOTO 80, when you will be asked how fast you
want ‘‘Cielito Lindo’’ to be played. To get song two, enter A$ = M$,
followed by GOTO 80. To get your BBC Microcomputer to play scales,
enter SCALE$ = A$, then GOTO 80. You can easily store tunes
you've worked out in strings in this way.

10 REM xXMusic makerx

20 MODE 4

30 REM (C) HARTNELL 1982

40 VDU 19,3,3,0,0,0

S50 VDU 19,0,4,0,0,0

&0 FPRINT‘

70 INFUT"Enter gour song A%

80 FRINT"How fast? 1 (very fast) to 2 (slow) "
90 SFEED$=GET4%:{TEMFO=ASC(SFEED$)-48

100 RE MK KKK XKXKX

110 REFEAT

120 FROCdisplay

130 FOR J=1 TO LEN(A%$>-1

140 E$=MID$(A%,J,1)

150 N=~953%X(E$="C")-61%X(E$="D")-469X(Es="FE")
~73X(B$="F")-81%X(B%="G")-89%x (E$="A")
~Q7X(E$="E")-101X(E$="c")-109%(BH=""d")
~117X(E$="a")-121X(Bs="F") 129X (B%="q9")
~137%(E$="3")-145%(Es="0")~149%K(BF=""3")

160 D=VAL(MID%(A%,J+1,1))

170 IF E4="F" THEN GOTO 220

180 SOUND 1,~-(RND(S))-10,N,DXTEMFO

190 NEXT J

200 UNTIL FALSE

210 REMX KM KKK K XK K KKK KX

220 FOR Z=0 TO DXTEMFO

230 SOUND 1,0,0,0

240 NEXT

83

230
260
270

280
290

300
310
320
330
340
350
360
370
380

GOTO 190

REM xxxxSample songs followXxXxx
Z%$="c1clAZ2E1G1ciC1AZE1Glcl1clAZEBIGIFIDS
EiB1BZ2A1GIF1F1DZEIFIGIGIGZF1lELID1ICSe3dZ2c1A6d3
dZ2clelcd4G1A2G1A1A1GIF1F1d2E1G1A1AIG2F1G1ELIDICS S
REM Cielito Lindo

FE MK K K KK KK 3K K K K K K
M$="G3E1G3E1G1A1GIFI1EL1G2GICICICIDIELIELELEL
DiD1D1EID3PIG3EIG3ELIGIALIGIF1IELIGZ2GICICICIDIELEEL
E1C1D2C1EIC1IF1c1E1A6c1ALIGACIEICICICIDIEZEICIDZCIRY
CilF1clBlA6c1ALIGAEIDICICICINDIEZELICID2CIELICAF4" S
REM SHE WORE A YELLOW RIEEON

FROE MK K K 3K 3K K 3K K K K K X K
SCALE$="C1D1E1F1G1Al1El1c4P4" {SCALE

FREC M5 K 2K K KK K 3K K 3K K K X

DEF PROCdisplay

CLS

vpu 19,3,RND(3),0,0,0

vDuU 192,0,RND(7)>,0,0,0

PRINT TAE(RND(Z0),RND(246))"#% Music maker %"
ENDPROC

GET, GETS, INKEY,
INKEYS$

These four commands are related, but they behave in slightly different
ways, and expect different input from the keyboard. They share the
characteristic that you do not need to press RETURN after pressing a
key.

GET

This waits for a numeric input before continuing. It will wait forever for
your key press. Try the following, waiting a different time before each
key press. The reason for the ‘different time’ will become clear in due
course. Enter a number from one to nine, by pressing the key of that
number, and you'll see it print out YOU PRESSED 6, YOU PRESSED 1
and so on. Touch the zero key to end, when it will print out YOU
PRESSED 0 and on the next line END OF DEMO.

84

10 REM xx%GET DEMOxXx

20 REFEAT

30 A=GET

40 FRINT "YOU FRESSED "$A-48
90 UNTIL A=48

60 FRINT "END OF DEMO"

The code of the /1"’ key is 49, so subtracting 48 from this code (which
is what the keyboard reads), allows it to print out the number of the
key you pressed. Try touching some of the alpha, or control keys.
TAB, for example, will give —39 and RETURN will give —35. It is
useful to build up a list of the code which each key returns for use in
interactive games and other programs.

The next program — Prediction — uses the GET function. In this
game, you have to try and anticipate the number (from one to nine)
the computer will think of next. The computer’s number is shown on
the screen near the top, and the bottom number is the score. The
lower the score at the end (when you manage to successfully predict
the computer’s number), the better. This is a fairly trivial game, but
shows GET in action, and may well give you ideas for better games
you can write. The screen will stay blank until you press a key.

10 REM xxPredictionxx

20 MODE7

30 E=9

40 W=RND(9)

50 Q=0

60 REFEAT

70 Z=GET-48

80 IF Z>0 AND Z<10 FPRINTTAE(E,12);CHR$
(128+RND(6))3"Your number is "3Z

?0 Q=Q+1

100 IF RND(3)x1 THEN 120

110 W=RND(9)

120 FRINTTAE(S,8)3CHR$(129+W/2)"My number is "3}W

130 FPRINTTAE(E,14) jCHR$(128+RND(6))3"The score is "}Q

140 IF W=Z THEN 130

150 UNTIL FALSE

85

GETS

GET$ is similar to GET, except that it waits for a string input (one
character long). Here’s a variation of our first program for GET,
showing this.

10
20
30
40
90
60
*RUN

YOU FRESSED
YOU FRESSED
YOU FRESSED
YOU FRESSED

REM XXGET$ DEMOxXx
REFEAT

AS=GETS$

FRINT "YOU FRESSED "jA%
UNTIL A$="0"

FRINT “END OF DEMO"

oDNI

END OF DEMO

The ‘Prediction’ program can easily be modified to accept a GI§T$.
Just change line 70. Notice how this uses one of the string functions
mentioned a short time ago to convert the string into a number.

10 REM xxPredictionxx

20 MODE7

30 E=9

40 W=RND(9)

50 Q=0

60 REFEAT
70 Z=ASC(GET$)--48
80 IF Z»0 AND Z<10 FRINTTAB(E,12)}
CHR$ (128+RND(4))}"Your number is “3Z
90 Q=Q+1
100 IF RND(3)>1 THEN 120
110 W=RND(9)
120 PRINTTAE(S,8) ;CHR$(129+W/2)"My number is "jHW
130 PRINTTAE(E,14)3CHR$(128+RND(4))3"The score is "}jQ
140 IF W=Z THEN 130
150 UNTIL FALSE

86

INKEY, INKEY$

The difference between the GETs and the INKEYs is that while the
GET will wait forever for a key entry, INKEY sets a time limit. The time
limit follows the word INKEY, or INKEYS$, as follows: INKEY(40) or
INKEY$(40). The number in brackets following the word is the time the
program will wait, in hundredths of a second. The function will give a
zero (INKEY) or a null string (INKEY$) if no key is pressed within the
time limit.

The next program — Maze Maker — shows INKEY$ in action. Using
the “A”, 2", ",” and "'.” keys, you have to move the $ sign from the
bottom left hand corner to the top right-hand one, without crossing
any of the little white squares. Note that no path through is
guaranteed, and there is no mechanism for checking that you don’t
cheat. At the end, the number of ‘moves’ it took you is printed on the
board, using CHR$(128 + RND(5)) to make the colour change
randomly. You may well wish to use this effect to end your own
games.

10 REM Maze Maslker
20 REM Use the & Z 3 « keys
30 REM to move the $ sian
40 REM from the bottom left-hand
50 REM cormer to the top right-handg
40 REM one. No path through is
70 REM gquaranteed!
80 MODEY
g0 H=0
100 FOR item=1 TO 920
110 IF RND(3)=1 PFRINT CHR${(Z55); ELSE FRINT " "}
120 MNEXT item
130 FRINTTARCO,0)3" "
140 FRINTTARCO,LY3" "
150 X=393iY=21
160 Ma=XiN=Y
L70 FPRINTTAB(X,Y) " 4"
180 G=8+])
1920 A%=XNKEY$(0)
200 IF A%="" THEN 190
210 YF A$="A" AND Yr0 Y=Y-1
220 IF As="Z" AND Y22 Y=Y+l
230 TF A%="." AND Xu39 X=X+1

87

240 TF A$="," AND X&»0 X=X~

250 IF X=0 AND Y=0 THEN 280

260 FRINTTAE(M,N) 3" ©

270 GOTO 160

280 REFEAT

290 FRINTTAE(L1Z2,10) 3CHRS (L284+RND (5) 3" You made it!'"
300 FRINTTAE(10,12) jCHR$ (1284+RND(5) 3

N toolk g o vrgen g"
310 UNTIL FALSE = 00K oY "iSit move

Note in line 190 that the delay after INKEY$ is set at zero. This ensures
the program continues without a break, whether you are pressing a
key or not. You'll find it easier to know which keys to press for right
and left movement by noting that the ‘greater than’ and ‘less than’
symbols point in the respective directions.

The next program — Road Runner — shows INKEY$ in action again.

In this program you are attempting to drive a long line of letter V's
down a twisting, turning track of red hash symbols (shown in this
listing as £ signs). Your controls are ““Z"" and “’M’’ which move you left
and right respectively.

Line 140 moves the track randomly, making sure that it does not stray
off the edge of the screen. Line 150 prints the V, which is scrolled up
(as is the tract) by lines 220 and 240. The function readch(X,Y), which
starts at line 290, checks the status of the position the V will next
occupy, and if it finds anything other than a 32 there (32 is a space, see
line 200) sends action to the procedure ““end’’, which starts at line 370.

The one in brackets after INKEY$ in line 250 ensures that the computer
waits one hundredth of a second before proceeding. Line 260
interprets the INKEY$, and by using the logic within each pair of
brackets, ensures that the V is not allowed to go off either side of the
screen. This program uses a REPEAT/UNTIL loop (see lines 130 and
270) to keep it running until the loop is exited by line 200. Note in line
270 it says UNTIL FALSE. This means that the loop will continue for
ever, unless there is an exist condition within the loop which is
satisfied, or the BREAK key is pressed.

If you'd like to slow the program down, change the one at the end of

the SOUND statement in line 230 into a two or a three, and/or change
the one in brackets into two or three in line 250.

10 REM x2Roasd Rormer®
20 OREM (C) Havtnell 198%

88

u0 MODEZ
O TIME=(Q
70 @G=110
an X=13
20 Y=12
100 FORJ=1 TO &2
110 PFRINT
120 MEXT J
130 REFEAT
140 A=A+RND(Z) %ALY ~REND(Z2IR(ANZ7)
150 PRINT TﬁL(% Le Y2 0HRE (L3200
160 L¥=P0S
170 LY=VUFQg
180 ZWF\rumdch(K,Y+1)
190 VDL 31 LY, LY
200 IF Z4-32 PROCend
210 PRINT TOB(A,Z22) CHRECLESY LTI TAR{ALT 220 %
CHR$ (L2953 "E" JCHRECLZBHRND (B 3 5
TIME DIV 10Y/10%" Mllﬁﬁ"
220 PRINT
230 SOUND 0, -7 (RND{SYY ,RND{3)Y , 1
40 PRINT
250 Ch=THEEYS LD
2L XuX4 (k=" ARND XE2)-(CHE="M" aND X<38)
270 UNTIL FALSE
DD PR KN WK KK
290 DEF FHNreadoh(X:Y)
300 LOCal. A%, C
310 VDU 3L.X,Y
A20 AN=13%
A20 C=USKRIEFFF4)
340 C=0 AND &FFFF
JE0C=0 DIV &100
J&0=(0
370 DEF PROCend
380 M= TtML DIV 10y/10 — 0.9
390 REPE
400 thNT TARCO,23Y3CHRECLZB+RND(S5)) §
"End of race, wou lasted for "iM}" miles"
410 SOUND 0,~15,RND(L2) ,RND(5)

89

420 SOUND 1,18, RNDCL12) , RND(5)
430 SOUND 3,15, RND (12, RND (5)
440 UNTIL FALSE

450 ENDFROC

SOUND

The SOUND statement on your computer is very versatile. It is easy to
use, and if you avoid the use of ENVELOPE the first few times you use
the SOUND command, you should find it fairly easy to master. Even
without ENVELOPE, you’ll find there is a wide variety of sounds you
can make to incorporate into your programs.

As was pointed out a short time ago, the word SOUND is followed by
four parameters. The first (@ to 3), chooses the sound channel, the
second (@ to — 15) sets the volume, with — 15 being the loudest, the
third chooses the pitch of the note (@ to 255) and the fourth controls its
duration (1 to 254). A simple, two-line program which puts the sound
output through its paces indefinitely, producing a sort of weird
electronic music, is:

10 SOUND RND(4)-1,~-RND(LS) ,RND(254) ,RND(20)
20 GOTO 10

We can demonstrate the statement in action more precisely with the
following routine, which sets the volume at maximum (—15) and the
duration at one. Enter and run this program to hear it in action. You
can read the channel (the left hand column) and the pitch (the right
hand one) as the program runs.

10 REM *%xG0UND DEMOXx

20 VOLUME=-1%

30 DURATION=1

40 FOR CHANNEL=0 TO 3

90 FOR FITCH=1 TO 25% STEF 3

60 SOUND CHANNEL , VOLUME , FXTCH,; DURATION
70 PRINT CHANNEL,FITCH

80 NEXT FITCH

90 NEXT CHANNEL

You'll see that the first run, when CHANNEL is set to zero, produces a
strange sound, quite unlike the music produced when the CHANNEL

90

is one, two or three. This is because channel zero is for noise, and the
other three allegedly for music. The rising tone produced on channels
one, two and three is, I'm sure you'll agree, quite effective.

You can change this, by putting the volume in a loop, to produce a
totally different sound. Try to predict what this routine will produce,
before you run it. You're almost certain to be wrong. Modify the above
program, by adding lines 55 and 75 below, and changing lines 50 and
70 as indicated.

10 REM XXSOUND DEMOxxX

30 DURATION=1

40 FOR CHANNEL=0 TO 3

50 FOR PITCH=1 TO 100 STEF 3

5% FOR VOLUME=-15 TO -1

60 SUUND CHANNEL , VOLUME , FITCH, DURATION
70 FRINT CHANNEL, VOLUME,FITCH

79 NEXT VOLUME

80 NEXT PITCH

90 NEXT CHANNEL

If all went well, you should have heard a strange series of cymbal-like
sounds, followed by notes played on a rather flat piano.

There is, of course, no reason why even random noise should not be
musical. The following routine, ‘“Bamboo flute’’, produces music of a
sort, which — although somewhat atonal — is certainly better than the
mishmash of noise produced by the two-line routine at the beginning
of this section.

10 REM xxBEambhoo flutesxxX

20 REFEAT

30 VOLUME=-10 ~-RND(3)

40 CHANNEL=RND(3)

50 PITCH=RND(8)%30

60 DURATION=Z2XRND(L0)

70 SOUND CHANNEL , VOLUME , PYXTCH, DURATION
80 FRINT CHANNEL,FITCH

90 UNTIL FALSE

The SOUND statement can also produce quite creditable sound
effects, such as the following.

10 REM ¥XBtesm trainXx

20 K=-1%5

30 REFEAT

91

40 SOUND 0,K,100,6

G0 SOUND 1,K,120,5

60 SOUND Z,K,140,4

70 SOUND 3,K,160,3

80 T=TIME

20 REFEAT UNTIL TIME-T:>30
100 K=K+0.5

110 UNTIL H=0

Experimentation is the only way to discover how wide the range of this
command is.

Let’s leave noise alone for a moment, and try to produce some ‘real
music’ from the computer.

The next routine turns the bottom row of keys (Z to the ‘less than’) into
a one octave piano. It uses several things we’ve learned so far in the
book. Enter and play a few melodies on it, then we’ll have a closer look
at the listing.

10 REM xx PIAND xx
20 REFEAT
30 xFX 15,0
50 A=GET
60 M=—593X(A=20)~61X(A=88)-49%X(A=67)
~73%X(A=B6)-BLX(A=44)~B9X(A=78)~P7X{(A=77)~1
01x(A=44)
70 IF ™M=0 THEN 950
80 FOR J=-1% T0O -5
0 SOUND 1,J:M,1
100 SOUND Z,J,M,1
110 NEXT J
120 UNTIL FALSE
Lines 20 and 120, of course, set up a master REPEAT/UNTIL loop to
keep your piano playing. Lines 30 flushes the buffer so that if you
linger on a key, it will not play endlessly. Once you’ve run the program
a few times, delete line 30 and see what effect this has. *FX 15,0 is a
useful command to use in any programs which read the keyboard
through GET, GET$, INKEY or INKEY$. M is the variable to be
assigned to the pitch value in the sound command.

Line 50 read the keyboard, and the long line 60 changes the value read
by the GET function into a pitch value corresponding to the note
required.

92

Line 60 uses the way the BBC Microcomputer evaluates true and false.
If the condition within the brackets is true, the computer returns — 1. It
returns zero if the condition within the brackets is false. The number in
front of each bracket (like —53) is the pitch value. If A equals 90 (that
is, the Z key is being pressed), the computer evaluates that as true,
— 1, so M is set equal to 53 (thatis, —53* —1). This is so for the rest
of the line. If a key other than the eight on the bottom row has been
pressed, all the conditions within brackets will be zero; so M will equal
zero. In this case, the computer will go back to line 50 to read the
keyboard again. Lines 80 to 110 ‘play’ the note, using the volume loop
(lines 80 and 110) to produce a sound somewhat like a piano. You can
turn your computer into an ‘autopiano’ by making some changes and
additions to the program. | have not renumbered it, so you can easily
convert your ‘piano’ to play itself.

10 REM xx AUTO FIAND Xx

20 REFEAT

30 xFX 15, 0

50 A=RND(47)+43

60 M=-53X(A=920)-61X(A=88)-69X(A=47)

~73X(A=B6)-BLX(A=66)~BIX(A=78)~97X(A=77)~1

01k (A=44)

70 IF M=0 THEN 50

7% PRINT CHREC(1LZ28+RND(6)) M

80 FOR J=-1% TO -1 STEF RND(3)

90 SOUND 1,J,M,RND(3)

100 SOUND 2Z,J,M,RND(I)

110 NEXT J

120 UNTIL RND(10)=1

122 FPRINT ‘CHRECLZ28+RND(6)),"FAUSE"’

12% FOR J=-15 TO -1

130 SOUND 1,J,53,9

140 NEXT J

150 RUN

The possible permutations of this program are endless. Here is another
version which produces a tone somewhat closer to an electronic organ
trying to be a violin. Again, the program has not been renumbered, so
you can easily modify your earlier program.

10 REM xx AUTO PIAND XX
19 REM x% WITH VIEBRATO XX
20 REFEAT

30 x%FX 15, 0

93

w0

460

A=RND(47)+43
M=-G3%X (A=90) -61X(A=88) 69X (A=47)

=73X(A=86)-B1X(A=66)-89X(A=78) 97X (A=77) -1
01x(A=44)

70
75
80
?0
100
105
110
120
22
125
130
135
136
140
150

IF M=0 THEN G0

FRINT CHR&(1Z8+RND(6)) M
FOR J=1 TO RND{10Y+5

SOUND 1,-10~-RND(H) ,M,RND(3)
SOUND 2,-10~RND(3) ,M,RND(3)
SOUND 3,-10-RND(S) , M, RND(3)
NEXT J

UNTIL RND(14)=3

FRINT ‘CHR$(128+RND(46)) ,"FAUSE"’
FOR J=1 TO RND(10)+10

SOUND 1,-15,%3,5

SOUND 2,-6-RND(5),69,5
SOUND 3,-6~RND(3),81,5

NEXT J

RUN

There is no reason why the ‘piano’ should be restricted to one note at a
time. This final version play ‘chords’ (or, at least, two notes at once).

10
15
16
17
20
40
50

60

REM XX AUTO FIAND xx

REM x%x WITH VIBRATO XX

REM XXAND ‘CHORDS‘ xx

DIM E{2)

REFEAT

FOR B=1 TO 2

A=RND (47) +43
EC(E)=-03%(A=90)~61X(A=88) -69%X(A=67)

~73XK(A=B6)~B1X(A=66)-BIK(A=78) 97X (A=77
)-101%(A=44)

0
70
75
80
90

100
105
110
120

NEXT E

IF E(L)=0 OR E(2)=0 THEN 40
FRINT CHR$(1284+RND(6)Y) ,E(L) ,E(2)
FOR J=1 TO RNDC10)+5

SOUND 1,-10-RND(S),EC(L) ,RND(10)
SOUND 2,-10-RND(S5),E(2) ,RNDC(LD)
SOUND 3,~10-RND(3) ,EC1),RND(3)
NEXT

UNTIL RND(14)=3

94

122 FRINT ‘CHR$(LZB8+RND(S)), "FAUSE"
12% FOR J=1 TO RNDC10X+10

130 SOUND 1,-1%,%3,5

13% GOUND 2,-6-RND(3) 69,5

136 SOUND 3, ~6-RND(3),81,9

140 NEXT J

150 RUN

You should now be in a better position to understand the ‘Music
Maker’ program, introduced a short while ago in the string handling
section of this book.

The GETS$ function is used in line 90 to get a number between one and
nine to set the speed of the program. Line 150 should now make
sense. It uses some of the same numbers outside the brackets as does
‘Auto-piano’, and — within the brackets — evaluates for portions of
the string A$ which holds the melody. You can use the information
within line 150 for which number corresponds to which note to write a
program for a two octave piano program.

To recap our discussion to date on SOUND. The statement has four
parameters, the first of which (voice, or channel number) can be from
zero (noise) to three. The second parameter controls the volume, and
can be set from @ to — 15, with — 15 the loudest. The third figure after
the word SOUND is the pitch, and this can be any number from zero to
255, while the fourth parameter — which controls the duration of the
note — can have any value from one to 254.

You will find, from time to time, that sounds tend to continue after the
line which generated them as long been passed. The computer, when
necessary, stacks up notes and waits for the sound channel to be clear
so it can play them. If you want a note to be played immediately, in
effect to dismiss the notes stacked up waiting for their turn, you can
use a slightly more elaborate form of the SOUND statement.

The computer can stack up to four notes at a time, and the full
SOUND statement can tell it how many notes you wish to play. The
statement, in its full version, is as follows:

SOUND &HSFC, volume, pitch, duration

The first parameter after the ampersand, H can have a value of @ or 1.
In general use, it will be set to equal 0. It has a specific task when used
in conjunction with the ENVELOPE statement. For all intents and
purposes, at this stage, we can assume H will always equal zero.

95

The second one, S, dictates the number of notes which are to be
sounded at once. S can equal 0, 1, 2 or 3, and when set to zero, allows
the notes to be played one at a time, in turn. This is the way the
SOUND statement operates in its simpler form.

The third parameter, F, can be set to equal @, when the SOUND
statement operates as normal, accepting the notes in the order in
which they are ‘queued up’. If F is set to 1, all the waiting notes are
suppressed, the note which is sounding is cut off, and the newest note
is sounded.

C stands for Channel, the voice which we have used in the past. It is
setto® 1,2 or 3.

ENVELOPE

The SOUND statement is relatively simple, although it can — as you
have seen — produce quite exotic effects. However, the computer’s
noise-making abilities really come into play when the ENVELOPE
statement is introduced. The ENVELOPE statement is, however,
somewhat bewildering to use. It is followed by 14 parameters. A
proper discussion of ENVELOPE is outside the scope of a book like
this, but here is some material to start you thinking about, and using it.
You can generally define up to four ENVELOPEs within a program.
The next routine will define ENVELOPEs at random, and shows the
range of each of the 14 parameters.

10 REM xxXENVELOFE DEFINERXX
20 NUMBER=RND(4)

30 length=RND(127)-128X(RND(Z)=1)
40 PITCHL=128-RND(2356)

50 PITCHZ=128-RND(Z256)

60 PITCH3=128-RND(256)

70 STP1=RND(256)-1

80 STPZ=RND(Z256)~1

20 STP3=RND(256)~1

100 AMPATT=127-RND(253)

110 AMPDEC=127-RND(Z55)

120 AMFSUS=-RND(128)+1

130 AMFREL=-RND(128)+1

140 TARGATT=RND(127)-1

150 TARGDEC=RND(127)~1

96

1460 ENVELOPE MUMBER, lerngth,PITCHL,
FITCHZ ,PITCH3,:8TP1,8TF2Z,8TF3, AMPATT , AMFDEC . A
MPSUS, AMFREL , TARGATT , TARGDEC

170 SOUND 17,2,100,255

180 FRINT/ INUMEBER:" "ilength:" “iPITCHLS
" ""I"’(l'.,"'}ﬁll MQFIITL’ngu ue(;Tl_lon uoS'”.
23" OUISTR3Y MIAMFATTSY “jAMFDEC:" " AMFSUS,
AMFREL. : " "ITARGATTI" "ITARGDED

185 FOR J=1 TO Z003INEXT J

1920 RUN

Variable Name

Parameter Range Function

Number 1-4 This is the identifying
number

length 1-127 plus 128 for

dont’t repeat Length of each step

PITCH 1 —-128 to 127 All three govern
changes

PITCH 2 —128 to 127

PITCH 3 -128 to 127 in pitch

STP1 0 to 255 Number of steps in
each

STP2 0 to 255 section

STP3 0 to 255

AMPATT -127 to 127 Change of amplitude
per step in attack
phase

AMPDEC —127 to 127 Change during decay
phase

AMPSUS —-127 to 127 Change during sustain
phase

AMPREL -127 to 127 Change during release
phase

TARGATT 9 to 126 Target level at end of
attack phase

TARGDEC 0 to 126 Target level at end of

decay phase

Experiment with the ENVELOPE statement. You're sure to discover
some very interesting sounds.

97

READ/DATA/RESTORE

READ and DATA are very convenient ways of accessing information
within a program. It is relatively simple to use. Enter and run the
following program, which shows READ and DATA in action, and then
return to the book for an explanation of how it works.

10 REM READ/DATA

20 REM %KX XK XK KK XK XK KN XK ¥ KX
30 REM xxxRead the DATA
40 REM KKK KKK XK XK KKK KK KKK
30 DIM EB(3)

60 FOR A=1 TO 5

70 READ B(A)

80 NEXT A

Q0 REM REXKKKKKK KKK KKK KX
100 REM Print it bhachk
110 REM RMMKK KM K K KK KKK KK
120 FOR C=5 TO 1 STEF -1
130 PRINT E(C)

140 NEXT C

150 DATA 13,35241,88,2,1999999

*RUN
1999999
4

88
35241
13

In line 70, the computer comes across the instruction READ....
Whenever it finds a READ instruction, it goes to the first item
following the word DATA, and READs that, in this case, into an array.
The DATA items can be anywhere in the program (although it is useful
to keep them fairly close to the READ statement which refers to them).

Return to the program TABULATOR ROCKET RANGE which we have
used a few times before in this book. Here's the listing again to refer
to.

98

10 REM TABULATOR ROCKET RANGE

20 MODE7

30 FOR J=10 TO 1 STEP -1

40 PRINT “7'J

S0 T=TIME

60 REFEAT UNTIL TIME-T>S0

70 NEXT J

80 REPEAT

?0 Q=RND(29)+1

100 U=128+RND(S)

110 FOR rocket=1 TO 7{READ ROCKET$

120 Pg&g:(g?&ég):CHRs(lZ?);“(":TAE(G):

H CKET$ 3 TAE(3 0 I sy n

130 NEXT rocket PTAS(36) JCHRE (129254
140 T=TIME

150 REFPEAT UNTIL TIME-T=2

160 SFACE =RND(10)

170 SOUND 16,-RND(5)-10,RND(3)-1,RND(20)
180 FOR print=1 TO SPACE

190 PRINT TAB(0)CHR(129) 3" (" TAB(37)3")"
200 NEXT print
210 RESTORE
220 T=TIME
230 REFEAT UNTIL TIME-T=2
240 UNTIL FALSE
250 DATA ™ 4+ "," 444 n
260 DATA " ++4 "," 444 "
270 DATA " +4+ "," 444 »
280 DATA " «x» "

In the first program in this section, the DATA is numbers, and these
are assigned to numerical variables (the elements of the array). In
TABULATOR ROCKET RANGE, the DATA is strings (lines 250 to 280)
and these are assigned in turn to the string variable ROCKET$, and
then printed out in line 120. The next item of DATA is then assigned to
ROCKETS$, as the program continues through the loop labelled
‘rocket’. As you know, this program runs over and over again, but
there are only seven items of DATA, only enough to go through the
‘rocket’ loop once. The program needs the third word which goes with
READ and DATA. This third word is RESTORE, which you’ll see as
line 210. This tells the computer to go back to the start of the list of
DATA and start READing from the first item again. Here is another
sample program, showing DATA in the form of strings, and illustrating
RESTORE in action.

10 REM READ/DATA/STRINGS

20 REM K%K ¥ XK MK XK MK KK XK K KX

30 REM xxxRead the DATA

40 REM KKK KKK KKK KK KKKXK

S0 DIM B$(21)

60 FOR A=1 TO 21

70 READ B&(A)

80 IF 3XINT(A/3)=A THEN RESTORE

29

S0 NEXT A

LTO0 FEM 03 0004 0 MK KKK
L0 REM PFerint it back
L20 REM o KKK 30K 3K XK K
120 FOR C=1 TQ 21

140 PRINT B

1506 MEXT €

LH0 DATA WET KILL,DIE

In this program, there are only three items of DATA, so RESTORE
must operate once the three have been read. Line 80 ensures that this
occurs every time the three are read while running through the A loop
from 1 to 21. Notice that the string DATA do not have to be enclosed
within quote marks. Despite this, it is a good idea to always include
items of string DATA within quotes, to separate them clearly from
numeric DATA.

10 REM READ/DATA/STRINGS

20 M RONOR KON ROCKMOKOK K R X K

30 REM xxxRezd the DATA

A0 FREFE A0 KRN K MO HOK X

4% WET=99 IKILL=12IDIE=807

S0 DIM BEZ1),2(21)

40 FOR A=1 TO 21

70 READ BEGAY,Z(A)

80 IF 3XINT(A/3)=6 THEN RESTORE

20 NEXT A

LOO FCEP 50K 08K K K M K K 2 K K KK K

110 REM Frinmt it back

120 FRETE 5000 50RO M0O0IOK MO K X

130 FOR C=1 TO 21

140 FRINT B$CH Z(OT)

150 NEXT C

160 DATA "WET" ,HWET, "KILL" ,KILL,"DIE",DIE
The value of separating string from numeric DATA is shown clearly in
the preceding program where the numeric variables are made up from
the same letters which form the strings. Even in this case, the
computer sorts it all out. You can adapt the string READ/DATA

program to read both string and numeric items by adding line 45, and
by modifying lines 50, 70, 140 and 160.

As you have seen, a READ command is used within a line to assign
values to variables from a sequence of items contained within a DATA

100

statement. Each item of DATA is separated from others by a comma.A
READ statement is made up of a line number, followed by the word
READ, and the variable names which are to be assigned to the
variables taken from the DATA line.

When a program comes to a READ statement, it will — as | pointed
out — move to the first DATA statement, no matter where it is in the
program. The first value of the DATA statement will be assigned to the
first variable in the READ statement. Apart from reading a DATA
statement, the computer takes no notice of it, and will treat it as a
REM statement. Move line 160 up to line 25, and run the preceding
program again. You'll see that (a) the computer ignores line 25, and (b)
still READs it successfully.

Even if the DATA is scattered all over the program, the computer will
seek it out, as the following program shows. This one is, of course,
based on the preceding ones.

10 REM READ/DATA/Z/STRINGS
S0 FUEM R K 0 O K K K K
239 D&ATH “HIY,7

30 REM xxkxRead the DATA
A0 FEM AR KO O 3O 0K
B0 DIM BE(Z1Y,Z2(21)

&0 FOR A=1 TO 21

70 READ BH{AY,Z2(M)

80 TF IXINT(A/3)=A THEN RESTORE
84 DAaTAH "GOSH"

0 NEXT A

5 DATA 56, "BOR"

TO0 FREM 550K 50K 3OK 0K MOK KKK KX
110 REM Primt it bDack

L0 REM K5 0OK X K K K K MK X
130 FOR C=1 TD 21

140 PRINT B&{C)Y,Z(C)

145 DATA 22

150 NEXT C

It is important to ensure that you have enough DATA items for the
number of times you tell the computer to READ. Delete line 145 in the
above program, and run it again. You will get the error message ‘Out
of DATA at line 70’ where the computer had read two items of numeric
DATA, then was unable to find a third because RESTORE had not yet
been evoked.

101

Remember that although it is not essential to have the DATA items
near the READ lines which are looking for them, it will probably make
your programs easier to understand if they are held in this manner. It
also makes it easier to know which lines to alter if you are working on a
program.

Mastering the Graphics

There are eight graphic modes on the BBC Microcomputer, and it can
be quite bewildering — when you first get your machine — to try and
work out how to use them.

WEe'll start our discussion with Mode 7, the teletext display mode, as
this is the easiest to understand. As well as this, it can be used to
produce splendid displays, despite some limitations. Your computer is
automatically in Mode 7 when you turn it on, and it is the mode which
uses the smallest amount of memory. In mode 7, the screen is 40
characters across, and 25 down. There are six basic colours (plus black
and white) available in this mode, and they are selected by preceding
the text you want printed — after the word PRINT — with a character
control. Type in ‘program one’, and you'll see what | mean.

10 REM MODE 7 GRAFHICS FROGRAM ONE
20 PRINT CHR$(129);"This will print in red"

Program one shows that character 129 turns the text on that line (but
not on the following lines, even if the PRINT statement ‘wraps around’
to the next line) red. Try program two, which indicates that CHR$
(130) turns text which follows it green.

10 REM MODE 7 GRAFHICS PROGRAM TWO
20 PRINT CHR$(130):"This will print in green"

As | said, there are six colours you can select in this way. The six are
shown by program three.

10 REM MODE 7 GRAFHICS FROGRAM THREE

20 FOR colour= 1 T0 &

30 PRINT CHR$(128+colour)i"TESTING "colour’
40 NEXT colour

102

The codes, and their colours, are:

129 — red
130 — green
131 — yellow
132 — blue

133 — magenta (purple)
134 — cyan (light blue)

This list suggests that there is a very simple way of generating
randomly coloured PRINT statements which can be very useful for
increasing the effectiveness of a program. Try program four to see this
random colour change in action.

10 REM MODE 7 CGRAFHICS FROGRAM FOUR

20 REFEAT

30 FPRINT ‘CHR$(1Z28+RND(6))3"Testing..."
40 TIME=0

90 REPEAT UNTIL TIME:60

60 UNTIL FALSE

The important line in this program is, of course, line 30, which
generates a random number between one and six, and adds it to 128.
Incidentally, this program also shows use of the REPEAT/UNTIL loop
for two quite different purposes. The loop beginning at line 20 and
ending at line 60 is a ‘perpetual loop’, as you have seen in several other
programs in this book. This sort of REPEAT/UNTIL continues until
BREAK is pressed. The use of an ‘UNTIL FALSE’ terminator in this
way is more elegant programming than use of GOTO 30 for line 60.

The second REPEAT/UNTIL loop is in line 50. Line 40 sets a ‘clock’,
which is always running while the computer is turned on, to zero. Line
50 holds the program in a REPEAT/UNTIL loop until the time had
incremented to 61. Turn to your computer now, and type, in the direct
mode, PRINT TIME. As you'll see, it has increased considerably from
the 61 it read when you last ran program four. A REPEAT/UNTIL delay
loop is a more flexible delay device than a ‘dummy’ FOR/NEXT loop
such as was used in some early programs in this book.

Now, let’s get back to the graphics.
The numbers higher than 134 also have interesting and useful effects if

PRINTed following CHR$. Enter and run program five to see what
these are.

10 REM MODE 7 GRAFHICS FROGRAM FIVE
20 FOR colour=129 TO 151

103

30 FRINT jcolouriCHR$(colour)i'" abedefah
ijklmnoparstuvwsyz”
40 NEXT

The first thing you'll notice is that control character 135 turns the text
back to white, and 136 makes the text, which is white, flash off and
on. The line proceded by character 141 looks very odd. If you look at it
closely, you'll see it is the top half of the relevant letters. This shows us
the way to get double-height characters. Enter the following line, in
the direct mode, to see character 141 do its work:

*FRINT CHR$(141)3"TEST"{FRINT CHR$(141)3"TEST"

As you can see, this writes the word TEST in double-height letters.
You need to enter every line twice, following CHR$(141)’s, to get
words to print in this manner. To prove this, change the T of the
second word TEST to W and see what happens:

#FRINT CHR$(141)3"TEST"{FRINT CHR$(141)3"TWST"

As you can see, it combines the top half of the first line with the
bottom half of the second line. It is possible to combine colours, and
double height characters, to produce large coloured PRINT output. So
as not to disturb the program (program five) which you still have in
your machine, enter the following program starting at line 100, and run
it by entering GOTO 100.

100 REM DEMO SIX DOUELE HEIGHT, COLOURED

110 REFEAT

120 PRINT CHR$(141);CHR$(128+RND(6))}"This is a test!"
130 PRINT CHR$(141)3CHR$(128+RND(6))3"This is a test!"™
140 TIME=0

150 REPEAT UNTIL TIME>60

160 UNTIL FALSE

You can see that mixed colours are allowed, and can be most
effective. Add 50 END to the program (program five) which you still
have in your computer, and RUN it again. You'll see that the output
when the control characters lie between 145 and 151 are very
interesting, producing a good selection of teletext ‘chunky graphics’.
You've probably seen how effectively these can be combined to
produce pictures on Ceefax, Oracle or Prestel. You may like to create

104

your own table of these characters, so you can use them at will to
create pictures of your choice. Change line 30 to the following to see
more of the available graphics:

30 FRINT jcolouriCHR${(colour)}i"abcdefahi.jk

1mnoparstuvwxyz ! $Z& 7 () 0=2"3CHR$ (col
our) 3" IR+ PN

(Note that although the printer prints out the character as it appears on
the keyboard, the character on the screen in the teletext mode is
sometimes different. For example, the curly bracket after the quote
marks following the third appearance of the word colour in line 30
appears on the screen as %.)

To see the graphic shapes more clearly, enter and run demonstration
program seven.

10 REM DEMO SEVEN GRAFHIC CODES
20 FOR A=33 TO 254

30 PRINT }A,CHR$(150)3;CHR$(A)
40 TIME=0

90 REFPEAT UNTIL TIME:»60

60 NEXT

Look at the program output closely, and see if you can determine
whether or not the characters repeat, and — if they do — which
pattern underlies the repetition.

To get colours, as well as graphics, you precede the lower case letters
in the PRINT statement with the following numbers: 145, red; 146,
green; 147, yellow; 148, blue; 149, magenta; 150, cyan; or 151, white.
The following program demonstrates this:

10 REM DEMO EIGHT COLOURED GRAFHICS

20 FOR code=14% T0O 151

30 PRINT ‘code CHR%(code)i{"a b ¢ d e"
40 NEXT code

You can mix text with graphics in the same colour, from the same
PRINT line, so long as you are happy with the text being in upper case
letters. Program nine should make this clear:

10 REM DEMO NINE GRAPHICS, LETTERS

20 FOR code=145 TO 151

30 FRINT ‘code CHR$(code)}"as AbE c C d D e E"
40 NEXT code

105

If you wish to change the background colour, you need to select the
colour you want (using the code you discovered from running program
three), and follow this with CHR$(157), which tells the computer you
want the colour which preceded it to apply to the backgrourd. You
follow the CHR$(157) with another character (again chosen from those
demonstrated in program three) to select the colour of the text.

10 REM DEMO 10 COLOURED BACKGROUND

20 FOR background = 129 TO 135

30 FOR foreqround = 129 TO 135

40 FRINT CHR$(bhackqground) jCHR${(157)}
CHR% (forearound) ; "AECDabod"

30 NEXT foreground

460 TIME=0

70 REFEAT UNTIL TIME>=100

80 NEXT background

You can see what a splendid effect this has. The delay loop (line 70) is
to give you a chance to admire one set of foregrounds on a
background before the next set appears. The foreground and
background colours can be changed at random for some quite
spectacular effects. Try program eleven. You may well be able to use a
routine like this in one of your own programs.

10 REM DEMO 11 RANDOM COLOURED

20 REM COLOURS ON COLOURS

30 MODE7

40 FRINT‘‘’/‘"What is your full name”;

S50 INFUT A$

60 REFEAT

70 FRINT CHR$(128+RND(7));CHR$(157) ;CHR$ (128+RND(7))}A$
80 TIME=0

90 REPEAT UNTIL TIMEX>60

100 UNTIL FALSE

As you can see from running this (which includes white as one of the
colours, to increase variety), from time to time the foreground and
background colours will be identical, so that nothing can be seen. It is
very easy to write a routine to overcome this, using a REPEAT/UNTIL

loop.

10 REM DEMO 12 RANDOM COLOURS

20 REM ON COLOURS

30 MODE?Y

40 PRINT‘/’"What is your full name"}
50 INPUT A%

460 REFEAT

106

70 REFEAT

80 A=128+RND(7)(E=128+RND(7)

20 UNTIL A<:E

100 FRINT CHR$(A)CHR$(157) ;CHR$(E) } A%
110 TIME=0

120 REFPEAT UNTIL TIME:60

130 UNTIL FALSE

You'll notice that parts of the program, like the PRINT line (100), are
getting a little messy. Fortunately, because the BBC Micro allows
concatenation (adding together) of strings, you can easily combine all
the colour information, as well as the other required information, into a
single string.

10 REM DEMO 13 RANDOM COLOURS

20 REM WITH CONCATENATION

30 MODEZ

40 PRINT’/7/"What is your full name"}
S0 INFUT A%

60 REFEAT

70 REFEAT

80 A=1Z28+RND(7)iB=128+RND(7)

20 UNTIL A<:B

100 B$=CHR$(A)Y+CHR$(157)+CHR$ (B)+A%
110 FRINT B$

120 TIME=0

130 REFEAT UNTIL TIME:>&60

140 UNTIL FALSE

If you want to print everything in one foreground/background
combination, say yellow on red, you can combine all the required
information into one string, and then precede each PRINT statement
with this string. A$ = CHR$(129) + CHR$(157) + CHR$(131) can be
used before any string to print it in yellow letters on a red background,
in the form PRINT A$; ““Hello Bob"'.

You're sure to find particular colour combinations, such as yellow (or
white) on red, particularly effective. Whenever you discover one which
looks good on your television set (and, unfortunately, colour
televisions seem to vary widely in their response to BBC
Microcomputer colours), make a note of it so you can use it in a
program.

If you want the letters to flash, precede the sequence with CHR$(136).
The flash is turned off with CHR$(137). Change line 109 of program 13
so it reads as follows:

107

100 E$=CHR$(136)+CHR$(A)+CHR$(157)+CHR$ (E)+A$
You'll see when you run this that your name will flash quite pleasantly.

If you want doubleheight characters on a new background, you can
combine all the information into a single string:

10 REM DEMO 14
20 REM MORE CONCATENATION

30 A$=CHR$(141)+CHR$(129)+CHR$(157)+CHR$(132)+"HI THERE, EOB"

40 FPRINT A%
S50 FRINT A$
60 RUN

You can easily decide to have, for example, randomly coloured letters,
which can be quite spectacular, as this example shows:

10 REM DEMO 14B
20 REM RANDOM LETTER COLOURS

30 A$=CHR$(141)+CHR$(129)+CHR$(157)+CHR$ (129+RND(46))+"HI THERE, EOB"

40 FRINT A$
S50 FRINT A$
60 RUN

Note that the colours chosen for the letters do not include red (129) to
ensure that red on red does not appear.

Typing out CHR$ (whatever) can become a little tedious. It is possible
to get around this by using VDU statements. The following program,
which uses VDU statements, produces the same effect as program
14B.

10 REM DEMO 14C

20 REM USING VDU STATEMENTS
30 VDU 141,129,157,129+RND(6)
40 FRINT "HI THERE, EOE"

90 VDU 141,129,157,129+RND(4)
60 FRINT "HI THERE, EOE"

70 RUN

I'll now try and summarise some of the points from the preceding
discussion, leading into another version of the program ‘Mastermind’.
There are many, many computer versions of the game. In most of
these (and in this version), the computer selects a four-digit number,
and the human player has to guess the number. A correct digit in a
correct position in the four-digit code scores a ‘black’, and a correct
digit in the wrong position scores a ‘white’. Each digit in the code is
different.

As we said a little earlier, preceding a PRINT statement with a
character control code, from 129 to 135, changes the colour of the

108

10
40
50
60
70
80
0
100
110
120
130
140
150
160
170
180
190
200
210

220
230
240
250
260
270
280
290
300
310
320
330
340

PRINT output from that line. Enter the program, and then return to the
book for a discussion on it.

REM xx MASTERMIND xx

DIM C(4),G(4)

MODE7

F-RINT 2 2 7 2 7

VDU 129,157,131

FRINT "I am thinkirmg of 8 four-digit number"

vbu 129,157,131

FRINT"which gou have 10 goes to discover."’’

VDU 129,157,131

FRINT"Al1ll four digits are different..."’’’

vDu 129,157,131

FRINT"Fress ang keg to begin."”

A%=GETS$

CLSIPRINT

C(1)=RND(9)

FOR Z=2 TO 4:C(Z)=RND(9)

FOR J=1 TO Z-1%{IF C(JI)=C(Z) THEN 170

NEXTINEXT

FOR G=1 TO 10! PRINT CHR$(134)ICHR$(157)}
CHR(133)"Enter guess number "G

INFUT ATAL=AIPRINT CHR$(11)3CHR$(11)3CHR$(11)
FOR Z=1 TO 4:1G(Z)=A-10XINT(A/10)

A=INT(A/10) INEXT

B=0tW=0

FOR Z=1 TO 43IFC(Z)<>G(Z) THEN 280
B=EB+13G(Z)=0

NEXT

FOR Z=1 TO 4:1IF G(Z)=0 THEN 330

FOR J=1 TO 4:IF C(Z)<>G(J) THEN 320
W=W+1

NEXT J

NEXT Z

FRINT A13CHR$(132)3"scored"CHR$(129)E
3" black"33iIF B<>1 PRINT "s"3

350 PRINT CHR$(132)3"and" ;CHR$(129)3W3

" white"$1IF W<x1 PRINT “g

360 IF W=1 PRINT

109

*
14

370 IF B=4 PRINT CHR$(129)3;CHR$(157)
163" a

CHR$ (131> " You quessed it in just
vess" $IIF Grl FRINT "es" ELSE FRINT
380 IF B4 NEXT G
320 PRINT CHR$(134):"The code wasg"}
CHR$(129)3C(4)3C(3)3C(2)3C 1)

Look at line 390. This prints the words ““The code was" in cyan, and
C(4);C(3);C(2);C(1) in red. To change the background colour, you
specify the colour (i.e. CHR$(129) for red) followed by CHR$(157)
which tells the computer you want that colour on that line as a
background. The CHR$(157) is followed by the control for another
colour, which determines the colour of the letters printed. Line 370
prints a red (129) background with yellow (131) words.

The constant printing of CHR$’s can take time, so a VDU statement
can be used instead. Look at line 70. This line — VDU 129,157,131 —
takes the place of all that appears between the word PRINT and ;’You
guessed it...” in line 370. We'll be looking at applications of VDU in
more detail shortly, but first we must examine the other graphics
modes.

As we said earlier, there are eight graphics modes, numbered from
zero through to seven. The lower the number of the mode, the higher
the resolution. The higher resolution modes need more memory than
do the lower resolution modes. If you have a Model A machine you
can only use modes 4, 5, 6 and 7.

Here is a summary of the modes:

Mode number text/graphics grid(across by

down) Memory needed
7 text, chunky 340 X 25 1K
graphics
6 text, two 340 X 25 8K
colours
5 text graphics 20 X 32 10K
four colours 160 X 256
4 text graphics 40 X 32 10K
two colours 320 x 256
3 text, two 80 x 25 16K
colours
2 text graphics 20 x 32 20K
16 colours 160 X 256
1 text graphics 40 X 32 20K
four colours 320 x 256
0 text graphics 80 X 32 20K
640 X 256

110

You set mode, foreground and background colours by numbers.
MODE n sets the mode to n, and also clears the screen. COLOUR n
(where n is less than 16), sets the foreground colour, and where n is
greater than 128 (actually is n + 128), sets the background colour.

There are two colours in modes 0, 3, 4 and 6. Although these are set
initially to white (1) and black (@), they can be changed. There are four
colours available in modes 1 and 5. As with modes 0, 3, 4 and 6, you
can change these colours, but initially they are white (3), yellow (2),
red (1) and black (@). Mode 2 is the most generously supplied with
colours, eight standard ones and eight which flash. Numbered from
zero to 15, the initial colour numbers are black, red, green, yellow,
blue, magenta, cyan, white, flashing black, flashing red, flashing
green, flashing yellow, flashing blue, flashing magenta, flashing cyan
and flashing white.

Let us look at how the colours are allotted with a simple program.
Enter and run this, then return to the book for a discussion on it.

10 REM MODE & DEMO

20 MODE 6

30 REFEAT

40 COLOUR 0

90 COLOUR 128 + 1

60 CLS

70 FRINT ‘//"DEMONSTRATION"

80 FRINT "FOREGROUND 0, BACKGROUND 128 + 1"
20 FOR J=1 TO 2000:NEXT

100 COLOUR 1

110 COLOUR 128 + 0

120 CLS

130 PRINT 777777/ /"DEMONSTRATION"

140 FPRINT "FOREGROUND 1, EACKGROUND 128 + 0"
150 FOR J=1 TO 2000:INEXT

160 UNTIL FALSE

As | said a few paragraphs ago, there are four colours available in
modes 1 and 5. This next routine goes through all the combinations
available in mode 5, and also shows the size of the text (where there
are 20 characters across the screen).

10 REM MODE 5 DEMO

20 MODE S

30 FOR N=0 TO 3

40 FOR M=3 TO 0 STEF -1

111

30 COLOUR N

60 COLOUR 128 + M

70 CLS

80 PRINT 77/"DEMONSTRATION"

90 FRINT 77/"FOREGROUND "§N

100 PRINT 777"BACKGROUND "3iMi:" + 128%
110 FOR J=1 TO 3000INEXT

120 NEXT M

130 NEXT N

Already, just from running these two demonstrations, you should have
picked up a number of ideas regarding the use of the COLOUR
command. Line 70 is needed to make the entire screen clear to the
designated background colour. Take out line 70 and see what
difference this makes.

If you have a model B machine, run the following program, which puts
the computer through all its paces. This routine is based on the
demonstration for mode 5, and you need only make a few simple
changes to run it.

10 REM MODE 2 DEMO

20 MODE Z

30 FOR N=0 TO 15

40 FOR M=135 TO 0 STEF -1

45 XIF M=N THEN 120

S50 COLOUR N

60 COLOUR 128 + M

70 CLSISOUND 1,~-15,N+Mx10,1
80 FRINT “//"DEMONSTRATION"
90 FRINT 7//"FOREGROUND "3N
100 FRINT 77/"BACKGROUND "3iM3" + 128"
110 FOR J=1 TO Z000INEXT

120 NEXT M

130 NEXT N

As you run this program (which takes quite a while), you'll see some
colour combinations are particularly effective, while others make it
impossible to read the text, or are just unattractive, or both. Keep a
pen and paper near you when you run this, and take note of the more
effective combinations.

112

GCOL/CLG

You use the GCOL statement to set up the screen for coloured
graphics. The GCOL statement has two parameters, the first
determines the nature of the manipulation of the plotted point, and the
second determines the foreground (n less than 16) or background (n
greater than 128) colours. CLG is the graphics version of CLS: it clears
the background to the colour specified. The following routines show
some of the results of using GCOL. They are in mode 5, and may be
run on both model A and B machines.

10 REM GCOL DEMO ONE

20 MapeE 5

30 FOR MN=0 TO 23

40 GCOL 0,N

S50 PLOT 1L,REND(E00) ,RNDC(S00)
460 FOR J=1 T0O Z2000INEXT

70 NEXT N

10 REM GCOL DEMO TWO

20 MODE 5

30 FOR N=0 TO 3

40 FOR M=3 TO 0 STEF -1
S50 GCOL 0,N

60 GCOL 0,M+128

70 CLG

80 PLOT L,RNDCLO00),RND(L1000)
20 FOR J=1 TO 2000INEXT
100 NEXT ™

110 NEXT N

GCOL determines the colour which will be used — and how it will be
placed on the screen — for all graphics operations which follow it in a
program. The first number after GCOL specifies the logical operation
which will be performed at that plotted point on the screen, as is
graphically illustrated in the following routine.

10 REM GCOL DEMO THREE

20 MODE 5

30 GCOL 0,1:GCOL 0,128+23CLG
40 FOR A=200 TO 1000 STEF 40
50 FOR B=1 TO 1000 STEF 40
60 DRAW A,BINEXT INEXT

113

70 FOR N=0 TO 4

80 FOR M=0 TO 4

90 MOVE 0,0:S0UND 1,-15,20X(M+N),2
100 GCOL M,N

110 FOR A=200 TO 1000 STEF 40+M+RND(4)
120 FOR EBE=1 TO 1000 STEF 39+N+RND(4)
130 DRAW A,EINEXTINEXT

140 NEXTINEXT

150 SOUND1,-15,43,20

The numbers which come immediately after GCOL are 1 to 4, and the
operations they perform are ‘logical OR’ (1), ‘logical AND’ (2), ‘logical
EOR’ (3) or the colour can be inverted (4).

If you have a model B machine, you might like to run the following
version of the preceding routine.

10 REM GCOL DEMO THREEE

20 MODE Z

30 GCOL 0,1:GCOL 0,128+5:CLG

40 FOR A=200 TO 1000 STEF 40

S50 FOR E=1 TO 1000 STEFP 40

60 DRAW A,BINEXTINEXT

70 FOR N=0 TO 195

80 FOR M=0 TO 4

20 MOVE 0,0:S0UND 1,-15,20%(M+N),2
100 GCOL ™M,N

110 FOR A=200 TO 1000 STEF 40+M+4xRND(4)
120 FOR EB=1 TO 1000 STEF 39+N+3XRND(4)
130 DRAW A,EBINEXTINEXT

140 NEXTSINEXT

150 SOUND1,-15,43,20

This next program also shows GCOL in use. The first parameter (i.e. 9,
1, 2 or 3) is shown in the top left hand corner, and a circle is plotted.
After the program has been running for a while, and the circles start
overlapping, you’ll be able to clearly see the effect each of these
numbers has. Run this until you are sure you understand what is going
on.

10 REM GCOL CIRCLES

20 REM Eased on program
30 REM By Jeremy Ruston
40 MODEZ

114

%0
60
70
80
90
100
110

120
130
140
150
140
170
180
120

T MO8 M K 3K R 3K 34 8 DK K 380 34 K 80K MK K

REFEAT

SOUND 1,-5,100,4

Q=RND(4) 1

FRINTTARB(3,3):Q

GCOL. QA RNDC7)

FROCecirele (RND(640)+320,
RND({S12)+256,RND(300))

UNTXL. FALSE

FEE I 28030 KK 3K K DK 7K DK 3K 58 K 3K 3 3K K K K

DEF FROCecircle(xcoord,ycoord,radius)

LOCAL anole,step

step=5+RND(7)

FOR angle=0 TO 360 STEF step

MOVE xcoord,ygcoord

MOVE SIN(RAD(angle)) Xradiusticoord,

COS(RAD(angle))¥radivstycoordg

FLOT 85,85IN(RAD(angle+step))Xradius
+xcoord, COS(RAD(angletstep)) x
radivst+ycoordg

210 NEXT anqle
220 ENDFROC

If you do not have a Model B machine, run the program in mode 5. it
still works, but is not as attractive.

115

PLOT

PLOT is a remarkably flexible statement in BBC BASIC, with over 40
ways to use it. The word PLOT is followed by three parameters. The
first one determines the kind of PLOTting which will take place, while
the last two give a location, either absolute (such as 0,0 being the
bottom left hand corner of the screen) or relative (so 100,100 is 100
points up and 100 points across from the last point plotted). The first
parameter dictates whether the following two will be treated
absolutely or relatively.

For the purposes of this book, the important first parameters after the
word PLOT are the numbers zero to seven, and 80 to 87.

First

Para

meter Effect:

0 This uses a PLOT statement of the form PLOT @,x,y to

move relative to last point. The computer initialises a
graphics mode (with a line like 10 Mode 5) by moving to
the 0,0 point, the bottom left hand corner of the screen.

1 This draws a line from the present position, to the point
specified by the two co-ordinates. The line is drawn in the
current foreground colour, which is white unless another
colour has been specified.

2 This draws a line as does 1, but in the logical inverse colour
(with the logical inverse of @ in a two-colour mode being 1,
and with the following logical inverses in a four colour
mode: @ (3), 1 (2), 2 (1) and 3 ().

3 This performs like 1 and 2, but draws the line in the
background colour.
4 This is a very useful plot command, which moves the

plotting point (but without actually plotting anything) to
the absolute position specified. PLOT 4,0,0 will move the
PLOT position to the bottom left hand corner. Because
this is so useful, the word PLOT and the first parameter
may be replaced by MOVE so to move to the bottom left
hand corner, you need just to enter MOVE 0,0.

5 This is another very useful command, which draws a line
from the present plotting position to the absolute position
specified (as opposed to PLOT 3 which draws the line
counting from the present PLOT position). PLOT 5,x,y can
be replaced with DRAW x,y.

6 This performs as does PLOT 5, but plots the line in the
logical inverse colour (see the explanation of PLOT 2 for
information on logical inverse colours).

116

7 This is a companion to PLOTs 5 and 6, drawing a line to an
absolute point, but in the current background colour.

PLOTs 4, 5 and 7 can be seen at work in this little routine, which
appears to make a line flash off and on, but is really plotting it
alternatively in the foreground and background colours.

10 REM Using FLOT 4, S and 7
20 REM "Electric Spark"
30 MODE S

40 REFEAT

950 X=RND(1280)-1

60 Y=RND(1024)-1

70 FLOT 4,0,0

80 FLOT S,X,Y

?0 SOUND 15,-15,RND(4),1
100 FLOT 4,0,0
110 PLOT 7,X,Y
120 UNTIL FALSE

Line 30 sets the mode to 5, and lines 40 and 120 are the master
REPEAT/UNTIL loop which keeps things running forever. Lines 50
and 60 choose a random co-ordinate for the end-point of the line. Line
70 moves the plotting position to 0,0 and from there line 80 plots a line
to the X and Y co-ordinates chosen in lines 50 and 60. Line 99 makes
an appropriate noise. This line does nothing to help the demonstration
except add appropriate (?) sound effects. Line 100 moves the plot
position back to 0,0 and then line 110 plots another line which is
identical to the one plotted by line 80, except that it is plotted in the
background colour, so the line vanishes.

This demonstration could look very effective in colour. See if you can
apply what you learned in the section on GCOL to alter this routine
slightly so that instead of plotting in white on a black background, it
plots in yellow on a red background. When you have tried this (and
only then), examine the next listing which shows how | did it. The lines
between 30 and 40 are the ones | added.

10 REM Using FLOT 4, S5 and 7
20 REM "Electric Spark"

30 MODE S

32 GCOL 0,2

33 GCOL 0,128+1

34 CLG

40 REPEAT

117

950 A=RND(1280)-1

60 Y=RND{(1024)-1

70 PLOT 4,0,0

80 FLOT S,X,Y

0 SOUND 15,-15,RND(4,1

100 PLOT 4,0,0

120 FLOT 7,%,Y

120 UNTIL FALSE

Line 32 determines that the foreground colour will be yellow, line 33

that the background will be red, and line 34 clears to the graphics
background.

PLOT numbers 80 to 87 behave like number 0 to 7, except that they
plot and fill a triangle, using the last two points visited when filling
triangles with colour.

The PLOT commands are very flexible, as the following programs
demonstrate.

10 REM PLOT demonstration

20 REM Based on “"lce Cave"

30 REM g Norman Alm

40 MODES4

50 FOR N=1 TOQ 2

60 K=3454+RND(11)

70 X=RND(L1240)3Y=RND(1024>

80 FOR R=RND(70)+100 TO 1000 STEF RND(Z20)+12
20 MOVE R,K

100 DRAW X,R

110 DRAW (X-R),Y
120 DRAW R,K

130 T=TIME!REFEAT UNTIL TIME-T>10
140 NEXT R

150 T=TIMEIREFEAT UNTIL TIME-T>100
160 NEXT N

170 RUN

10 REM xTce Cave ZX

20 REM Based on ATOM proaram
30 REM by Norman Alm

40 MODES

50 REFEAT

460 CLG

118

70

80

?0
100
110
120
130
140
150
160
170
180
190
200
210

220

10
15
20
30
40
a0
60
70
80
?0
100
110
120
130
140
150
160
170
180
190
200
210

220

FOR T=1 TO 2

A=RND(3)

GCOL. 0,A

X=RND(1280)~-1
Y=RND(1024)-1

FOR R=600 TO 1300 STEF 15+RND(10)
MOVE R,600

DRAW X,R

DRAW (X~-R),Y

DRAW 600, (Y-R)

DRAW R, 600

NEXT R

NEXT T

T=TIME

REFEAT UNTIL TIME-T:60
UNTIL FALSE

REM XIce Cave 2ZX

REM Adapted for Mode 2
REM Ezsed orn ATOM program
REM by Norman Alm
MODEZ

REFEAT

CLG

FOR T=1 TO 2

A=RND(7)

GCOL. 0,4

X=RND(1280)-1
Y=RND(1024)-1

FOR R=600 TO 1300 STEF 15+RND(10)
MOVE R,600

DRAW X,R

DRAW (X~R),Y

DRAW 600, (Y-R)

DRAW R,600

NEXT R

NEXT T

T=TIME

REFEAT UNTIL TIME-T:»40
UNTIL FALSE

119

10
20
30
40
50
460
70
a0
20
100

10
20
30
44
S0
&0
70
80
{0
100
110
120
130
140

10
20
a0
44
50
60
70
80
240
100
110
120
130
140
150

REM ZEBRA TRIANGLES

REM RUNM IN MODE 2 ON MODEL B
MODES

REFEAT

GCOL. RMD(7Y 50

FLOT 8U5,RNDC1280) -1, RND(L0Z240~1
T=TIME

REFEAT UNTIL TIME-T:Z20

TF RNDOLI<. 01 RUN

UMTIL FAaLSE

REM ROTATING SQUARES
REM BY JEREMY RUSTON
REFEAT

MODEL

R=RNDC7 0 +3

FOR X=0 TO 999 STEF R
GCOL RMDOS)Y -1, COX/ZR) MOD 3+l
MOVE X, 0

DRAW 0,1000-X

DEAKW 1000-X,1000

DRAW 1000,X

DREAW X, 0

NEXT X

UNTIL. FALSE

FREM SHRINKER

REFEAT

MODES

R=RND L7) +4

FOR X=0 TO 600 STEF R
MOVE X, 0

DREAW 0,1000~-X

DRAW 1000-X,1000-X

DRA&W 1000-X,X

DRAW X, 0

SOUND 17,-10-RND(5) ,2546-X/3,1
NEXT X

T=TIME

REFEAT UNTIL TIME-T>100
UNTTIL. FALSE

120

10

20

30

44

50

&0

70

AL

bl
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
2460
270
280
290
300
310
Az
330

10
20
30
40
50
60

-y
s

REM By Jeremy Ruston
REFEAT

TIME=0

MODE4

FROCohopper

XmRHDOLO00 -1

YR L0001

FOR T=0 TO 999 GTEF 4

IF TIME=S00 THEN PROCchopper
MOVE 1,0

FLOT &,:X,Y

FLOT &6:.T,999

MOVE 0,7

FLOT &,X,Y

FLOT 6,999,T

SOUND 1-RND(7)Z230+RND(2E) 41
NEXT T

TIME=0

REFEAT UNTIL TIME=200
UNTIL FALSE

DEF PROCehopper

SOUND 1,19, RNDC20),10
SOUND 2,18, RND(30)Y+30,10
SOUND 3, -15,RND(30)+&0,10
LOCAL AR

AaRND(RY~—1

REFEAT

R RND (R Y1

UNTIL. B<:A

UDU 19,:,1,H8,0,0,0,19,0,8,0,0,0
TIME=0

ENDFROC

REM SINE CURVE

REM MOTE HOW FOREGROUND

REM AND EACKGROUND COLOURS
REM ARE DEFINED USING VDU
REM SEE FOLLOWING SECTION ON
REM USE OF VDU

MODE 4

121

80
{0
100

110
120
130
140
150
160
170
180
190
200

10
20
30
40
wo
&0
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

250

INFUT Y "RBackaround mumber "4
INFUT Y "Forearound number "B
TIF &=k OR A<0 OR AX13

OR B0 OR B=15 THEN 70
UDu 19,1,B,0,0,0
ubu 19,0:43,0,0,0
CLG
FOR X=0 TO PI%Z,.53 STEF 0.01
MOVE 160%X, SIN(XIX360+412
DRAK 160XX,5IN(X)I%4604+512
SOUND 17,~15,8TNXIXZ20+100,3
SOUND 18,-15,8INCOX20+101,3
SOUND 19,-7,2599-SINOCOX20+101,3
NEXT X

REM X%XTurmel TunerXx
REM RUN TN MODE 2 ON MODEL B
MODEZ

ALY

A=RND(300)

REFEAT

IF RND(1)>0.8 Z=RND(4)
MOVED, 0

DRAW ZXA, A

SOUND 17,-15,A,3
FROCchange

DRAW ZXA, ZXA

SOUND 18,-1%5,A,3
FROCchanqge

DRAW A, ZXA

SOUND 19,-15,4,3
FROCchange

DRAW A, A

FROCchange

GCOL. 0,RND(7)>-1

IF RND(?)<3 A=RND(Z00)
UNTIL FALSE

DEF PROCchanqe
A=A+RND(9)-RND(2)
ENDFROC

122

10
20
20
40
50
40
70
80
g0
100
110
120
130
140

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160

10
20
30
40
S0
60
70
80
?0

REM SINE RIEBERON
MODE4

vopu 19,0,0,0,0,0

VDU 19,0,4,0,0,0
C=100

REFEAT

MOVE C-100,0

FOR A=1 TO &40
B=AXPL/20

DRAW AXZ0+C, SIN(EIX310+320
SOUND 17,-15,255-A4,3
NEXT A

C=C+3

UNTILFALSE

REM Orbital Sketcher
MODE 4

REFEAT
UDLLY,0,0,0:,0,0,19,0,RND(&6),0,0,0
M=RND(400)

N=RND{400)

MOVE 4600+M,500

FOR A=1 TO 205 STEP 9
BE=FYXXA/100
C=MxCOS(BY+600
DaNXSINCEREI+-S00

DRaW C,D

NEXT

IF RNDC10)Y=0 CLG

IF RNDCLOY =4 THEN %0
UNTIL FALSE

REM ROLLER COASTER
MODEA4

¥

VDU 19:1,0,0,0,0
C=100

REFEAT

T=RND(2)

Q=120

F=368

123

UNTILFAL.SE

100
110
120
130
140
150
1460
170
180
190
200
210
220
230
240

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
1460
170
180
190
200

10
15
20
30

UDL 19,0,X,0,0,0

MOVE ©-100,0

FOR A=1 TO 40

F=AXPL/20

MOVE Q,F

Q=fx20+0

P=STIN(BIX310+320

IF T=1 PLOT 7,Ax20+C~-00,5IN(E)X310+320
DRAW AXZ20+0, SIN(RE)IX310+320
SOUND 18, -A,200xEIN(E),10
SOUND 17,-A,200x8INE) ;10

NEXT

C=C+

X=RND (7))

UNTIL FALSE

REM COSMIC TABLE MAT

REM ADAFTED FROM ‘Spiraliser’

REM By Jim HWalsh and Fawl Holmes

REM RUN IN MODE 5 ON MODEL A

MODE 2

MOVE 600,500

REFEAT

FOR N= 1 TO 500 STEP RND(3H)/RND(SH)

A=ITNT (200/200%xN)

GCOL 0,A MOD 8

DRAW 600-AXCOSIN/SXFI)Y ,S00+AXRSTIN(N/S6XFY)
NEXT N

QA=RND(4) -1

FOR N=500 TO 1 STEF —~RND{(3)/RND(S)

A=INT (200/200xN)

GCOL. Q,A MOD 8

DRAW 600~-AXCOSIN/SXFT) ,500+AXSINI(N/SGXFT)
NEXT N

IF RND(S)=2 CLGIMOVE 400,500

UNTIL FALSE

REM COSMIC TABLE HAT

REM MARK 11 (More adventurous)
REM ADAFTED FROM ‘Spiraliser’
REM By Jim Walsh and Fauwl Holmes

124

40
50
70
72

7%

8

F0
100
116
120
130
140
150
140
170
180
190
200

10
14
20
a0
40
50
7u
72
7%
80
90
9%
Q&
100
110
120
130
140
150

155

156

REM RUN TN MODE 5 ON MODEL 4
MODE 2
REFEAT
G=8+RND(3) -RND (3)
MOVE 400,500
FOR N= 1 TO 540 STEF RND(3)+2
A=INT (200/200%N)
GCOL 0,4 MOD G
DRAW 600-AXCOSIN/6XPL) ,S00+AXSININ/SXFT)
NEXT N
Q=RND(4) -1
FOR N=540 TO 1 STEF ~RMD(3)x2
A=INT (Z00/200%N)
GCOL Q,A MOD G
DRAW 600-AXCOS(N/SGKPL) ,S00+AXSIN(N/6XFT)
NEXT N
CLG
UNTIL FALSE

REM COSMIC TABLE MAT

REM MARK 111 (with sound!)

REM ADAFTED FROM ‘Spiraliser’

REM By Jim Walsh and Faul Holmes

REM RUN IN MODE S ON MODEL A

MODE 2

REFEAT

G=8+RND(3)~RND(3)

MOVE 400,500

FOR N= 1 TO 540 STEF RND({5)+2

A=INT (200/200%N)

SOUND 18,-1%,N/2,10

SOUND 17,-7,1000 MOD (A+12/N),10

GCOL 0,4 MOD G

DRAW 600-AXCOSI(N/GXPI) ,S00+AXSININ/G6XFI)
MEXT N

A=RND(4)-1

FOR N=3540 TO 1 STEP ~RND(3)x2
A=INT (200/200%N)

SOUND 18,-15,1000 MOD (A+5/N),10
SOUND 17,-15,N/2,10

125

1460
170
180
190
200

GCOL Q4 MOD G

DRAW 400-AXCOSIN/OGXFT) s 500+AXSININ/SGXFI)
NEXT N

CLG

UNTIL FALSE

VDU drivers

The VDU driver is a piece of software through which all characters that
are going to be printed are sent. The characters are sent as codes
between @ and 255. The effects of the codes are different, depending
on their values. All codes of 32 or greater are printed on the screen,
and all codes less than 32 are acted upon in different ways, doing
things like moving the cursor around. In addition, code 127 is the same
as the delete key, and so fits in the latter category.

The exact meanings of the codes 0 to 31 are described below:

(Note that using this table you can see what control key to press to
gain the same result. For example, code 20 can be generated by using
VDU 20, or by pressing control-T, or even by PRINT CHR$(20).)

Q) e (@
g, oo e ﬁ
2 [repep—]
Y
e[y
v e B
bm—eF
7
Bo-—H
Pommm T
10—y
11emmK
12wl
1 B
14N
15=-=0
1§mmenp?
17 e}
18~-—R

126

LG

2 0 R
2 1 [, U
2 27 aes bes suen \)
2Bl
2 ‘q. X
2 5 [Y
2 e
;” 8 U \.\
:’3 U - N
PR

I have only described in detail those codes that are useful and not
explained fully in the User Guide.

Code Use

2
3

Used to stop character being sent to the printer.

Starts sending characters to the printer. Thus, to list a program
to the printer, you use control-B, then type ‘LIST’, then press
‘return’. When the listing is complete, you just press control-c to
turn off the printer, and you're done.

Turns off the effect of code 5. See code 5.

Joins the text and graphics cursors. This means that text is
printed at the last graphics point visited, and that the graphics
cursor can be moved about with codes 8 to 11. This program
shows you how it works.

10 MODE 4

20 VDU 5

30 FOR T=1 TO 40

40 MOVE RND(1Z280),RND(1024)
50 FRINT "BEC Computer 32K"
60 NEXT T

70 VDU 4

The User Guide shows you how to use the VDU 5 feature to
make an accent on a letter — this is an important use of the
feature. One disadvantage with the VDU 5 mode is that text is
printed very slowly, and scrolling does not normally take place.
Another useful way of using VDU 5 is in the labelling of axes in

127

’

graph drawing. The biorhythm program in the ‘welcome
program collection illustrates this use. While in VDU 5 mode,
text printing only takes place in the current graphics window.
Windows are explained in the discussion of codes 24 and 28.

This code just causes a short ‘bleep’ to be added to the sound
queue. This program shows one use of it.

10 FOR T=1 TO 10
20 vpu 7
30 NEXT T

8—-11These codes move the cursor left, right, down and up

13

14

respectively. For example, this section of code moves the cursor
left, to correct the error in line 10:

10 A$="EBEC Computer 324"
20 PRINT A$ICHRS(8)Y t K"

Assuming you are conversant with the effect of *FX4, 1 on the
cursor control keys, you may have noticed that the codes
created by them in this state are 128 greater than the cursor
movement codes. Thus this program allows you to type on the
screen, shifting the cursor around with the cursor control keys.

10 XFX 4,1

20 REFEAT

30 A=GET

40 IF AX127 A=A-128
S0 VDU A

60 UNTIL FALSE

Code generated by pressing ‘return’. Returns the cursor to the
start of the current line. BASIC usually puts a cursor down in
after this character.

Turns page mode on. You will often use this mode to list
programs too long to fit on the screen, so it can be done in
sections. When page mode is active, the computer waits for you
to press one of the two shift keys before printing each new page,
to give you time to assimilate the text being printed. This
program shows VDU 14 by printing 100 random numbers. The
trouble is that they scroll off the screen too fast for you to read
them. The second time, however, page mode is on, which gives
you ample time to read the numbers.

10 FOR T=0 TO 100
20 FRINT RND

128

19

30 NEXT T

40 FRINT "FRESS ANY KEY .+.."
S0 DUMMY=GET

60 VDU 14

70 FOR T=0 TO 100

80 FRINT RND

0 MEXT T

100 VDU 15

VDU 19.... enables you to change the colour of an area or spot
of colour of the screen, without having to redraw the object.

To use this command effectively, you have to think about colour
graphics in a different way. Rather than consider blobs of colour,
think of the screen being divided into a number of squares,
where each square, or pixel, can hold a number.This number is
restricted to magnitude by the graphics mode you are using:
Mode @ — @ to 1

Mode 1 — @ to 3

Mode 2 — @ to 15

Mode3 — 0 to 1

Mode4 — 0 to 1

Mode 5 — 0 to 3

Mode 6 — @ to 1

The machine is set up in such a way that each number
corresponds to a specific colour. In modes 0,3,4 and 6, a pixel
holding @ will appear black and one holding 1 will appear white.
In modes 5 and 1 the relationships are:

® — black

1 — red

2 — yellow

3 — white
In mode 2, the relationships are:
@ — black

1 — red

2 — green

3 — yellow

4 — blue

5 — magenta (purple)

6 — cyan (light blue)

7 — white

8 — flashing white/black

9 — flashing red/cyan

10 — flashing green/magenta
11 — flashing yellow/blue

12 — flashing blue/yellow

129

13 — flashing magenta/green
14 — flashing cyan/red
15 — flashing white/black

The intriguing possibilities soon become apparent once you realise that
you can change these relationships by executing a command of the
form VDU 19, colour__number, colour, 0,0,0 where ‘colour_number’
is a number in the range outlined in the first table. Colour is a variable
in the range 0 to 15. After this statement has been executed, any pixels
of holding the number ‘colour_number’ will assume the colour given
by ‘colour’ according to the second table of this section.

There are many applications for this command. If you first set the
pixels of a graphics screen to appear black, no matter what number
they hold, and you then draw a complex shape or pattern before
restoring the normal relationships with VDU 20, it will appear as if the
drawing was done instantaneously.

For example, this program draws a circle with the screen turned off,
and then restores all the normal colours very quickly. The effect can be
quite dramatic:

10 MODES
20 FOR colour=1 TO 3
30 VDU 19,colour,0,0,0,0
40 NEXT colour
50 MOVE 640,512+500
60 FOR angle=0 TO 330 STEF 30
70 SOUND 1,-7,anqle/2,1
80 GCOL 0,1
20 MOVE 640,512
100 FLOT 85,8IN(RAD(anale+l0))x500+640,
COS(RAD(angle+l10))X500+512
110 GCOL 0,2
120 MOVE 640,912
130 PLOT 85,SIN(RAD(angle+20))X500+640,
COS(RAD(Bngle+20))X500+512
140 GCOL 0,3
150 MOVE 640,512
160 FLOT 85,5IN(RAD(anale+30))x500+640,
COS(RAD(angle+30))x500+512
170 NEXT angle
180 VDU 20

130

As a logical step from this example, if you draw many similar figures,
all set to black, and then in rotation set each to a specific colour and
then back to black again, the illusion of movement is created. This
example should make the technique clear:

10 REM By Jeremy Ruston

20 MODES

30 FOR X=0 TO 1279 STEF 20
40 MOVE X,0

S50 GCOL 0, ((X DIV 20) MOD 3)+1
460 DRAW X,1023

70 NEXT X

80 REFEAT

9?0 FOR colour=1 TO 3
100 SOUND 18,-15,73%colour,10
110 VDU 19,colour,4,0,0,0
120 Q=RND(25)
130 TIME=0
140 REPEAT UNTIL TIME=Q
150 VDU 19;colour,0,0,0,0
160 NEXT colour
170 UNTIL FALSE

The program works by drawing a series of vertical lines in each of the
three colours in turn. Then each colour is selectively turned to blue —
line 110. A time consuming loop, lines 130 to 140 is set up before the
colour is reset to black. This technique works well in mode 2, where
you can use 15 colours. Without this command it would be impossible
to have any colours other than black and white in modes 0,4,6, and 3.
Thus if you like the idea of purple text on a yellow background,
execute this: VDU 19,0,3,0,0,0,19,1,5,0,0,0. Make the five be 23, and
try this in mode 6, and see what happens.

24 This code enables you to restrict all graphics commands to
operate in a rectangular section of the screen. This section
usually consists of the whole screen. The rectangle is stated in
terms of the coordinates of its bottom left hand corner and its
top right corner. The four numbers have to be separated with
semi-colons, and not commas, as you might expect. This
program draws two sets of random lines — one with no screen
window in effect, and one with a graphics window. The program
expects a key press after the first session, to tell it to start the
next lot of lines.

131

28

26

31

23

10 MODE 4

20 FOR T=1 T0 30

30 MOVE RND(1280),RND(1024)
40 DRAW RND(1280),RND(1024)
90 NEXT T

40 A=GET

70 MODE 4

80 VDU 24,2003:200370037003%
90 FOR T=1 TO 500

100 MOVE RMD(1280),RND(1024)
110 DRAW RND(1280),RND(1024)
120 NEXT T

This code is like the previous one, except that it defines a
window within which text is restricted. The coordinates of the
window are given in the same way as above, i.e. bottom left and
then top right. Remember that the origin for text is the top left
hand corner of the screen. Commas are used to separate the
data. This program fills the screen with random letters and then
defines a text window in the middle of the screen. The program
ends without clearing the screen. When it has finished, type
CLS, then press ‘return’. Try listing the program to see what
happens. Do not make the coordinates given in the command
too large for the current screen mode.

10 MODE 7

20 FOR T=0 TO 799

30 VDU RND(Z26)+64

40 NEXT T

90 A=GET

60 VDU 28,5,6,34,3

Returns all the graphics and text windows to normal. Control Z is
normally more convenient.

Used to move the cursor to the position X,Y. Used in this format:
VDU 31,X,Y.

Redefines text characters. Use this program to redefine the
character set by the variable CHAR. The pattern for the
character should be set up in A$(). P should be set to TRUE for
just printing the correct VDU command to redefine the
character, and FALSE to actually do the redefinition. An
example is given in the text of the program. Use ‘MODE 5,
PRINT CHR$(255)’ to examine the character you defined,
presuming it is character 255.

132

10 REM Character redefinition

20 REM Copyright (C)Y Jeremy Ruston
30 P=FALSE

40 DIM A

S0 ALY e e

HO AR {2) =" HHOKKKK, "

70 AFC3I="He o0 e X"

SO0 A% CAY=""H, KKK, K,

Q0 AP(DI="H, M, K%, "

100 AB(OI==""X, XXX, X,"
110 ABCTI="Hy o 00 e X"
120 A% 8 =" MEKXKKKX, "
130 CHAR=Z30
140 IF P THEN FRINT "VDU 23,"iCHARS

ELSE VDU 23,CHAR

150 FOR ROW=0 TOQ 7

160 TEMF=0

170 FOR COL=0 TQ 7

180 IF MID${(AS(ROW+1),COL+L,1)="x"

THEN TEMF=TEMF+2A(7-C0OL.)
190 NEXT COL
200 IF P THEN PRINT 3$","3TEMP}
ELSE VDU TEMF

210 NEXT ROW

220 PRINT

230 END

Finally, here are two more programs which use a VDU statement for
rather unusual results. Once you’ve run them, and seen what they do,
try and work out how they achieve this. Notice that the second
program must be exited via ESCAPE, then by typing in MODE 7, then
pressing RETURN.

10 REM SIDEWAYS SCROLL

20 REM BY JEREMY RUSTON

30 REM MODEL B ONLY

40 MODE1L

50 FOR X=0 TO 999 STEF 20
60 GCOL 0,((X/20) MOD 3)+1
70 MOVE X,0

80 DRAW 0,1000-X

90 DRAW 1000-X,1000

133

100
110
120
130
140
150
160
170
180
190
200

10
12
20
30
40
50
60
70
80

lo0
110
120
130
140
150
1460
170
180
190
200

DRAW 1000,X

DRAW X,0

NEXT X

REFEAT

FOR T=0 TO 79

VDU 23,0,13,T,030303%
NEXT T

FOR T=79 T0O 0 STEF -1
VDU 23,0,13,T,03030%
NEXT T

UNTIL. FALSE

REM CORRUFTION

REM ENTER MODE 7 AFTER ESCAPE
REM EBY JEREMY RUSTON
REM MODEL E ONLY

MODE1

FOR X=0 TO 999 STEF 200
GCOL 0, ((X/20) MOD 3)+1
MOVE X, 0

DRAW 0,1000-X

DRAW 1000~-X,1000

DRAW 1000,X

DRAW X, 0

NEXT X

REFEAT

FOR T=0 TO 79

VDU 23,0,12,T,03030¢
NEXT T

FOR T=79 TO 0 STEF -1
VDU 23,0,12,T,030303
NEXT T

UNTIL FALSE

134

190 count=count+Q

200 FRINT W,Q

210 NEXTloop

220 PRINT ‘CHR$(Z);TAE(B);"The sum is "jcount

+RUN

I11 mow work out for gou the
arithmetic progression from the
information you give me

Enter the first term 66

And now the common difference 3
How many terms? 12

Arithmetic progression

0K 3K K KK 3K 3K KK K K 3K K 3K K K 3K K K X

Term number Value
1 Y
2 &9
3 72
4 75
] 78
é 81
7 84
8 87
Q@ ?0

10 93
11 96
12 99

The sum is 990

As you can see, the program also works out the sum of the terms.

I11 rmow work out for ygou the
arithmetic progression from the
information You give me

Enter the first term 0034

Argd rmow the common difference 00012
How many terms? 13

Arithmetic progression

K 2K K KK KK 3K KK K K K 3K 3K K K K K K K

Term number Value
1 3+.4E-3
2 3.92E-3
3 3.64E-3

136

4 3.76E~-3
) 3.88E-3
é 4E-3
7 4,12E-3
8 4,24E-3
9 4,36E~3
10 4,48E-3
11 4.6E~3
12 4,72E-3
13 4,84E-3
The sum is S.356E-2

The next program in this section determines the moment of inertia,
polar moment of inertia and the area connected within a circular
section. All you have to do is enter the radius.

10 REM xxCircular sectionsxx

20 MODE7 ${Z=RND(46)+128

30 PRINT ‘’/‘CHR$(Z);"This program will work out the moment"

40 PRINT/CHR$(Z)j"of inertia, pPolar moment of interia "

S0 PRINT/CHR$(Z);"and the area connected within"

60 PRINT’CHR$(Z)}TAB(5)$"a circular section”

70 FRINT’’’’CHR$(Z)}"Flease enter the radius"

80 INPUT radius

?0 X=2xradiusiM=PI

100 FRINT/CHR$(Z);"The moment of inertia is "} (MX(XA4))/64

110 PRINT/CHR$(Z);"The polar moment of interia is"’/
CHR$(Z),2x(MX(X"4)) /64

120 PRINT’CHR$(Z);"The area of section is "} (MX(XxX))/4

This program will work out the moment
of inertis, polar movement of inertia,
and the area conmected within

a8 circular section
FPlease enter the radius
7?39
The moment of imertia is 1178588.,12
The polar moment of interia is

2397176.24

The area of section is 3848.451

This program will work out the moment
of inertis, polar movement of irnertia,
and the area connected within

a8 circular section
Flease enter the radius
1

137

The moment of inertis is 0.7859398163

The polar moment of interia is
1.57079633

The ares of section is 3.1415926%5

Prime numbers are very easy to determine.

10 REM +Prime numbers+

20 MODE7:Z=128+RND(4)

30 FRINT “‘/‘/CHR$(Z)3}"Enter the value of the maxaimum"
40 FRINT ‘CHR$(Z)i"prime number you want”

S50 INFUT A!IF A<l THEN S0

60 DIM FRIME(A) {KL=A

70 FOR J=1TOAIFRIME(J)=JINEXT

80 IF A<4 THEN PROCprint_ouwtiEND

?0 FRIME(4)=5

100 KL=4:1IZ=5

110 IZ=IZ+23IF IZ>A THEN FROCprint_out!END

120 J0=3

130 EX=IZ/FRIME(JO)

140 IF EX=INT(EX) THEN 110

150 IF EX<FRIME(JO+1) THEN 180

160 JO=J0+1

170 GOTO 130

180 KL=KL+1!PRIME(KL)=IZ:GOTO11i0

10 RE MK K K KKK KKK KKK KKK
200 DEF FROCprint_out
210 CLS
220 PRINT ‘’‘/CHR$(Z)}"The prime numbers up to "jA;}" arei"
230 PRINT ‘CHR$(Z)3TAB(17)3"Prime # Frime"
240 FOR count=1 TO KL!FRINT CHR$(Z),count,PRIME(count) {NEXT
250 ENDFROC

Enter the value of the madimum

prime number you want

87

The prime mumbers up to 87 arel
Frime # Frime

RoOoOgONOCUIWUNE=
-
-

R

138

12 31

13 37
14 41
15 43
16 47
17 93
18 o9
19 61
20 67
21 71
22 73
23 79
24 83

The mathematical ability of the computer can also, of course, be
turned to produce other kinds of information, such as the day of the
week a specified date falls on.

10 REM %Day of the weekx

20 A$¢=", MONTUEWEDTHUFRISATSUN"

30 INFUT "Dawy? "D

40 IF D«1 OR D31 THEN 30

S0 INFUT "Month? (as 7) "M"

60 IF M<1 OR M*x12 THEN S0

70 INFUT "Year? (as 1983) "Y

80 Q=Y-(M3)

90 K=Q/100

100 T=M+12%(M<3)

110 R=INT(13%(T+1)/5)+INT(S5XQ/4)-INT(K)I+INT(K/4)+D+5
120 R=R-(7XINT(R/7))+1

130 FRINT D3"/"3iM3"/"3Y-19003" ~ " ;MID$(A%,Rx%3,3)

Day? 29

Morth? (as 7) 12

Year? (as 1983) 1984
25/12/84 - TUE

Day? 1

Month? (as 7) 1

Year? (as 1983) 1999
1/1/99 -~ TUE

The final program in this section uses the computer to simulate the life
cycles of two species, one of which preys upon the other, and to graph
their relative populations. The relationship between the two species is
controlled by a differential equation. You enter the starting
populations, as numbers between one and nine. Fractions are
acceptable, and it is fascinating to enter a very low population for one

139

of the animals, and a high one for the other, and watch the two evolve.
When the program has run through a specificed number of
generations, it will stop and display a question mark on the screen.
This is so you can enter another starting population for the first
species. Press RETURN and a second question mark will apear for the
starting level of the second species. The development of this
relationship will then be graphed, on top of the existing graph, so you
can build up a number of graphs showing the effects of different
starting populations for the predator and its prey.

10 REM *%xSPECIESXX
20 MODE7
20 INFUT ""How many of species one',X
40 INFUT 2 “"Arned how many of species two',Y
50 MODES
60 GCOL 0,2
70 REFEAT
80 MOVE S0X(X4+5),%0%{12-Y)
90 FOR Z=1 TO 12
100 FOR T=1 TO 7 STEP 0.2%5
110 PRINT TABRCL, L) 3INT(Xx10000)3" "
120 FPRINT TAB(L1,2) 3 INT(YXL0000) 3" "
130 X=X+ (4XX-2XXXYIX0,01
140 Y=Y+ (XXY-3XY)X0,.01
150 PLOT S,50%x(X+5),50%(12~Y)
160 NEXTTINEXTZ
170 INFUT X
180 INPUT Y
1920 PRINT TaBR(0,3)3" "ITABCO,4) "
200 UNTIL FALSE

140

Functions

The BBC Microcomputer’s dialect of BASIC, in common with other
BASICs, contains a number of preprogrammed functions which you
can use in a program, or in the direct mode. As well as the
programmed functions, you can create your own, with the DEF FN
(DeFine FunctioN) command. In this article, we will look at the
functions which come with the BASIC, as well as discussing the use of
DEF FN. The discussion includes a program which uses a defined
function to draw a picture of a bat! General functions:

ABS — This function, ABSolute, gives the value of X, ignoring the
sign, so that if X was — 10, ABS(X) would be 10. Similarly, if
X was 10, ABS(X) is still 10.

INT — The INT functions gives the whole number, or INTeger
part of a number, giving the largest number which is not
greater than X. If X was 2.42, INT(X) would be 2.

RND — This is used to generate a RaNDom number. If X was 20,
RND(X) could be 13, 7, 4, 20, or any whole number between
one and 20. RND(1) gives a random number between zero
and one.

SGN — This function returns the SiGN of the variable in brackets,
the SiGN of the argument as this variable is known. If X
equals 20, that is, X is a positive number, SGN(X) = 1.
SGN(-20) = —1. SGN(9) = 0.

TAB — As pointed out earlier in the book, this is the TABulating
function, which moves the PRINT position across the line the
number of spaces indicated by the argument of the function.
Thus, PRINT TAB(7);”£" will print the £ at the seventh
position across from the left hand edge, while PRINT
TAB(14);"“£" will print it 14 spaces across. The direction
down the screen can also be specified, by adding a second
argument after a comma within the brackets. Thus, PRINT
TAB(4,9);”£" will print a pound sign four spaces across, and
nine down.

EXP — This function gives the value of e raised to the power of
the argument, so PRINT EXP(5) will give 148.413159.

LOG — This calculates the common logarithm of a number to base
10, so PRINT LOG(X) where X is five will yield 0.698970004,
whereas LN (X) yields the natural logarithm to base e, so
PRINT LN(5) gives 1.60943791.

SQR — This function yields the SQuare Root of a number, so
when X is five, PRINT SQR(X) gives 2.23606798

Trigonometrical functions:

SIN — This gives the sine of an angle in radians. SIN(5) yields
—0.958924274.

141

COS — Yields the cosine of an angle in radians. PRINT COS(X)
where X equals five gives 0.283662185.

TAN — Produces the tangent of angle X in radians, so PRINT
TAN(X) where X equals five produces 1.37340077.

It is likely that you won’t be used to measuring angles in radians. Pl
radians equals 180 degrees. Fortunately, the BBC Microcomputer
has another trigonometrical function, called RAD which converts
from degrees to radians for you. The argument of the function
must be in radians. The DEG (DEGree) function works the other
way, converting angles expressed in radians into degrees.

10 REM RADIANS TO DEGREES

20 REFEAT

30 INFUT "ANGLE IN RADIANSY,X

40 PRINT $X" RADIANS IS "DEG(X)" DEGREES"
50 UNTIL FALSE

Defining functions

This feature allows you to DEFIne functions within a program, which
you can then call whenever you need to while running the program.
DEF FN can save space as well as time, as complex calculations can be
defined with a short name, and called up at will by use of this name.

There are four things in the statement which defines the function:

® The word DEF

® The name of the function, which consists of the letters FN,
followed by the name

® The argument of the function which follows the name, in
brackets

® The formula, using the argument, for working out the function.

This sounds a lot more complicated than it is in practice. Look at this
program.

10 REM DEFINE A FUNCTION
20 DEF FNA(Z)=ZxXxZ

30 REFEAT

40 INFUT Z

30 FRINT FNA(Z)

60 UNTIL FALSE

142

Line 20 defines a function A, with the argument Z as being Z squared.
Then, whenever the program comes across FNA(Z), it will square the
value assigned to the variable Z. You can see this in the
demonstration.

The next program defines a function such that the argument (which
you enter in line 40) is multiplied by 2.178 and divided by the square
root of the integer of itself. This function, as a moment’s thought will
show, will default if the argument is less than zero.

10 REM DEFINE A FUNCTION

20 REFEAT

30 DEF FNA(Z)=2.,178XZ/SQR(INT(Z))
40 INFUT Z

90 PRINT FNAC(Z)

60 UNTIL FALSE

Look to the next program — BAT — in which a function is defined in
line 60. The function bat(B) gets the square root of the difference
between the squares of two variables, and in the routine 120 to 210,
uses the value H (see line 130) to determine the printing positions of
the dots which will draw up the bat. PROC delay (a procedure), defined
from line 270, is there simply to slow things down, and produce
some bat-like sounds.

10 REM “BAT"

20 REM SHOWING DEF FN

30 MODE?7

39 REM LINE 40 TURNS OFF
36 REM THE CURSOR

40 VDUZ338B202503030

B0 L=03iF=11:Q=17

60 DEF FiNbat (B)=80QR(LXL-EXE)
70 FRINT CHR$(12)CHR%(30)
80 FRINT TAEB(Q,F)3"O0"

90 REFEAT

100 FRINT TAE(16,9)3"! 'V
110 L=L+1

120 FOR E=0 TO L

130 H=FNbat (E)

140 FRINT TAE(Q+H,FP+R)3"."
150 FROCdelay

160 FRINT TAEB(Q-H,P+E)3"."
170 PROCdelsay

143

180 PRINT TAEB(Q-H,FP~BEY$"."
120 FROCdelay

200 PRINT TAB(Q+H,P-BY§"."
210 NEXTE

220 FROCdelay

230 UNTIL L=11

240 REFEAT

250 FROCdelayw

260 UNTIL FALSE

270 DEF PROCdelsy

280 W=TIME

290 SOUND 1,-1%,RND(&6)Y+249,3
300 REFEAT

310 UNTIL TIME-W=15

320 ENDPROC

LOCAL VARIABLES

It is important to ensure that all variables used within functions for
temporary results, or passing the function’s value to the calling
statement are defined as ‘local’. This ensures that any variables that
you've used inside the function that are also used outside the function
definition will be treated as different entities. Thus you can use
variables such as X and Y in a function for their logical coordinate
purposes, without them interfering with a possible X and Y elsewhere
in the program.

Jeremy Ruston, author of THE BBC MICRO REVEALED, points out
that it is good practice to make the first line after the function
definition a blank LOCAL statement. Then, when the function has
been written, you can fill in the required variables into the LOCAL
statement. This serves as a useful memory aid to prevent the
inadvertent omission of the LOCAL statement.

WEe'll be discussing the use of LOCAL variables again in a few pages
times in the section on procedures.

There is a variation to the kind of user defined function we've just
discussed. Often the value you wish the function to take on cannot be
calculated in a single line, maybe because a loop is required. In this
case, you can use functions which are multi-line. The spirograph
program, which follows uses a multi-line function.

144

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
140
170
180
190
200
210
220
230
240
250
240
£70
280
290
300
310
320
330
340
a50
360
370
380
390

400=

410

R o0 K 55K K 3K K 5K 0K 3K 3 3K K 0K 3K 3K K K
ON ERROR GOTO 20

REFEAT

MODE 4

VDU 29,640:512%

A=RND(200)+250

E=A-RND(A~50)

C=A-~RND(A-10)

FROCSFIROCA,E,C)

TIME=0

REFEAT UNTIL TIME:=300

UNTIL FALSE

END

FOE M 380 580 08 D8 D4 3 3K DK DI 2K 3 28 D8 24 i 3 3KOK K

DEF FROCSFIRO(A,B,D)

E=D

F=(A-E)

G=0

H=PXx0.02

K=/ B

N=E/FNHCF (A, E)

L=100%N

MOVE F+E, D

FOR I=1 TO L

G=G+H

F=GxK
=FRCOS (G +EXCOS(F)

Y=FRSIN(G)~EXSINC(F)

DRAWR X, Y

NEXT I
ENDFROC

FCEEM K 550K M K K 35 K 353K K 35 K 30O 30K KOK0K
DEF FNHCF (X, J)

LOCAL M

REFEAT

M=T MOD J

NIEN

Je=i

UNTIL M=0

I

FOE M o 20 25000 6 DK 3K 3K 3K K 3 30K K KKK K

145

The differences between this function at line 330 and the normal
functions we looked at include:

1. It has taken two arguments, rather than a single argument.

2. There are extra statements between the final equals sign (line 400)
and the end of the function heading.

Instead of using something like the ENDPROC statement, functions
are terminated with a single equals sign assignment, line 400. Then,
when the function is called, in line 210 of the procedure, it finds the
highest common factor of the two numbers and returns that facts via
the variable ‘I'.

Try to make all routines which return a result into a fraction, and make
the functions fairly short. It is possible to use functions which do not
take any arguments. However, if you ever write a function which gives
a null, or irrelevant result, used purely as a dummy, you should be
writing a procedure. This leads us neatly into a discussion of
procedures.

Procedures

In essence, procedures are subroutines which you call by name, rather
than by line number. They have the advantage that you can use local
variables within them, and they can be located far more quickly by the
computer than can subroutines. The computer knows where the
procedure is, so it does not have to search through a whole program,
line number by line number, looking for the start of a subroutine.

To call a procedure from within a program, you just include the line
PROCname__of__procedure. Somewhere else in the program you
must define the procedure, which you do by having an opening line
DEF PROCname__of__procedure. After doing whatever you want
done within the procedure, you end the definition section with a line
reading ENDPROC. The following simple example should help make it
clear.

10 REM USING FROCEDURES
20 REPEAT

30 FROCprint_name

40 PROCcount

50 FROCdelay

460 FROCcount

70 PROCdelsy

146

80 PROCdelay
90 UNTIL FALSE
100 REMMXOKKMRKKKKXK
110 DEF FROCdelay
120 TIME=0
130 REPEAT UNTIL TIME=100
140 ENDFROC
150 FE MK K MOK K KKK
160 DEF PROCprint_name
170 PRINT 777/"My name is Bob"
180 ENDFROC
10 FE MR KK K XK MK
200 DEF FROCcount
210 FOR J= 1 TO 10
220 FRINT J
230 NEXT J
240 SOUND 1,-13,100,2
250 ENDPROC

As you can see, procedures are very much like functions, but are
somewhat easier to use in many cases, and can be far more complex
than functions.

In the sample program just given, the ‘real’ program — which is
executed repeatedly while the program is running — lies within the
master REPEAT/UNTIL loop (lines 20 to 90). The computer goes
through this loop, calling up the procedures as it comes to them:
PROCprint_name (note that the underline symbol can be used to link
words in a procedure name), PROCcount, PROCdelay, PROCcount,
PROCdelay, PROCdelay. It does not matter in which order the
procedures are defined.

The statements between the DEF PROCname and ENDPROC are
executed every time the computer comes across the line PROCname.
One great advantage of procedures is that it leaves the ‘real program’
relatively short and each procedure can be written and debugged
individually.

Here's the spirograph program again. Run it a few more times, then
return to the book for a discussion on the use of the procedure
PROCSPIRO(A,B,D).

10 REM KKK KKK K KK KK K K KK KKK XK
20 ON ERROR GOTO 20

30 REFEAT

40 MODE 4

147

%0

60

70

g0

20
100
110
120
130
1440
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

410

PROCSPIRO as you know, draws a spirograph pattern. For the
moment don’t worry about the (A,B,D) at the end of line 150. The
main point to learn from it at the moment is that the procedure
definition takes up much of the program. When you run it, an endless

VDU 29,64035123
A=RNDC(Z200)+250

e -RND (A-50)
C=A-RND(A~-10)
FROCSFIROCA,E,C)
TIME=0

REFEAT UNTIL TIME>300
UNTIL FALSE

END

DEF PROCSFIROCA,E,D)
E=D

Fa B

G=0

H=FIx0,02

{=&/B
N=E/FNHCF (A, E)
L=100%N

MOVE F+E, 0

FOR I=1 TO L

G=G+H

F=GXE
X=FXCOS(GCI+EXCOS(F)
Y=FXGIN(G)Y-EXSIN(F)
DRAW X,Y

NEXT X

ENDFROC

FRE P K 25 0 8 I 3K I K 3K K K 3K 9K K K
DEF FNHCF (X ,J)
LOCAL M

REFEAT

M=I MOD J

Ta=y)

J=M

UNTIL M=0

40 0=

FEES D 202K 30 5 6 K K 3K 0K K K K K 3K 3K K K K

148

variety of spirograph type patterns are displayed. If you get bored with
any one pattern, just press ESCAPE to get a new one.

Now, about the (A,B,D). The procedure in this program needs three
pieces of information: the radius of the outer circle of the spirograph;
the radius of the inner circle; and the distance from the centre, of the
inner circle of the pen. It would of course have been possible to set
three variables to the values of these constrants before executing
PROCSPIRO. However, the BBC Microcomputer has a simple
mechanism for passing variable values to procedures. When you write
a procedure, you choose the variables that will be passed to it, be they
string variables or numeric variables. You place the names of these
variables in brackets at the end of the procedure heading as in line 150.
When the procedure is called, the values contained in the brackets of
the call will be copies into the variables you specified in the procedure
heading. If you have a variable with the same name as one of the
variables in the procedure heading, the variable outside the procedure
and the variable within the procedure heading are treated as seprate
variables. Changes in the value of the variables within the procedure
do not affect the same variable outside the procedure. However, there
are more variables used in this procedure than the two mentioned in
the procedure heading. It would be good if they too were LOCAL to
the procedure. All you do as we said earlier, is specify that certain
variables be LOCAL.

In the spirograph program, a suitable line would be ‘155 LOCAL
E,F,G,H,K,N,L,G,P,X,Y,I’. The variable names following the LOCAL
statement are all those that appear on the left hand side of the
assignment statements in the procedure.

149

Twenty One

In this program, you and the BBC Microcomputer take it in turns to
throw a six-sided dice as many times as you like, trying to get a total of
21, or close to 21, without exceeding 21 (‘busting’). This is a dice
version of Blackjack, and the computer plays very well. You go first in
every game, entering ‘1"’ to roll the dice again, or 2"’ to stand, that is,
to stay with the total you have accumulated. There are five rounds to a
game and the winner, of course, is the player who wins the most out
of the five rounds.

Line 20 sets the mode, and line 30 sends action to a procedure called
‘initialise’. This short procedure (lines 70 to 100) sets the two variables
which hold the scores — S| and SM — to zero. From there, line 40
sends the computer’s attention to the procedure called game__count.
The ‘game__count’ procedure (lines 110 to 150) set up a loop which
calls the procedure ‘game’ five times. As you've probably noticed
earlier in this book, the BBC Microcomputer supports loop names
which are whole words (in this case the word, as you can see, is
‘count’). The procedure, ‘game’, which is called from within the
procedure game__count, runs from lines 160 to 330.

10 REM THENTY ONE
20 MODE 7
30 PROCinitialise
40 PROCgame_count
S0 PROCfinale
60 END
70 DEF FPROCimitislise
80 SI=0
90 SM=0
100 ENDPROC
110 DEF PROCgame_count
120 FOR count=1 TO S
130 FROCgame
140 NEXT count
150 ENDPROC
160 DEF PROCgame
170 E=0:1F=0
180 FROCupdate
190 T=TIMESIREFEAT UNTIL TIME-T>S0
200 IF Ex»0 PRINTCHR$(129),:"TOTAL “iE
210 IF E=0 FPRINTCHR$(131)3;"1 TO ROLL,
2 TO STAND" '’

150

220 A=GET

230 IFA=49 E=E+RND(6): GOTD120

240 IF E»21 PRINT CHR$(129):"YOU'VE
BUSTED!!'": FROCend_of_game!ENDFROC

250 PRINT’CHR$(133):"0H, YOU STAND ON "jE‘’“

260 G=RND(6)

270 F=F+C

280 T=TIME!REFEAT UNTIL TIME-T:»150

290 PRINT CHR$(128+G):"I rolled a "}

Gy", so my total is "3F
300 IF F=E FROCend_of_game!ENDPROC
310 IF F>18 OR F»*E FROCend_of_game?
ENDFROC

320 IF F<17 OR F<E AND E=22 THEN 260

330 ENDFROC

340 DEF PROCerd_of_qame

350 IF E=F AND E<22 FPRINT‘CHR$(129)}
"DEAD HEAT"$SI=SI+1!SM=8M+1

360 IF E<>F AND (F:*E AND F<22) OR E>21
PRINT/CHR$(129) ;"I WIN"$SI=SI+1

370 IF E<»F AND F>21 OR(E>F AND E«<22)
FRINT‘CHR$(133);"YOU WIN"!SM=SM+1

380 ENDFROC

390 DEF PROCfinzle

400 FRINT/'CHR$(130)3;"FINAL SCORES:"

410 FRINT/CHR$(129)"YOU! “"iSM,“"MES: "381I'’°

420 T=TIME!REFEAT UNTIL TIME-~-T>150

430 IF SI-=SM FRINT"I "3

440 IF SM>SI FRINT"YOU “;

450 IFSI=SM FRINT"WE EBOTH "}

4460 PRINT CHR$(129)3"WIN'"Y

470 ENDFROC

480 DEF FROCupdate

490 PRINT'CHR$(132) 1"E£LLELLLLLEFFFLLLEL

EELLELELELLELELEELELLEL

S00 T=TIME!REPEAT UNTIL TIME-T>»150

510 PRINT/CHR$(130) ;"ROUND "jcount

520 PRINT’CHR$(134)>:"YOU ";SM,"ME "381’"

530 ENDFPROC

151

The variables E and F store the human and computer scores
respectively within a particular round of the game. The procedure
‘update’ (lines 480 to 530) is called to draw a coloured line across the
screen, and report how the two protaganists are going. Line 190 is a
delay loop, setting the variable T to the value held by the computer’s
internal clock, and then passing through a REPEAT/UNTIL loop until
half a second (TIME increments by one every hundredth of a second)
has passed. Line 220 waits for the player’s input, and line 230 rolls the
dice, and adds its value to the score (line 200) if the player has decided
to keep rolling.

If not, the computer checks (line 240) to see if the player has exceeded
21 (and, if so, goes to the ‘end__of__game’ procedure). If the player
has not busted, the computer acknowledges the total the human has
decided to stick with (line 250) and proceeds to roll the dice itself. A
short delay (line 280) comes before the computer announces the value
it has rolled, and its total. Lines 300 to 320 check the computer’s score,
and compare it with the player’s score, and from this comparison
decides whether or not to roll again.

The procedure ‘end__of__game’ (lines 340 to 380) look at the two final
totals, and decides which player has won. After five rounds have been
played (counted, you’ll recall, by the loop in the ‘game__count’
procedure), action goes to the ‘finale’ procedure (lines 390 to 470) to
find the winner of the five games.

SEVEN-UP

Our next program — SEVEN-UP — shows the use of procedures quite
clearly. The game is played within the master REPEAT/UNTIL loop
from lines 60 to 110.

SEVEN-UP is somewhat like checkers or draughts, except that it is
played on a 7 X 7 board, hence the name. The pieces move as
draughts pieces — diagonally one square, jumping over an opponent
for capture into an empty square beyond the opponent. The main
differences from draughts, apart from the size of the board, are that
pieces may move forward and backward at will, there are no kings
(every piece can move as it is a king) and there are no multiple jumps.

The computer is the X’s moving down the screen, as you can see from

the sample run, and you are the O’s. You move by entering the
number of the square from which you are moving — entering the

152

number along the left-hand edge first, then the number across the top,
then pressing RETURN; and the two number which refer to the square
to which you are moving.

The computer keeps track of the score, tells you the move it makes,
and terminates the game as soon as one player manages to capture
five of the opponent’s pieces.

The way procedures have been used in this program shows how well
they work for a long program. Each procedure was written and
debugged separately. In fact, the master REPEAT/UNTIL loop was
worked out before any of the procedures were more than a name.

10 REM Seven—Up

20 REM showing wse of procedures

30 REM (C) Hartnell, 1982

40 MODEZ

50 FROCinitislise

40 REPEAT

70 PROCcomputer _move

80 FROCprint _board

90 FROChuman_move
100 FROCprint _board
110 UNTIL FALSE
120 FE M AR K MOK MK K
130 DEF FROChuman_move
140 FRINT/CHR$(L28+RND(S)) $"From" i $INPUT M
150 FPRINT CHR$ (L1 ICHRECIZBHRNDC(SY 3" "3iMI" to"s
160 THRPUT NIFRINT CHR$(L1) 3" "
170 H(N)=79
180 IF ABES(M~-NIY=22 OR ABS(M~N)=18 H((M+N)/2)=464%

ME=ME+1

190 H(MI=4é
200 ENDFROC
L0 TR M K K K KK XK KK
220 DEF FROCcomputer _move
230 A=76
240 IF H(AY= =88 THEN 310
250 BE=1l
260 IF A<28 AND E«<3 THEN 300
270 IF Ax60 AND B>2 THEN 310
280 Q=2xZ (1)

290 IF HA+Z(BE))Y=79 AND H(A+Q)=46 THEN 330
300 IF B4 B=B+1:iGOT0OZ60

153

310 IF Ax12 A=A-13G0T0OZ240

320 GOTO 330

330 H(A+Z(E))=461H(A)=446I1H(A+Q) =881 Y=A+Q

340 X=A1IT=IT+1:GOTO 460

350 Y=0

360 Y=Y+1

370 K=RND{(&&)Y+11

380 IF HK)Y<-88 AND Y100 THEN 3640

3920 IF H{K)Y==88 THEN 470

400 T==1

410 IF HK+Z{(T))=46 THEN 450

420 IF T4 T=T+13:GOT0410

430 IF Y«<70 THENMN 350

440 GOTO 470

450 HK+Z(T))=881H(K)=446 X=KiY=K+Z(T)

460 ENDFPROC

470 FRINT /"I concede..."

480 END

490 TR K KK K 5K K K K KK K

G300 DEFFROCprint_board

510 FRINTTARC(O,4) 3CHR$(1Z28+RND(S5)Y) §

"SCORES S You-"3iMES:" Me-"3IT

20 PRINTCHR$(130)3TARCLLY $" 12345467

S30 PRINTCHMRS CL31L Y ITABCT) &M Mu0KKKOK KKK MK NOKK K"

9540 FOR J=70 TO 10 STEF ~10

950 SOUND RND(3),-15,RND(250) ,RND(3)

960 A=H(J+L)IBE=H(J+2) {C=H{J+3) {D=H{(J+4)

570 E=H(J+9)Y F=H(J+6) $G=H{J+7)

G980 FPRINTCHR$(130)5TABC(Z)) 3 J/103CHRS$(129)
UKV LCHRE (1284+RND(S) I FCHR$ (A) CHR (B
SCHRS(C) SCHRE (D) $CHRSCED) S CHR$(F) 3
CHR$(G) SCHRE (129 3" X" SCHRS$ (13023710

G990 NEXT J

600 FRINTCHRS C131) STAECT) 3 KKKKKKKKKMKKKKKK

610 FRINTCHR(130)TARCLLY $"1234567"

620 FPRINTTAE(0,18) iCHRS(1LZ28+RND(D))

"I moved from "3X3" to "iY

&30 IF XT=% OR ME=5 THEN 450

640 ENDFROC

450 IF XT=% PFPRINT "X win"

660 TF ME=3 PRINT "You win"

4670 END

154

GHE0 FE MK OK M K 3AOK KK XK

4920 DEF FROCinditislise

700 DIM HMB87),Z04)

710 vDU23:B202303030

720 IT=0

730 ME=0

740 FOR A=1 TO 87

750 IF Ax77 OR A=70 OR A=60 OR A=648
OR A=469 OR A=50 OR A=59 0R A=58 OR
A=40 OR A=4% OR A=48 THEN 800

760 IF A=30 OR A=38 OR A=39 OR A=20
OR A=28 0R A=2Z%2 0R A=18 O0R A=19
OFR A<11l THEN 800

770 HA)=ASCC" ")

.780 IF &=72 OR A=74 OR A=746 DR A=61

OR A=63 OR A=6%5 OR A=67 THEN H(A)Y=ASC("X™)
790 IF A=21 OR A=23 0OR A=Z25 OR A=27
OR A=12 OR A=14 OR A=16 THEN H(AY=ASC("O")

800 NEXT A

810 FOR T=1TO4iREAD Z{T)YINEXT

820 PRINT 7777

830 ENDFROC

840 DATA ~11,-9,11,9

SCORES S You-0 Me-0
234567
3K K K 3K 3K K 3K K K K K K
TH XXX X7
HXRX o o e X e XKE
5*0)(000&#*'\:5
L) SO &
3*0000000*3
£2x0,0,0,0%x2
1%, 0.0.0.%1
33K 3K 3K K K K KKK K K K
1234547
I moved from 63 to 52
From?2%3
29 1?36

155

SCORES S You-0 Me~0
1234567
3K K 8 OK 3K KK K KK
TH X e X e X X7
AXX o 0 1 X e XXE
SXQXOOQOOXS
G4XKseoeee s X4
3*§ ¢ '0000*3
2*00000 00*2
1%,0.0.,0.%1
K 0K KK K 3K K K K KK K K
1234567
I moved from 63 to 52

SCORES? You~0 Me-0
1234567
35K 3K A 3K 30K K K K K K XK
g ¥9.99. 9% % ¥4
6*X.e.¢.XX6
55*0X0x000x=5
QXKoo 00eqe e X4
:%x0000000x3
ZX0 064 O%2
1%, 0.0.0e%x1
KK 5K K K 3K KK K K X
1234567
I moved from 6% to 54
From?3é
36 to?45

156

SCORESS You-0 Me-0
1234567
K 3K KK K KKK K K
239,29 ¥9.9%.V4
éXXQ OOOQXx(é)
5*0)(0)(009*5
4*0000(]0 0*4
3*0 L3R 2N 000*3
ZR0,0,...0%2
1%x.0,0,0.%1
3K K KK K KK KKK K
1234567
I moved from 635 to 54

SCORES You-0 Me~1
12345467
KKK KK K K KKK K
7H XX e X e X7
6*X00000Xxé
?SxOXOOOOOXEj
‘**0000000*4
:.:;XOOQQOXO*G
ZXRO.04 ., 0%2
1%.0.,0.00%1
K K KK K KK KK K K K XK
1234567
I moved from 54 to 36

We’'ll be looking again at writing games programs shortly, but before
that there are two important topics to discuss, how to make the most
of the user-definable function keys, and file handling.

157

User-definable Function
Keys

When you are developing a program, you may have phrases or
expressions which crop up many times. For example, the sequence
‘TIME=0:REPEAT UNTIL TIME=10' appears many times in my
programs, to give a one tenth of a second delay. Your computer gives
you a way of calling up these often-used expressions, at the touch of a
key, by defining them to perform a specific function.

You can define any of the ten red keys at the top of the keyboard.
Some, or all, of the keys can be programmed, but the total number of
letters being stored under the keys must not be greater than 255.

The keys are, of course, numbered from 0 to 9. To define a key, enter
something like: *KEY 4 ““HELLO", where the text inside the quote
marks is the text you want to have stored under the key. My first
example is programmed: *KEY 2“TIME=0:REPEAT UNTIL
TIME=10". This sample program shows some more possible key
definitions:

10 REM %% User definable key demo XX

20 xKEY 0 "FOR T=32 TOQ 126:VDU TINEXT TIM"
30 xKEY 1 "OLD]IMRUN|IM"

40 xKEY 2 "MODE S51M VDU 19,3,4,0,0,0|M"

S50 xKEY 3 "MODE 7IM LISTIM"

60 xKEY 4 "|!'la"

70 xKEY S "|!ig"

80 xKEY & "jtjcv

0 x*KEY 7 "{tip"

100 xKEY 8 "' |EY

110 xKEY 9 "|'IF"

120 xKEY 10 "OLDIM RUN[IM"

To use this program, run it, then press any of the red keys, and note
the result. The functions of some of them may not be immediately
obvious. The VDU command, in this case, prints out the character
with the ASCII code ‘T’. The net effect is to print out all the characters
with codes between 32 and 126, which is the entire ASCII set. At the
end of the line there is curious line character, followed by an M. The
line is obtained with ‘shift reverse slash’. In mode 7, it appears as a
‘double bar’, like an equals sign on its end. The line means that the next
character is a ‘control character’. Control characters are explained
more fully in the VDU drivers chapter. They are the characters

158

generated when you use the control key with the other keys. You may
have used control-G, or control-O and N to turn page mode on and off.
In fact, the ‘return’ key generates the same code as pressing
control-M, as you can easily verify by entering control-M a few times.
So the effect of the two end characters is to generate a single control
character, control-M, or ‘return’. This means that when you press the
key, you do not need to press ‘return’ afterwards, to start the printing.

More often than not, you will find no use for any of the other control
characters in the function keys, but control-M can often be used to
great effect. You should be able to see that the next line, line 30,
defines a key which types OLD and then RUN, without any
interference from you. This is the sort of key which can be very useful,
if you are prone to accidently press ‘BREAK’.

The next key places you in mode 5, and makes colour 3 appear as blue,
rather than white by using the VDU 19... command.

The key in line 50 is also very useful. Whenever pressed, it takes you
back into mode 7, and automatically lists the program.

For the moment, I'll miss out keys 4 to 9.

You are probably a little puzzled at the *KEY 10 statement in line 120.
This statement is redefining the ‘BREAK’ key. Whenever the BREAK
key is pressed after the execution of this line, the computer will be
OLDed and RUNed. If you press the BREAK key twice in succession
you will cancel the information under the BREAK key, and all the
others.

To return to keys 4 to 9. You may have read the section about teletext
graphics by now, and so you should be conversant with the idea of the
codes from 128 onwards giving colour in mode 7. The bar, followed by
the exclamation mark allow you to put these codes into the function
keys. The bar with the exclamation mark adds 128 to the next control
code so given that ‘bar’A” gives code 1, the effect of line 60 is to
define a key which hold the code 129, or the code for red
alphanumerics. Thus, just press this key, and anything else you type
on the same line will appear red. In the same way, line 110 gives code
of 128 + 6, which is 134, the code for light blue. By increasing the
letters, you can use the graphics codes as well. It is also possible to
mix normal text and the colour control codes in a single key. If you use
the colour control codes outside quote marks in your programs, the
computer will turn them into words like ‘EOR’, so beware. The codes
will also do funny things to printers, so use them with care.

There are many uses for function keys. Often a program will ask a
question which is usually answered in the same way — like ‘Enter your
name’ — so it is wise to store the answer under a function key, and
then most of the time you only need press the key, instead of typing

159

out the whole name. Apart from ‘standard responses’, you will
probably find they are most useful when you are writing programs.

File handling

File handling is reading and writing information to and from some
medium, such as cassettes. This discussion assumes you are using
cassettes. First of all, enter this program, then I'll discuss it, then we’ll
run it.

10 REM %% FILE HANDLING XX

20 XTAFES3

30 FILE=OFENOUT ("EXAMFLE'")

40 PRINT#FILE,"This is & series of

example piecesg"

S0 PRINTH#FILE,"Now is the time for
a8ll qgood men to come to the aid
of the party,"

460 FRINTH#FILE,"The quick brown rat

Jumped over the tinyg elephant”

70 CLOSE#0

80 FRINT "Now rewind the tape, and
press ‘play’, then the space bhar"

90 D=GET

100 PRINT "OK"

110 FILE=0OFPENIN("EXAMFLE")

120 INPUTEFILE,A$,E4,C%

130 CLOSE#FILE

140 PRINT A$'EB$'CH

150 END

Line 20 — Lowers the speed at which information is set to the cassette
recorder. You can use normal speed transfers if you replace this line
with *TAPE. | use slow tape access for file handling small quantities of
data, for reliability in data recall. Line 390 — Tells the computer that you
want to send some information to a file called “EXAMPLE". The word
in quotes is called the file name, and is equivalent to the name you give
programs when you save them on cassette. You could use something
like A$ instead, if the name of the file had not been decided at the time
of writing the program. This word will appear on the screen when you

160

do a *CAT of the things of the tape you used for data storage. Having
opened the file, and remembered its name, the computer assigns a
unique number to it, called its channel number. This number has been
copied into the variable ‘FILE’ in this example. The channel number is
used for all future transactions between the computer and the file. That
is the file name is not used again. When this line is executed, a
message telling you to press PLAY and RECORD will be output by the
computer.

The use of the name ‘FILE’ is completely arbitrary — it usually makes
more sense to make the channel number variable the same as the file
name, to prevent confusion when you are dealing with a large number
of files.

Line 40 — this outputs to the file with the channel number ‘FILE’' the
text in quotes.

Line 50 — Outputs more text in the same way.

Line 60 — and a little bit more.

Line 70 — Tells the computer that you have finished with all your file
handling for the moment, and so it closes all the files. You can close
specific files by quoting the channel number, as in line 130. The
process of closing a file is akin to tying up a parcel. The OPENOUT
statement makes the box ready for the parcel, the PRINT hash
statements put things in the box and the CLOSE statement ties up the
parcel, and sends it off.

Line 110 — Opens the same file in the same way as in line 30, except
that it tells the computer that you are going to INput information from
the file, and not OUTput information to it. The channel number is used
in exactly the same way as before.

Line 120 — Inputs, from the file with channel number ‘FILE’, three
string variables, A$, B$ and C$. These three strings will hold the data
output to the file above.

Line 130 — Closes the file, as in line 70. A closed file — when it has
been used for input — is obviously not sealed, but it still tells the
computer that it can stop worrying about the file.

Line 140 — Outputs to the user all the information which was read from
the file.

The first thing you’ll see when you run the program is a message telling
you to start your recorder. After a pause, while the information is sent
to the recorder, a message telling you to rewind the cassette and to
press the space bar is printed. When you do this, there will be another
short pause while the information is read in from the cassette recorder,
then the information will be printed out.

There are several useful alterations you can make to this program. The
first is to make the data stored in numeric, rather than string form. To
do this,change lines 40 to 60 to something like ‘PRINT FILE, 3.14159".

161

Now the data will be written as numeric information. The second part
of the program is still expecting string information, so you'll need to
alter lines 120 and 140 to use the numeric variables A, B and C.

To show the commands described in action, here is a simple stock
control program. | have assumed that the user is the owner of a small
pet shop, and the program keeps track of the amount of parrot food(!)
in stock at anyone time. It is also capable of telling when to re-order.

10 REM XKKK KK KKK K KK K KK MK K KK KK K K

20 REM xxx Farrot shop program XXx

30 REM Copyright (C) Jeremy Ruston

40 REM MK KKK K K KKK K KK K K KKK KX

S50 ON ERROR IF ERR<>17 THEN REFORTIFRINT " at line ";ERL!END

60 XTAPE3

70 UN=0

80 REFEAT

90 MODE 7

100 PRINT ‘‘CHR$(129);"Select one of the following "

110 PRINT ‘‘CHR$(132);"1.Enter rnew stock"

120 FRINT ‘CHR$(132)3"2.Deduct stock"

130 FRINT ‘CHR$(132);"3.Re-order"

140 FPRINT ’‘CHR$(132)3"4.Save to cassette"

150 PRINT ‘CHR$(132)3"S.Load from cassette"

160 FRINT ‘CHR$(132)3"6.,FPrint stock"

170 FRINT ‘CHR$(132);"7.Computer dating"

180 FPRINT //CHR$(131)3"——-> "3}

190 REFEAT

200 A%$=GET%

210 UNTIL A$»="1" AND A$L="7"

220 CLS

230 IF A%$="1" THEN FROCNEW_STOCK

240 IF A$="2" THEN FROCDEDUCT

250 IF A%$="3" THEN FROCRE_ORDER

260 IF A%$="4" THEN FROCSAVE

270 IF A$="5" THEN FROCLOAD

280 IF A%$="6" THEN FROCPRINT

290 IF A$="7" THEN FROCDATING

300 UNTIL FALSE

310 DEF PROCNEW_STOCK

320 PRINT ‘‘CHR$(131);"The present stock level is "}
UN‘CHR$(131)3"units of feed."

330 PRINT ‘CHR$(131)3"What should it be ?"}

340 INFUT "“UN$

350 UN=VAL(UNS)

360 ENDPROC

370 DEF PROCDEDUCT

380 PRINT ‘‘CHR$(131)}'"The present stock level
is "JUN’CHR$(131)3"units of feed."

390 PRINT ‘CHR$(131)3"Enter the deduction "}
400 INPUT “'"UNS$
410 UN=UN-VAL (UNS$)
420 ENDFROC
430 DEF PROCRE_ORDER
440 IF UN>100 THEN FRINT ‘’/CHR$(131);"No need
to re-order." ELSE FRINT ’‘CHR$(131)}"Re-order row"
450 D=GET
460 ENDFROC
470 DEF FROCSAVE

162

480 A=0PENOUT("FILE")

490 PRINT#A,UN

500 CLOSE#A

S10 ENDPROC

520 DEF PROCLOAD

530 FRINT "Flay tape"

540 A=0OPENIN("FILE")

550 INPUT#A,UN

560 CLOSE#A

570 ENDFROC

$80 DEF PROCFPRINT

590 PRINT ‘‘CHR$(131);"The present stock level
is "JUN’CHR$(131);"units of feed."

600 A=GET

610 ENDFROC

620 DEF FROCDATING

630 PRINT ’‘’“’/CHR$(134)3"Come off it..."

640 A=GET

4650 ENDPROC

The program operates as follows:
Line Comments. . .

50 Sets the error handler to such a way that if ‘ESCAPE’ is pressed,
the program returns to the main menu
60 Selects the low cassette speed
70 Starts the stock level at zero
80 Starts the main program REPEAT loop
90 Places the machine in mode 7
100 Starts printing the menu
190 Starts the REPEAT loop which continues until a valid response is
found
200 Gets a character from the user
210 Continues the loop until a valid response is entered
220 Clears the screen, ready for each of the routines
230 Starts the calling section
300 Returns to the menu after the routine has executed
310 PROCNEW__STOCK
320 Prints the current stock level. ..
330 then requests the new level
340 Gets the new value
350 Resets the stock level variable
370 PROCEDEDUCT
380 Prints the present stock level
390 Requests the deduction
400 Gets the deduction
419 Updates the stock level variable
430 PROCRE_ORDER
449 Decides whether re-ordering is needed, and prints an appropriate
message
450 Gets a key press before. ..
460 returning

163

470 PROCSAVE..

480 OPENS the file for output

499 Outputs the present stock level
500 Closes the file

520 PROCLOAD

530 Asks the user to press play
540 Opens the file for input

550 Gets the stock value from tape
560 Closes the file

580 PROCPRINT

590 Prints the present stock level
600 Gets a keypress

610 Ends.

This program is somewhat trivial, but it shcws important features of
business software, including the menu, and is virtually crashproof.

Note that, in file handling, unlike DATA statements, you cannot load a
numeric value from tape into a string variable.

DRAUGHTS AND OTHER
GAMES

No matter why you bought your BBC Microcomputer, it is likely that
you spend at least some time playing games with it. Writing,
developing and adapting games programs is probably the least painful
way which exists to improve programming skills. The first game we
will look at in this section is draughts. One of the reasons for including
it is so that | can explain a method of numbering boards for board
games which make it easy for a computer to manipulate. A similar
board-numbering system can be used as the core of a chess program,
noughts and crosses, Nine Mens’ Morris or whatever.

Books on how to play draughts make use of a numbering convention
shown in the illustration. The white squares are counted off from one
to 32. But this numbering method creates a problem when we try to
define a move in terms of the mathematical relationship between two
diagonally adjacent squares. The difference between the squares can
be three, or it can be four in one direction; and in the other direction,
the difference in the number on the square, in terms of a diagonal
move, can be five or four. This creates problems for a computer. As
well, there are no ‘spare’ numbers to indicate where the board ends.

164

In the 1960s, A L Samuels wrote an article for Scientific American (see
Strachey, Christopher, ‘“Systems Analysis and Programming,”” in
‘Readings from Scientific American’, W H Freeman and Co., San
Francisco, 1971) in which he devised a clever numbering system in
which the difference between the diagonally adjacent squares is
always four and five (or minus four and minus five). His system also
allowed for numbers to be given to squares which were ‘off the board’.

I've changed his numbering system a little to make it more convenient
for a computer. In my system, the diffference between squares is
always six or seven (or minus six and minus seven). My system, very
simply, sets up an array and allots certain elements of the array to
squares on the board. All other squares are understood by the
computer to be off the board. The computer assigns a value of 99 to
any square which is off the board, zero to any empty square, one to a
computer’s ordinary piece (two to a computer king) and minus one to
a player’s ordinary piece (with minus two for a player’s king). This may
sound a little complex, but it should become clear shortly.

165

Here is my numbered board. You can see that if you move from the
top left hand corner (69) to the square diagonally below it (63), the
difference between the two squares is minus six. Now, choose any
other square on the board from which you can move down and to the
left, and you’ll see there is a difference of minus six between the
square you started on and the square on which you finished. This sort
of predictable result is relatively easy for a computer to handle.

Move in the other direction, that is downwards and to the right, and
you'll see the difference between the two squares is minus seven. In
the first version of draughts in this book — KIDDIE CHECKERS —
you'll need this numbered board as a reference, to know how to enter
your moves. The first version of the game has no strategy to speak of
(except to make a capture when it can, and if no capture is available,
make a legal move), but it is still quite a fascinating program to run.
There are no multiple jumps, although there are kings. Kings are made
automatically.

166

To briefly explain the program, I’ll go through the main sections of it.
The subroutine starting at line 780 sets up the starting conditions for
the game, alloting values of 99, 0, 1 and 2 for the elements of the array
A. The board is printed from the subroutine starting at line 500. Lines
510 to 570 change the number @, 1, 2 and so on into the codes of the
characters which will be used to print the board on the screen. Zero,
for example, is changed to 32, the ASCII code for a space. Lines 600 to
690 print out the board, using a neat routine developed by Toni Baker.

The loop from lines 50 to 70 checks to see if any player’s pieces should
be crowned. The routine from there to line 170 checks to see if a
capture can be made, and if it can, effects the capture with lines 200 to
220. If not, the routine from line 250 to line 350 chooses squares at
random, and, if one of its own pieces is on that square, the computer
checks to see if it can make a move. If it can, it does. If it has not got
one of its pieces, or there is no possible move, and the computer has
chosen less that 1000 random numbers, it goes back to look again. If,
in 1000 random selections, the computer has not found a move it can
make, it concedes defeat (line 360).

167

After printing the board again (with the subroutine called from line
400) the computer accepts the player's move, which is entered (line
420) as two numbers. The first is the number of the square the player is
moving from, and the second is the square he or she is moving to. Line
460 ‘erases’ a computer’s piece if the player has captured it.

10 REM xKiddie Checlkersx

20 REM (C) Hartnell 1982

30 GOSUER 780

40 Q=03Z=24

50 FOR G=69 TO 72

&0 IF A(GY=~1 A(G)=-2

70 NEXT G

80 IF A(Z)=99 OR AC(Z)<1l THEN 170
90 IF Z+<28 AND A(Z)=1 A(Z)I=Z

100 Y=1i

110 IF ACZH+X(YI)0 AND ACZAZX(X(Y))Ir=0 Q=X(Y)
120 IF A(Z)Y=2 AND AC(Z-X{Y))X=0 AND

A(Z-2%xX(Y))I=09 Q=-X{Y)

130 IF Q<=0 AND Z+2%Q:23 THEN 200
140 Q=0

150 IF Y=2 GOTO 170

160 Y=21G0TO110

170 Z=Z+1

180 IF Z«<73 GOTO 80

120 IF Q=0 THEN 250
200 A(Z+Q)=0
210 ACZ+2%Q)=A(Z2)
220 A(Z)=0
230 GOSUE %S00
240 GOTO410
250 U=0
260 Z=23+RND(49)
270 U=U+1
280 IF A(Z)=1 OR A(Z)=2 THEN 300
290 GOTO240
300 Y=1
310 IF ACZ+X(Y))=0 Q=X(Y)
320 IF A(Z)=2 AND A(Z-X(Y))=0 Q=-X(Y)
330 IF Q<=0 THEN 380
340 IF Y=1 Y=2:G0OT0O310
350 IF U<1000 THEN 260

168

360 PRINT "You win"

370 END

380 A(Z+Q)=AD)

390 A(Z)=0

400 GOSUES00

410 SOUND 1,-1%,100,3

420 INFUT D,E

430 PRINT CHR$C(11) 3" "
440 AEY=AD)

450 A(DI=0

4460 TF ABSD-EY*7 AM+(INT(E~D)/2))=0
470 GOSUR S00

480 GOTO40

490 IF Q<0 THEN 290

500 FRINTZ 7

510 FOR M=24 TO 72

520 IF AMI=1 A(MI=79

G930 IF A(MI=2 A(M)I=33

540 IF A(MI=0 A(M)=32

590 IF AMMI=-1 A(M)=88

9360 IF A(MI=-2 A(M)=36

S570 NEXT M

580 FRINT CHR&(30)’7/ C4$3Z,2+Q
590 FRINT

400 FOR K=0 TO 3

610 FOR J=0 TO 3

420 FPRINT CHR$(255) JCHRS$(A(72-J~13%1{))}
630 NEXT J

640 FRINT

650 FOR J=0 TO 3

660 FRINT CHR$(A(66~-J-13XK)) $CHR®(255) §
670 NEXTJ

680 FRINT

690 NEXT K

700 FOR M=24 TO 72

710 IF A(MI=79 A(M)=1

720 IF A(MI=33 A(M)=2

730 IF A(M)Y=32 A(M)=D

740 IF A(M)=88 A(M)=-1

7590 IF A(MY=36 A(M)=-2

760 NEXT M

169

770 RETURN

780 DIMA(Y9) X (2)1QR=0

7920 X(1)=-biX(2)mm7

800 FOR Z=1 TOQ 99

810 A(Z)=99

820 IF Z<73 AND Zx3% AND NOT(Z=47 0OR Z=648
OR Z=60 OR Z=61 OR Z=62) AH(Z)=]1

830 IF Z<54 AND Z=42 AND NOT (Z=47 (R Z=48
OR Z=49) A(ZL)=0

840 IF Z<41 AND Zx23 AND NOT{(Z=34 OR Z=3%5

OR Z=36 0OR Z=28 OR Z=29) A(Z)=-~1

850 MEXT Z

860 CH="My moveld "

870 CLS

880 COSUR S00

820 RETURN

Next we have a ‘proper’ draughts game. That is, the next program is a
development of the proceeding one. In this version, there are multiple
jumps. The computer will make its multiple jumps automaticaly. After
you make a capture, you'll be asked ‘“Can you jump again?’’ Just press
RETURN if you cannot, and the game will continue. If you can jump
again, press any key, before you press return and you’ll be offered
another move. You enter your move by typing in the letter at the
bottom of the square which is on the line on which, your piece is
sitting, then the number along the right hand side, then a comma, then
the letter and number co-ordinate of the square you're moving to.
There are clear player prompts within the program, so you should have
little trouble in playing it. You’ll find this version of the game puts up a
far stronger defence than the other program, and is most reluctant to
move into danger. There are three ways the game can end. The
computer will either concede defeat, even if there are still possible
moves, if it judges the situation is hopeless; or it will claim victory on
capturing all you pieces, or give you the game when you capture all of
its pieces. although you should not have too much trouble beating this
program (which plays like a better-than-average beginner), it is still a
most entertaining program to run, and a study of how it decides which
moves to make should stand you in good stead when you write your
own games of strategy.

10 FE MK KKK KK KK K K K K K KK KKK KKK
20 REM XDraughtsx

30 REM (C) Hartnell, 1982

A0 REMMMK KK KKK MK KK K KKK KKK KK

50 PROCinitisaliseiMODE7

170

60
70
80
?0
100
110
120
130
140
150
160
170

180
190
200
210
220
230
240
250
260
270
280
290

300
310
320
330
340
350
360
370
380
320

REM x%XMaster REFEAT/UNTILXX
REFEATIQ=0{Z=24
REM *x%XCreate human kingsxx
FOR G=69 TO 72:IF A(G)=-1 A(G)=-2
NEXT G
FROCprint _boardg
REM xxComputer locks for capturexx
IF A(Z)=99 OR A(Z)<1 THEN Z20
IF Z+<28 AND A(Z)=1 A(Z)=Z2
Y=1
IF ACZ+X(Y))<0 AND A(Z+ZX(X(Y)))=0 Q=X{Y)
IF A(Z)=2 AND A(Z-X(Y))=0 AND
ACZ-2%X(Y))=0 THEN Q=-X(Y)
IF Q<x0 AND Z+2%Q>23 THEN 250
Q=0
IF Y=2 THEN 220
Y=21G0T01460
Z=7+1
IF Z<73 THEN 130
IF Q=0 THEN 340
ACZ+AI =0 A(Z+2XQ)=A(Z)A(Z)=0
Z=Z4+2%Q 1 COM=COM+1 {FROCprint _board
QA=03Y=1
IF AC(Z+X(Y))<0 AND A(Z+2X(X(Y)))=0 Q=X(Y)
IF A(Z)Y=2 AND A{(Z-X(Y))<0
AND A(Z-2XX(Y))=0 THEN Q=-X(Y)
IF Q<>0 AND Z+2xXQ>x23 THEN 250
IF Y=1 Y=2:G0T0O 280
GOTO 480
REM xxComputer looks for non—-capture
U=0
=23+RND(49) ¢U=U+1
IF A(Z)=1 OR A(Z)=2 THEN 380
GOTO 350
Y=1
IF A(Z+X(Y))=0 AND (A(Z+2xX(Y))»-1

AND A(Z+2xX(Y)+1)>~1 AND A(Z+2ZXX(Y)-1)>

-1 OR Ux600) Q=X(Y)

400 IF A(Z)=2 AND A(Z-X(Y))=0 AND
(ACZ-2%XX(Y))»=1 AND A(Z-2%X(Y)+1)>~1 AND
ACZ-2xX(Y)-1)>~1 OR U*600) Q=-X(Y)

410

IF Q<0 THEN 450

171

420
430
440
450
470
480

490

910
520
G930
540

550

IF Y=1 Y=2:{GOTO 390
IF U<1000 THEN 350
FRINT "I concede the game!"I1END
A(Z+Q)=AC(ZIIA(Z)=0
FROCprint _board
FRINT‘TAB(S) ;CHR$ (128+RND(S))
YEnter your move"
FRINT TAB(4) ;CHR&(1LZ8+RND(S5)) ¢
“"ag AY, EB separated”
FRINTTAE(7);CHR$ (1LZ28+RND(5))3
"hy a comma"
SOUND 1,-1%,100,3
INFUT A%$,B$:FOR W=1 TO 2:Z=0
IF W=l C$=A%
IF W=2 Cé=(E$
=—-24%(CH="G?")-29%X(CH="EP")~
2ZOX(CH="C2")-27X(CH="A9")-30x%
(CH="HB")-31IX(C$ ="F8")~32X(C%=
"DB8"Y-BIX(CHE="EG")-I7X(CH="C7")

-38X(CH="E7") -39 (C$="C7")-40x(CH="
A7) ~43%X(CHE="HL") -44X (CHE="F 46") ~-45X(Cé$=

"DE")-46X(CH="EL"I-00X(CH="0G4")

960 IF Z<>0 THEN 580
970 Z=-51%X(C$="E4")-52x(C$="C4")-53
X(C$="A4")~S6X(CH="H3")-57%x(C$="F3")
~58X(C% ="D3")-59K(CH="E3")-63%X(Ch=
"GEZ")-EA4X(CE="E2") ~E5X(CH=""C2") -66X
(CH="A2")-69%(Ce=" H1")-70x(CH="F1")~
71X(CH="D1")-72X(CH="E1")

580
590
600
610

620
630
640
650
660

IF W=1 D=Z

IF W=2 E=Z

NEXT W

FRINT CHR$(11)3CHR$(11);
CHR$(11);CHR$(11)3CHR$(11)

FOR T=17T0 4

FRINT " "

NEXT

ACE)=AD)IACD)=0

IF ABS(D-E)>7 A(D+(INT(E-D)/2))=01¢

HUM=HUM+1

172

670 FPROCprint_board
680 IF AES(D-E)>7 FRINT’‘/3INFUT
"Can gou jump again?"Us$:
FRINT CHR$¢(11)s" "
IF U$<="" THEN S20
690 UNTIL HUM=12 OR COM=12
700 IF HUM=12 FRINT"You win, human'!'"“3IEND
710 IF COM=12 FRINT"I have beaten you!"3IEND
720 REM XXFrirmt board procedureXx
730 DEF FROCprinmt_board
740 FOR M=24 TQ 72
750 A(MI=-79%X(A(M)=1)-33X(A(M)=2)~-32xX
(AM)=0)-88X(A(MI=-1)~-36X(A(M)=~2)~99X

(AM)Y=99)
760 NEXTM
770 FRINT CHR$(30)77""

780 IF Z<»Z+Q PRINT CHR$(11)3CHR$
(128+RND(5)) "My score is "jCOM:
v, and yours is " IHUM
790 T=-2i{FOR K=0 TO 3:{FOR J=0 TO 3
800 FPRINT CHR$(299)ICHR$(A(72~J-13%XK))}
810 NEXTJET=T+1
820 FPRINT;CHR$(128+RND(S)) JINT((J+KI/Z20+T
830 FOR J=0 TO 3
840 FRINT CHR$(A(H6~J~13XK) I ICHR$(255)
850 NEXTJT=T+1
860 FRINTICHRS(1Z28+RND(S))Y JINT(CJ+I /24T
870 NEXT K
880 FRINT "ABCDEFGH"
8920 FOR M=24 TO 72
P00 A(MI==C(A(M)=7P)-2X(A(MI)=33)-0X(A(M)
=321+ (A(MI=88)+2X(A(M)=36)~P9%X(A(M)=99)
210 NEXTM
920 ENDFROC
930 REM xxInitislisation procedureXx
9240 DEF PROCinmitislise
950 CLSIDIM A(99),X(2)3IX(1)=~6tX(2)=~7
960 FOR Z=1 TO 99:A(Z)=99
970 IF Z<73 AND Z»55 AND NOT(Z=67 OR Z=68
OR Z=60 OR Z=61 OR Z=62) A(Z)=1

173

780 IF Z<54 AND Z:x42 AND NOT(Z=47
OR Z=48 OR Z=49) A(Z)=0
?90 IF Z<41 AND Z>23 AND NOT(Z=34 OR Z=35
OR Z=36 OR Z=28 OR Z=29) A(Z)=-1
1000 NEXT Z
1010 VDUZ338202303030
1020 COM=03:HUM=0:ENDFROC

Whereas the computer plays only like a fairly good beginner at
draughts, it manages a much stronger game in the following program,
‘Othello’. Othello is a registered name, copyright Mine of Information,
1 Francis Avenue, St Albans. The game is a development of Reversi,
which was invented in the 1880s, with a restriction in the opening
moves.

Reversi was played on a standard draughts board, using pieces which
were doublesided, black on one side, red on the other. R C Bell
explains, in his book Discovering Old Board Games (Shire Publications
Ltd., Aylesbury, 1980), that black begins the game by placing a piece
black side up one of the four central squares on the empty board. Red
replies by placing his or her first red side on another central square.
“The four squares are covered in the first four turns of play and then
the players continue alternately, placing their pieces on a square
adjacent to one occupied by an enemy piece,”” says Bell. (Incidentally,
this book, and others by Bell, are a great source of games ideas for
computer programs.)

Any enemy pieces in a straight line between the latest piece placed and
another one of the player's pieces is then flipped over to show the
colour of the player. The winner is the player with the most pieces
when the board is covered, or when neither player may move.

A computer programmer from Chichester, G J Suggett, has pointed
out to me that most published Othello programs evaluate the best
move for the computer to make “on the basis of maximising the
number of captures made with a possible extra score given to certain
positions, such as the corners. In fact, Mr Suggett said, “‘in the early
stages of the game, positional play is far more important than making
a large number of captures.” In this version of Othello, great weight is
placed upon positional play. The program was originally written in
Microsoft by Graham Charlton of Romford, and adapted by me for the
BBC Microcomputer.

10 CLS

20 X=ASC("X")0=ASC("0")
30 DIM A(10,10)

40 R=0

S0 FOR B=1T010

60 FOR C=1TO10

174

70 IF B<1 AND C<Ot AND B<>10 AND C<>10 THEN A(B,C)=ASC(",")
80 NEXT C

90 NEXT B

100 A(5,5)=X

110 A(6,6)=X

120 A(6/5)=0

130 A(5,6)=0

140 P=0

150 PRINT

160 PRINT "DO YOU WANT TO GO"
170 PRINT"FIRST (1-YES,2-NO)"
180 INPUT W

190 CLS

200 GOSUB 720

210 IF W=1 THEN 600

220 PRINT"MY MOVE "

230 5=0

240 T=X

250 H=0

260 FOR A=2TO 9

270 FOR B=2TO 9

280 IF A(A,B)X>46 THEN 540

290 @=0

300 FORC=-1TO 1

310 FORD=-1TO 1

320 K=0

330 F=A

340 G=B

350 IF A(F+C,G+D)C>S THEN 400
360 K=K+1

370 F=F+C

380 G=G+D

390 GOTO 350

400 IF A(F+C,G+D)X>T THEN 420
410 Q=Q+K

420 NEXT D

430 NEXT C

440 IF A=2 OR A=9 THEN Q=Q#%Z
450 IF B=2 OR B=9 THEN Q=Q%2
460 IF A=3 OR A=8 THEN G=Q/2
470 IF B=3 OR B=8 THEN 0=Q/2
480 IF (A=2 OR A=9) AND (B=3 OR B=8) THEN Q=Q/2
490 IF (A=3 OR A=8) AND (B=2 OR B=9) THEN Q=Q/2
500 IF G<H OR @=0 OR (RND(1)>0.3 AND G=H) THEN 540
510 H=Q

520 M=A

530 N=B

540 NEXT B

550 NEXT A

560 IF H=0 AND R=0 THEN 1100
570 IF H=0 THEN 590

580 GOSUB 930

590 GOSUB 720

4600 INPUT"YOUR GO ",R

610 5=X

175

620 T=0'REM LETTER O

630 REM 0 TO PASS

640 IF R=0 THEN 700

650 IF R<11 OR R>88 THEN 600
660 M=INT(R/10)+1

670 N=R-10#INT(R/10)+1

680 IF A(M,N)X>ASC(".") THEN GOTO 600
690 GOSUB 930

700 GOSUB 720

710 GOTO 220

720 FRINT TAB(0,0)}

730 C=0

740 H=0

750 PRINT!FRINT TAB(10);"OTHELLO"{FRINT
760 PRINT TAB(10)}"12345678"
770 FORB=2TO ¢

780 PRINT B-1}

790 FORD=2 TO ¢

800 FPRINT CHR¢$(A(B,D))}

810 IF A(B,D)=X THEN C=C+1

820 IF A(B,D)=0O THEN H=H+1

830 NEXT D

840 PRINT STR$(B-1)

850 NEXT B

860 PRINT TAB(10);"12345678"
870 PRINT

880 PRINT"I HAVE "iC}" "

890 PRINT

900 FRINT"YOU HAVE "}H;" "
910 PRINT

920 RETURN

930 FORC=-1TO 1

940 FOR D=-1 TO 1

950 F=M

960 G=N

970 IF A(F+C,G+D)X>S THEN 1010
980 F=F+C

990 G=G+D

1000 GOTO 970

1010 IF A(F+C,G+D)>T THEN 1070
1020 A(F,G)=T

1030 IF M=F AND N=G THEN 1070
1040 F=F-C

1050 G=G-D

1060 GOTO 1020

1070 NEXT D

1080 NEXT C

1090 RETURN

1100 GOSUB 720

1110 IF C>H THEN PRINT"I WON ";C}","}H
1120 IF C<H THEN PRINT"YOU WON "iC}","{H
1130 IF H=C THEN PRINT"IT'S A DRAW!"
1140 END

176

We finally have a number of programs which you may like to try on
your BBC Microcomputer. There will be no ‘commentary’ with them,
as they are primarily designed for use, rather than as teaching aids.
However, you are sure to discover many new ideas for programs by
reading through the listings, and working out how they do what they
do. The first program is one of the old classics of computer games, a
Lunar Lander. Listings of other programs will follow this one, without
introduction.

10 REM xLunar Landerx

20 M=0:T=0:5=0{H=4000+RND(1000)

30 F=5000/RND(3):Q=-171E=1

40 CLS$VDU2338202303030

50 MODE7:GOTO210

60 RE MR KKK XK KKK KK

70 PRINT CHR$(128+RND(6))3"(+ is towards Luna)"}
80 INPUT Z:IF Z<-30 OR Z>»30 THEN 80

90 PRINT CHR$(128+RND(4))3"For how many seconds"}
100 INFUT ESE=E+1

110 FRINT TAB(0,15)3" non
nwesn "

120 T=T+E

130 S=S+10+3%xEx((Z+1)/E)

140 F=F-3xXExXAEBS(ZXRND(3))

150 IF F<500 FRINT TAE(20,6);CHR$(128+RND(6))3"FUEL

LOW" $SOUND1,-15,250,255¢S0UND2,-15,240,255

160 H=H-EXS

170 IF H<20 AND H>-10 AND S<12 THEN 430

180 IF H<-10 OR F<1 THEN 370

190 IF RND(10)=5 AND M«:>2 THEN GOSUE 480

200 FROCdelay

210 PRINT TAB(0,8);CHR$(129+M);"HEIGHT ABOVE SURFACE: "INT(H)"
220 FROCdelay

230 IF Q<>—-17 THEN Q=Q-RND(16)

240 IF Q<0 AND Qx-17 THEN 370

250 IF Q<»-17 PRINT CHR$(128+RND(4))}"OXYGEN LEFT: "Q" "
260 PROCdelay

270 PRINTCHR$(129+M);"VELOCITY?: "INT(S)" "

280 IF B<*1 PRINT CHR$(129+M);"WARNING - THRUST ERRATIC"
290 FROCdelay

300 FRINT CHR$(129+M);"FUEL LEFT! "“INT(F)" "
310 PROCdelay
320 PRINT CHR$(129+M);"FLIGHT TIME: “T

330 FOR A=1 TO 20:FRINT CHR$(128+RND(6)) 3 "x" 3 INEXT
340 FPRINT TAE(0,15)3CHR$(128+RND(6)) $"THRUST (-30 TO 30)"
350 GOTO 70

360 RE MK NOK K KKK AKX

370 REPEAT

380 FRINT TAB(RND(4));CHR$ (128+RND(6)) } " *XCRASHXX

YOU HIT THE SURFACE AT"
390 FRINT TAB(RND(7))3CHR$(128+RND(4)) ABS(S)"
METRES FER SECOND"

400 SOUND 0,-15,RND(3),RND(10)

410 UNTIL FALSE

420 REMXXKXXIKKKK KX

430 REPEAT

440 PRINT CHR$(134);"SUCCESSFUL LANDING"’

450 FPRINT CHR$(134);"FINAL VELOCITY: "ABS(S)

4560 UNTIL FALSE

470 RE MM MK K KK K KKK KKK

177

480 CLS!M=M+1IU=RND(32000)

490 FOR V=1 TO 4

500 PRINT ‘CHR$(128+RND(4))3"HOUSTON, WE HAVE A PROBLEM!'"

S10 SOUND 0,-15,RND(4),RND(10)

520 FRINT TAB(RND(20))3;CHR$(129)3;"DANGER!'"

530 NEXT

540 FRINT ‘‘/CHR$(129)3"MALFUNCTION."}CHR$(130);"USE
COMFUTER ACCESS"

550 PRINT TAR(S)3;CHR$(130)3;"CODE "U" FOR DETAILS"

560 INPUT V

S70 CLS

580 IF U<*V S=INT(SxH/S5):GOTO0370

590 F=RND(2)

600 ON F GOSUEB 670,700

610 FRINT ‘CHR$(128+RND(6))3"PRESS ANY KEY TO RETURN TO FLIGHT"

620 A$=GETS$

630 CLS

640 FROCdelay

650 RETURN

660 REMXXRKXKKKKKKKKKK

670 Q=101+RND(19)

680 FRINT TAB(0,9)3;CHR$(130)3;"0OXYGEN METER UNRELIAELE"

690 RETURN

700 E=EB+RND(3)

710 PRINT TAB(0,9)3CHR$(130)}"THRUST CONTROL ERRATIC"

720 RETURN

730 REMXXRKKKKKK KKK KKK

740 DEF FROCdelay

750 TIME=0:REFEAT UNTIL TIME=S0

760 SOUND 3,-15,RND(254),2

770 ENDFROC

10 REM MASTERTRIO

20 REM ‘Mastermind’ WITH 3 DIGITS

30 MODE 7iPRINT’‘‘‘’

40 DIM A(3),B(3)

S0 FOR Z=1 TO 3

60 A(Z)=RND(9)

70 NEXT Z

80 IF A(1)=A(2) OR A(1)=A(3) OR A(2)=A(3) THEN S0
90 D=100%XA(1)+10%A(2)+A(3)

100 FOR C=1 TO 10

110 PRINT CHR$(129+RND(5))$CHR$(157) jCHR$(129)}
120 FRINT "WHAT IS YOUR GUESS NO. "3;C3
130 SOUND 1,-15,RND(10)+50,2

140 INPUT X

150 E(1)=INT(X/100)

160 E(2)=INT((X~-100%B(1))>/10)

170 B(3)=X-100%EB(1)-10%B(2)

180 IF D=X THEN 430

190 W=0
200 N=0
210 FOR E=1 TO 3
220 IF A(E)<»E(E) THEN 250
230 N=N+1
240 A(E)=0
250 NEXT E
260 FOR F=1 TO 3
270 IF A(F)=0 THEN 320
280 FOR E=1 TO 3
290 IF E(F)<A(E) THEN 310
300 W=W+1

178

310 NEXT E

320 NEXT F

330 A(1)=INT(D/100)

340 A(2)=INT((D-100%A(1))/10)

350 A(3)=D-100XA(1)-10%xA(2)

360 SOUND 2,-15,RND(20)+235,2

370 FRINT CHR$(129);"YOU SCORED "3N}" BLACKS "}
380 FRINT "AND "jW3" WHITES"

390 NEXT C

400 FRINT CHR$(129)3CHR$(157) ;CHR$(131)}

410 PRINT "MY NUMEBER WAS "jA(1)3A(2)1A(3)

420 END

430 PRINT CHR$(129)jCHR$(157);CHR$(131) ;" "CONGRATULATIONS"
440 END

10 REM ‘MATCHSTICKS’

20 M=0E=0

30 Z=16+RND(7)

40 IF 2xINT(Z/2)=Z THEN 30

S0 H=2+RND(2)

60 REFEAT

70 CLS

80 FRINT ‘’/CHR$(132)3"MAXIMUM TO TAKE "3H
90 GOSUE 320

100 IF E*0 PRINT ‘CHR$(130);"YOU TOOK "}E
110 IF EX0 PRINT CHR$(129):" I TOOK "3;Q°
120 FOR K=1 T0 Z

130 FRINT CHR$(129)3CHR$(157);CHR$(129+RND(5))}
140 FRINT K3

150 IF RND(1)x0.6 FPRINT

160 NEXT K

170 GOSUE 320

180 PRINT "HOW MANY WILL YOU TAKE";

190 INFUT E

200 IF ExH OR E<1 THEN 190

210 Z=Z-E

220 GOSUE 320

230 IF Z<1 PRINT "YOU TOOK THE LAST ONE"
240 IF Z<1 PRINT "SO I WIN"IEND

250 Q=Z~1-INT((Z-1)/(H+1))IX(H+1)-INT(RND(1)%2)+INT(RND(1)%2)
260 IF Q<1 OR QxH THEN 250

270 GOSUE 320

280 Z=Z-Q

290 IF Z=0 THEN FRINT CHR$(129)3;"I TOOK ":Q
300 IF Z=0 THEN FRINT "SO YOU WIN"IEND

310 UNTIL FALSE

320 FOR T=1 TO 4

330 PRINT

340 NEXT T

350 RETURN

10 REM ‘FPERSONAL ACCOUNTS
20 REM ADAFTED FROM ZX80 FROGRAM
30 REM WRITTEN EY RON JONES

40 DIM A(H)
G0 B=0

60 COSUE 290
70 INFUT “ANY CHANGES (Y OR N)Y",Z%

179

80 IF Ze="N" THEN 1350

0 INFUT "NUMBER",K

L0 IF K:=6 OR K<l THEN 20

110 INFUT "NEW AMOUNTYE

120 LF K=6 THEN E=-E

130 ACK)Y=E

140 GOTO 40

150 INPUT "ENTER SALARYY,S

1L&0 GOSUR 290

176 Re=g-T+E

180 PRINT “BALANCE $"3iR

190 Es=R

200 PRINT

210 FPRINT "ENTER 1 TO END, 2 T0O SET BaLANCE TO"
220 PRINT "ZERO, OR 3 TO RUN AGAIN, STARTING"
230 PRINT "WITH CURRENT BaALANCE"
2490 INFUT Q

250 TF Q<1 OR Q3 THEN 240

260 TF =1 THEN END

270 IF =2 THEN 350

280 TF (=3 THEN &0

290 T=0

300 CLS

310 FPRINT “"FERSONAL ACCOUNTSY
320 PRINT ‘/"FREVIOUS BALANCE "B
330 FRINT

340 FOR F=1 TO 6

350 FRINT F3" "%

360 ON F GOSUE 420,440,460,480,500,520
370 FRINT “ YIACFY/

380 T=T+A(F)

390 NEXT F

400 FPRINT

410 RETURN

420 FRINT "CHEQUES QUT"3

430 RETURN

440 FRINT "CREDIT CARDS";

450 RETURN

460 FRINT "RATES":

470 RETURN

480 FPRINT "MORTGAGE":

490 RETURN

180

H500 FRINT "STANDING ORDERS":
910 RETURN

920 PRINT "MONEY IN"}

530 RETURN

10 REM DIGITAL CLOCK

20 PRINT "ENTER HOURS"Y

30 INFUT H

40 PRINT H3" ENTER MINUTES"
S0 INFUT M

60 FRINT Hi" ENTER SECONDS"
70 INFUT 8§

80 MODE?

0 REFEAT

100 PRINTTAE(O,10)3CHR$(129) SCHR$(157) %
110 FRINT TAEBC(LS)JCHRS (131 SH"" "3
120 TF M<10 THEN FRINT "0"3
130 PRINT §$M3" "3

140 IF 85<10 THEN FRINT "0"3
150 PRINT g3

160 TIME=Q

170 REFEAT UNTIL TIME=98

180 8=8+1

190 IF S=60 THEN M=M+1

200 IF H=60 THEN S=0

210 IF M=60 THEN H=H+1

220 ITF M=60 THEN M=0

230 IF H=13 THEN H=1

240 UNTIL FALSE

10 REM INTEREST ON A LOAN

20 CLS

30 INPUT “’’’/“PERCENTAGE INTEREST RATE"E
40 INPUT ‘‘“PRINCIPAL ($)"P

S0 INFUT ““LENGTH OF LOAN (YEARS) "Y
60 Y=365%xY

70 INPUT “"AND DAYS"D

80 D=D+Y

?0 E=INT(PXD/36500XE+0.9)
100 PRINT ‘/‘/"INTEREST IS $"}E
110 PRINT ‘‘"TOTAL (PRINCIPAL PLUS"
120 PRINT "INTEREST) IS $";P+E

181

10
20
30
40
S0
60
70
80
?0
100

10

REM TEMPERATURE CONVERSION
INFUT ‘“ENTER HIGHEST TEMPERATURE IN F"A
INPUT ‘"AND LOKWEST"B
INPUT/"ENTER INCREMENT"C
PRINT CHR$(131)"F";TAB(10)$“C"3TAB(20) ;" "K"
FOR T=B TO A+C STEF C

=INT(S%(T-32)/9)

K=M+273

PRINT CHR$(129);INT(T);TAB(10)MITARB(20) 3K
NEXT T

REM STOCK RECORD

20 MODEY

30
40
50
&0
70
80
20
100
110
120
130
140
150
1460
170
180
190
200
210
220
230
240
250

INFUT 7 7"HOW MANY CATECORIES",A
DIM Asa, 10D

DIM Z4(d)

FOR C=1 TO A

FRINT "ENTER THE NAME OF CATEGORY
INFUT M%

AB (G, 10) =M%

MEXT ©

REFEAT

CL.S

FRINT 77

FOR C=1 TO A

FRINT C3" "3ABCC,1003" "2
NEXT C

FRINT ““NUMBER OF CATEGORY?"
FRINT ,"-99 TO END"

INFUT D

IF DA THEN 190

IF D=-99 THEN ERND

FRINT A$(D,;10),"VALUE"}

INFUT E

ZDY=Z (D) +E

UNTIL FALSE

10 REM SQUARE ROOTS BY ITERATION

20 MODE7

30 INFUT/’"“NUMEER TO FIND ROOT OF",E
40 IF E<=0 THEN 30

S0 A=RND(R)

60 X=B/A

70 Y=(X+A)/2

80 PRINT 'Y

90 IF A=Y THEN 120

100 A=Y

110 GOTO 690

120 FRINT ’‘"THE SQUARE ROOT OF "3B3" IS "3jY

182

"3C

110
120

REM 3K XK KK KK KKK K KKK K KKK KKK
REM French bathrooms

REM (C) 1982 Jeremy Ruston
REM KKK K K0 KK KKK KK KK K KKK K
DIM X(4),Y(4),XD(4),YD(4)
MODE 4

REM MMM MK KN KKK K K KKK KKK K
FOR X=0 TO 1249 STEF 250

FOR Y=0 TO 999 STEF 250

X=X DIV 250

YM=Y DIV 250

IF (XM MOD 2)=(YM MOD 2) THEN SMU=

0.1 ELSE SMU=0.9

130

FROCTWIRL (X+250,Y+250,X+250,Y,X,Y,

X, Y+250,8MU)

140
150
160
170
180

NEXT Y

NEXT X

END

REM KKK OK K KKK K K KN KK KKK K

DEF PROCTWIRL(X1,Y1,X2,Y2,X3,Y3,X4

+ Y4,5MU)

190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

380

390

X(1)=X1iX(2)=X2IX(3)=XTIX(4)=X4
Y(1)=Y13Y(2)=Y2IY(3)=Y3:Y(4)=Y4
LOCAL RMU,I,J,NJ

RMU=1-SMU

FOR I=1 TO 21

MOVE X(4),Y(4)

FOR J=1 TO 4

DRAW X{J),Y (D)

NJ=(J MOD 4)+1

XD () =RMUXX (J) +SMUXX (NJ)

YD (J)=RMUXY (J)+SMUXY (NJ)

NEXT J

FOR J=1 TO 4

X{J)=XD(J)

Y<(JI=YD(J)

NEXT J

NEXT I

ENDFROC

REM Charnge 230 to!

FOR I=1 TO 21 STEP 2’

183

10 REM CARD 21

20 MODE?

30 FRINTY 777

40 M=0

90 GOTO 270

60 CA=RND(11)

70 IF CA=11 AND D+CAX21 CA=1

80 D=D+CA

90 IF M1 PRINT "A "3;CA3" HAS BEEN DEALT™
100 M=M+1
110 RETURN
120 CA=RND(11)
130 IF CaA=11 AND E+CA>21 CA=1
140 E=(B+CA
150 RETURN
1460 PRINT "ANOTHER CARD (1) OR WILL"™
170 PRINT "YOU STAND (0)"}%
180 INFUT G

190 %FX 15,0
200 RETURN
210 FRINT 7//"ANOTHER GAME, CARD-SHARF"}
220 INFUT A%
230 M=0
240 IF A$<HF"NO" OR A$<H"N" THEN 270
250 FRINT "OK, THANKS FOR FLAYING"
260 END
270 D=0
280 BE=0

290 GOSUR &40
300 H=CA

310 GOSUE 40
320 A=CA
330 GOSUE 120
340 E=Ch

350 GOSUR 120
360 F=Ch

370 B$="THE COMFUTER HAS "

380 Ce="THE HUMAN HAS "
320 FPRINT B&3H
400 FRINT C#3E3" AND "3F
410 FRINT © TOTALLING "jE+F
420 D=H+A

184

430 B=E+F
440 IF B=21 THEN 520
450 GOSUE 140
460 TF G=1 THEN 950
470 IF D17 THEN 400
480 IF D21 THEN PRINT B43D
490 IF B<»21 THEN FRINT C$iR
00 IF BE=D AND B<FZ21 THEN FRINT
"SO THIS ROUND IS8 A DRAW"
510 IF BXZ21 OR D21 THEN 210
520 IF B=D THEM PRINT ¢ YOU WIN"
530 IF D=B THEN FRINT ¢ I WINY
340 GOTO 210
50 GOsSUE 120
S60 FRINT C$3CaAt"™ TOTALS YR
570 IF BE=Z21 THEN PRINT “s>xx= BUSTED"
S0 IF B-21 THEN 210
590 GOTO 4%50
H00 PRINT EsiD
610 FOR Y=1 TO 00INEXT Y
620 GOSUE &0
4630 FRINT "TOTAL IS NOW "iD
640 FOR Y=1 TO 00INEXT Y
650 IF D21 THEN FPRINT "sxxk BUSTED"Y
460 TF D21 AND B<=21 FRINT 50 YOU WIN"
670 IF D17 THEN 620
680 GOTO 480

10
20
30
40
S0
60
70
80
?0
100
110
120
130
140
150
160
170
180
190
200

REM 9TH HOLE

MODE 7

C=0

FOR Z=1 TO ?:sC=0

J=RND(12)-1

Q=RND(3)+2

IF Q=5 Q$="FIVE"

IF Q=4 Q$="FOUR"

IF Q=3 Q$="THREE"

PRINT ‘//CHR$(128+RND(6)) ;"##3#HOLE NUMBER "};Z;"##%"
PRINT ‘/CHR$(129)3;CHR$(157)CHR$(151)}

PRINT "HOLE DIFFICULTY IS "“3Q$’’‘~

GOSUE 370

PRINT CHR$(139)3;/"STROKE "3} {INPUT A

IF J>*26 A=-A

J=J+INTC(A/RND(Q))

GOSUE 370

SC=SC+1

PRINT CHR$(131);CHR$(157)jCHR$(129)3"AFTER THAT "}
PRINT "STROKE YOUR SCORE IS "3SC’

185

210 PRINT

220 IF J<=26 THEN 140

230 GOSUE 450

240 C=C+SC

250 FRINT ‘CHR$(128+RND(6))3"SCORE FOR “3Z}
260 PRINT “ HOLES IS "iC

270 FOR M=1 TO 1000:NEXT

280 FOR L=1 TO 20{FOR Y=1 TO L

290 PRINT " "} $SOUND 18,-15,200-L,1

300 SOUND 19,-15,200-Y,1

310 NEXT Y

320 PRINT CHR$(128+RND(6))3CHR$(157) 3
330 FRINT CHR$(128+RND(6));"STAND BY"
340 NEXT L

350 NEXT Z

360 GOTO S50

370 IF J>30 THEN J=30

380 FOR K=1 TO J-2

390 PRINT " "3

400 NEXT K

410 FPRINT CHR$(129)3"o"

420 PRINT CHR$(130) " "AAAAAAAAAAAAAAD S
430 PRINT UAAAAAAAAAN AAAAAAAAAY

440 RETURN

450 FOR L=1 TO 30

460 PRINT CHR$(128+RND(6))}

470 PRINT "YOU DID IT IN "3SC;" STROKES"
480 SOUND 17,-15,200-L,2

490 SOUND 18,-15,10xL,2

500 NEXT L

510 FRINT

5'20 F-RINT cHR‘(leo);"AAAAAAAAAAAAAAAAAAAAAAA";
530 FRINT CHR$(129);"0"3CHR$(130) }"AAAAAAAL
540 RETURN

550 FRINT "END OF THAT ROUND"

560 FRINT

570 FRINT "YOU SCORED "iC

580 FRINT "YOUR AVERAGE WAS "3INT(C/9)
590 FRINT

600 FRINT "DO YOU WANT ANOTHER ROUND?"
610 INFUT T$

620 IF T4<x"NO" THEN RUN

630 FRINT "OK, THANKS FOR FLAYING, CHAMF"

10 REM HIDE/N‘SEEK

20 REM This is Jjust the raw bones of
30 REM 2 proaram to ‘hide’ something
40 REM on & 10 X 10 qgrid. You are

90 REM sure to be able to improve it.
60 MODE7

70 A=RND(10)

80 BE=RND(L10)

?0 FOR Z=1 TO 10

100 FPRINT

110 PRINT “"YOU HAVE JUST "$1i1-7Z3

186

120
130
140
150
1460
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
340
360
370
380
390
400
410

4Z0

10
20
30
40
S50
60
70
80
90
100
110
120

130

FRINT " SECONDS LEFT"
FRINT "WHERE IS THE GOLD?"
INFUT C,D

FRINT " 1234567890"

IF A=C AND E=D THEN 400
FOR F=1 TO C-1

FRINT 3F

NEXT F

FRINT3F

FOR F=1 TO D-1

FRINT " "3

NEXT F

FRINT "%

FOR F=C~1 TO 10

FRINT 3F

NEXT F

FRINT "IT XIS NOT AT "3;C3" "D

FRINT ““"HERE I8 A CLUES$-"
FRINT "TRY TO THE "}

IF AC THEN PRINT "SOUTH" 3
IF A< THEN PRINT "NORTH":
IF B<D THEN PRINT "WEST®
IF BEXD THEN FRINT "EAST!
NEXT Z

FRINT

FRINT "“"TIME IS UPF, THE GOLD "3

FRINT "WAS AT "jA3" 3B
END

FRINT "WELL DONE, YOU'VE FOUND

FRINT "$"$1000%xRND(Z0)
END

REM xFiano dementiax

MODE7

FOR J=255 TO 0 STEP -1

SOUND 17,-15,J,1

PRINT CHR$(128+RND(4));CHR$(157)}

NEXT J

FOR J=0 TO 255

SOUND 17,-15,J,1

NEXT J

REPEAT

A=RND (47)+43

M=-53x(A=90)-61%x(A=88)-69%X(A=67)-73%x(A=86)
-B1X(A=66)-8B9%X(A=78)-97%X(A=77)~101%(A=44)
IF M=0 THEN 110

187

*
4

140 PRINT CHR$(128+RND(6))3CHR$(157) 3CHR$ (128+RND(6)) M, M, M
150 FOR J=-15 TO -1 STEP RND(3)

160 SOUND 1,J,M,RND(3)

170 SOUND 2,J,M,RND(S)

180 NEXT J

190 UNTIL RND(10)=1

200 FPRINT CHR$(128+RND(6)) 3" #E$33"
210 FOR J=-1S TO -1

220 SOUND 1,J,53,5

230 NEXT J

240 FOR J=1 TO 255 STEF RND(10)

250 SOUND 17,-15,J,2

260 SOUND 18,-15,255-4,2

270 SOUND 19,-15,4/2,2

280 PRINT CHR$(128+RND(6));CHR$(157)
290 NEXT J

300 GOTO 30

Improving your
programs

You've probably gone through several stages as you develop your
programming skills. After the first, brief struggle with BASIC, you
suddenly discovered you could, after a fashion, write programs which
ran. They may have looked pretty convoluted when you looked at their
listings, and friends may have needed a detailed explanation from you
before they knew what to do when running the programs, but as least
they worked.

There comes a stage when you decide you’re going to have to do
better than that. But while you may be vaguely dissatisfied with your
programs, you may not have much idea of how to go about becoming
a better programmer. Here are a few guidelines which may help.

First, have a look at a printout of your listing. Programs linked by REM
statements look better, and are easier to understand when you return
to them after a break. Of course, shortage of memory may preclude
the luxury of REM statements, but if you have the memory, you should
include them. REM statements filled just with a line of asterisks can
prove quite useful in separating each major section of the program.
Examine any unconditional GOTO critically. Too many GOTOs
leapfrogging over other parts of the program show a lack of directed
thinking, make programs run more slowly, and can make them almost
impossible to decipher.

It is very good programming practice, as | have suggested earlier, to
have each of the main sections of the program (like the one which

188

assigns the variables at the beginning of a run, the one which prints
out the board, the one which works out who has won, and so on) in
separate subroutines or procedures. The beginning of your program
could well look like this:

10 REM *NAME OF PROGRAM*
20 REM ASSIGN VARIABLES
30 GOSUB 9000

490 REM PRINT BOARD

50 GOSUB 8000

60 REM HUMAN’S MOVE

70 GOSUB 7000

80 REM COMPUTER’S MOVE
90 GOSUB 6000
100 REM CHECK IF GAME OVER
110 GOSUB 5000
120 GOTO 50

As you can see, this ensures that the program actually cycles through
a continuous loop over and over again, until the program terminates
with the “CHECK IF GAME OVER" subroutine. You can actually write
a series of lines like these before you start writing anything else, and
even before you know how you are going to actually perform some of
the tasks within the subroutine.

Then you can write the program module by module, making sure that
each module works before going onto the next. It is relatively easy to
debug a program like this, and far simpler to keep an image of ‘where
everything is’” when you do this, then when you just allow a program
to, more or less, write itself.

The listing should be, then, as transparent as you can make it, both for
your own present debugging, and for future understanding of what bit
carries out what task. The output of the program should also look
good. Again, if memory is not a problem, make sure the display is clear
and uncluttered. Use blank PRINT lines to space it out, use rules and
graphic symbols or whatever to break the screen up into logical
sections and so on. Once you have a program working satisfactorily, it
is worth spending extra time on the subroutine which controls the
display. Here you’ll appreciate again the advantage of having all the
display handling in one subroutine, as it will be easy to know where to
go to enhance the display.

Of course, as we live in a far from ideal world, it is unlikely that every
single display command can be contained within one subroutine, but if
you aim towards that end, it will make subsequent working upon the
program much easier than it might be otherwise.

The ‘structured’ approach outlined also helps you realise another aim
of a good program — to do what you expected it to, every time you

189

run it. You should write a program so that, even if you are not present
when a friend decides to run it for the first time, it performs as
expected. This means not only, of course, that it is properly
debugged, but that the instructions (which can be contained within
the ASSIGN VARIABLES subroutine or procedure) are clear and
complete.

The user prompts should be clear, so the human operators know
whether to enter a number, a series of numbers, a word, a date, a
mixture of letters and numbers, and so on. The program has to assume
that the operator is a complete idiot, and that no matter how clearly
the instructions and/or user prompts are stated, he or she will attempt
to do things the wrong way. A classic example of this is the entering of
dates. ‘Mug traps’, as the routines to reject erroneous input from the
operator are called, should be set up to reject a date being entered in a
form which the computer cannot understand (such as the month
before the day) or which is clearly wrong (such as entered the 32nd of
February). You should ensure that, no matter what the operator does,
the program does not crash or otherwise misbehave. This can happen
if the program was expecting a numerical input, and the operator tried
to enter a letter or a word, or hit RETURN without entering anything at
all. You can get around this by always allowing a string input, going
back for another input if the empty string is entered, and taking the
ASC, VAL or CODE of the input to turn it into numerical form.

Documentation is an area of programming which is often neglected. It
is virtually essential for a program which is intended for publication,
and most advisable for long programs which you've written for
yourself. At the least, the documentation should include a list of
variables, an explanation of the program structure (which should be
easy to do if you've followed the ‘modular’ approach advised earlier),
and brief instructions, especially if the program itself does not contain
instructions. A sample run showing the kind of inputs, and the nature
and layout of the program outputs, is also useful.

Your program should run as quickly as possible. Every time there is a
subroutine or GOTO call, the computer must search through the whole
program, line by line, to find the specified line number so placing often
used subroutines near the beginning of the program will speed them
up fractionally. That is why the instructions are often placed right at
the end. You do not want the computer to have to wade through the
initialisation and instruction lines every time it has been told to GOTO
or GOSUB looking for the destination, or return line number. Use
procedures rather than subroutines if you can as these run more
quickly then subroutines. Use variables instead of constants. The
computer takes a little more time to change a constant into a number
than it does for it to look up a value in an array, for example. Define
often-used variables first, so they will occupy the early slots in the
varibles store. The computer will search the store only until it finds the

190

variable it wants, so there is no point in getting it to look at more
entries than absolutely necessary.

Finally, and this is by far the best way to test a program you’ve written,
call in a friend and sit him or her in front of the TV, and tell them to
press RUN, without you saying anything, and just sit back and watch.
If there is any hesitation, or the program hiccups, you have more work
to do.

In summary, then:

® Use REM statements

® Make program listing neat and logical

® Use structured programming techniques, controlling the program
through a loop of subroutine calls, or procedures

® Examine unconditional GOTO commands critically, using
REPEAT/UNTIL instead if it is appropriate

® Make output display attractive and clear

® Ensure all user prompts are clear

® Add ‘mugtraps’ on all user input

® Document your programs, even if you just make a list of variables
® Make your program run as quickly as possible

® Test programs by allowing someone unfamiliar with the program to
run it.

Good programming.

191

CONTENTS:

Introduction ==-==-==-=-=c-c--coooooooooooooooooooo- 3
The PRINT statement ======-------c-cc-ccccocooooooo 5
Editing ========-c-c--cc-cmmcm e ccc e e e 8
LIST and RENUMBER =-===-=----cccccmmccconcmncnannana- 9
RUN, STOP, END, NEW, OLD =-------------c-c-c-cmnnwn 10
PRINT formatting and TAB --------------cccccauc-- 12
TABULATOR ROCKET RANGE ====----=-=-eoenn- 15
SAVE ===---c-ccoccccmccccc e c e em e e e - 16
TAB (X) and TAB (X,Y) ===--ccccmcmcmcce e cnaae 17
SQUASH =======-=-sccocmcoccccmcc e e m o 18
Random numbers =--===--=---c-c-ccccmccooonoononnn 21
DICE ROLLER ========--c--cccommomccnnon- 23
ACEY DUECY =-----------ccmcmmmmcncnoomo 25
Variables =--==----c-ccccccmmccaccccccccc e ccee o 28
String variables ===-=--cc-cc-cccccccencncnncoo- 31
CRICKETS ======--==mcmmmommmmomemmeoeoo 31
INPUT == - == o mmm o m e oo oo e mee e 33
BIRD CAGE =---=--=-====c--ccmcmcecceocan- 35
COMPOUND INTEREST ==-====c--oomcomonnnnn 38
ARITHMETIC MEAN =-==-=--===ccemmmmmemeao 39
GOTO ======--c-cmcmcmcccm e cmccmm e - 41
IF...THEN GOTQ =----=-----c--cccccommcmcm e 42
MATCHSTICKS ==--==--c--ccccmcccncocnnon- Ly
IF.. . THEN.. ,ELSE -------------ccmomcmoccmcemo- L6
GRAPHS =—=======mmmmmmomemmemceeeooa 46
FOR/NEXT loops =------------------comcmmmmmm o 51
Nested loops =--==--==--==-cc--ccccccmcccnoocnoonn 54
STEP === == s oo oo eecmemeaas 56
REPEAT/UNTIL --==-=-----c-co--cocmcmmcecm o 58
GOSUB and RETURN =====-=c-cmmmmmmmommmmmemmomen 59
BLACKJACK =========c-m-emmemmemmmemooo 61
ON GOTO...ON GOSUB =-=-====-======c-cccecoememumoo 64
POETRY ==-=-mmmmmmmmmmm oo 65
DIM and ARRAYS =====-=--=mmmoemmemmememeeoeeoooo 68
MASTERMIND =-=----=----cccomcomoconnnon- 73
PERSONAL ACCOUNTS =--=-=--=--cmmeommommn 74
String arrays =-=--=-----cc-cccccccccconconnonnnn 77
STRING SORT =--=------c--ccoocmcmmnncnnnn 78
String handling ==-=-=-=---c-ccccrcccmcccccnnn- 79
ALPHA === mmmmmmmemcecemcmccoce e ee o 81
MUSIC MAKER ==-=======cce-omcmmeomomamn 82
GET, GETZ, INKEY, INKEY3 -=-=-----cmc-ocnmoccnnon~ 84
PREDICTION =-==------ccccmocncncocnnno- 85
MAZE MAKER ========-mccocmmmmmmomamaman 87
ROAD RUNNER ==-==-=-=--cc-ccconmmonconnn- 88
SOUND == === === mmmmem e o e e oo en 90
BAMBOO FLUTES =---====-==-=--ccoc-cuoomm- 91
STEAM TRAIN ==---==c-emmemmmmemmeoeot 91
PIANQ ===--=----ccococcccmmcccmmcm e m o 92
AUTO PIANQ =======--m-ccceccoomccoennnn 93
ENVELOPE ======= === mm oo oo 96
READ/DATA/RESTORE ========-=c-ccmmmmmmmammomoomot 98

192

MASTERING THE GRAPHICS ===========c=cecooacacaan- 102

DOUBLE HEIGHT =-===-==-ccccmaccaccaaaaa- 104
CHUNKY GRAPHICS ==---cccccccccccccccaaa- 105
CONCATENATION === =mmmmmcmmmmmommmomomae 107
MASTERMIND 11 =-----ccccccnccccccncnccn=- 109
MODES 0 to 7 =----====cemccmcccncccccunn 110
GCOL/CLG ====-c-c--mmcccccccccccccccenm 113
PLOT -=-=-----------c-cccccccmcm s s e s mcccm e e m e 116
ELECTRIC SPARK =====cccccccmmcacaccannan-- 117
ICE CAVE ----c-cmmccccccccccccccccc e 118

ZEBRA TRIANGLES, ROTATING SQUARES,
SHRINKER, MOIRE-LACE, SINE CURVE,
TUNNEL TUNER, SINE RIBBON,
ORBITAL SKETCHER, ROLLER COASTER,

COSMIC TABLE MAT-----=-=------------ 120

VDU drivers =-=--=----cc-ccccmcmcmcccncconccnnnnnnn 126
CHARACTER REDEFINITION ===---=cc--=cunm- 133

SIDEWAYS SCROLL =---=----ccccccmococcnnn 133
CORRUPTION =======memmemmmmmmmmeemem 134
Introduction to arithmetic ==--==-=----=--c-ccc--- 135
ARITHMETIC PROGRESSION -=m-m--m-mmmmeaee 135

CIRCULAR SECTIONS =-----==--c-ccccccconm- 137

PRIME NUMBERS ====--=====---ccccocooooo- 138

DAY OF THE WEEK =-===-====-=c-cccooacoon- 139

SPECIES =====---=commmmmmmomccooomoes 140
FUNCTIONS =====m==mmmmmmoeemocimmcmommmaoe 141
DEFINING FUNCTIONS ==---=--c-c-ccnmc-con- 142

BAT === === - meeeeeooo 143

LOCAL VARIABLES ------=-=----------s-somoooooomnn 1hh
SPIROGRAPH =========--ccocmmmmmcmmomon 145
Procedures =--=--=-=-----=c-c----cccccoocomooooooooonn 146
TWENTY ONE =====----c-ocommcmoomoaao 150

SEVEN=-UP =-=-=---=--------cocomommmmcmmme 152
User-definable function keys ---=-==-----=------- 158
File handling -====-===--------e-cco-comoonooononn- 160
PARROT SHOP =--=-=--=--cc-ccccmoencnonnn- 162

Draughts and other games =-----=-----=---=-c--c----- 164
KIDDIE CHECKERS =========cmmmocconoooann 168

DRAUGHTS ~=-=-=-------------ccomocmoono 170

OTHELLO ==========c-m=---omcmmmommooon 174

LUNAR LANDER =========-=-c=cmcommoomoonn 177
MASTERTRIQ =======-==c--eccmemmmmoomno 178
MATCHSTICKS 11 =---=---comocomoaccmaan 179

PERSONAL ACCOUNTS 11 ==-==-===-=--c----- 179

DIGITAL CLOCK ==--====-=-=-=ccmcommmnnnn 181

INTEREST ON A LOAN ==--c-=---c-omoconoomann 181

STOCK RECORD --------=---=-=--c--mmmcmnono 182

SQUARE ROOTS ==-===------cc-nemmmaommnee 182

FRENCH BATHROOMS -------=-==c-ccc------- 183

CARD 21 ====-==--ecccmooco—mmemmmeaaaa 184

9th HOLE =--==-==---=------cooooommommmm 185
HIDE'N'SEEK ======mm==oo---mccocncaaann 186

PIANO DEMENTIA =====--c---ocommmcmnommnn 187
Improving your programs =------=-------c---------- 188

193

LET YOUR BBC MICRO TEACH YOU TO PROGRAM

This book by best-selling author Tim Hartnell is the ideal companion
for you if the BBC Microcomputer is your first computer. It takes you,
step by simple step, through programming in BBC BASIC — with a
number of worthwhile programs — and then goes further, giving you
leads to develop and expand your programming skills in the coming
months.

Once you've mastered the fundamentals of BASIC, this book will help
you understand and apply such things as the use of the ENVELOPE
command, how to master the graphics and use them to best effect,
the use of VDU drivers, graphic windows, how to define your own
characters, the use of functions and procedures, and ways of writing
better programs. There are a number of utility and games programsin
the book, ready to run.

Tim Hartnell is the author of a number of books, including “GETTING
ACQUAINTED WITH YOUR ZX81"” and “SYMPHONY FOR A
MELANCHOLY COMPUTER". He is a frequent contributor to computer
magazines, and edits the magazine “ZX COMPUTING".

Another great book from
Interface Publications

	‎G:\TEMP21\bbcteachprog_Page_001.png‎
	‎G:\TEMP21\bbcteachprog_Page_002.png‎
	‎G:\TEMP21\bbcteachprog_Page_003.png‎
	‎G:\TEMP21\bbcteachprog_Page_004.png‎
	‎G:\TEMP21\bbcteachprog_Page_005.png‎
	‎G:\TEMP21\bbcteachprog_Page_006.png‎
	‎G:\TEMP21\bbcteachprog_Page_007.png‎
	‎G:\TEMP21\bbcteachprog_Page_008.png‎
	‎G:\TEMP21\bbcteachprog_Page_009.png‎
	‎G:\TEMP21\bbcteachprog_Page_010.png‎
	‎G:\TEMP21\bbcteachprog_Page_011.png‎
	‎G:\TEMP21\bbcteachprog_Page_012.png‎
	‎G:\TEMP21\bbcteachprog_Page_013.png‎
	‎G:\TEMP21\bbcteachprog_Page_014.png‎
	‎G:\TEMP21\bbcteachprog_Page_015.png‎
	‎G:\TEMP21\bbcteachprog_Page_016.png‎
	‎G:\TEMP21\bbcteachprog_Page_017.png‎
	‎G:\TEMP21\bbcteachprog_Page_018.png‎
	‎G:\TEMP21\bbcteachprog_Page_019.png‎
	‎G:\TEMP21\bbcteachprog_Page_020.png‎
	‎G:\TEMP21\bbcteachprog_Page_021.png‎
	‎G:\TEMP21\bbcteachprog_Page_022.png‎
	‎G:\TEMP21\bbcteachprog_Page_023.png‎
	‎G:\TEMP21\bbcteachprog_Page_024.png‎
	‎G:\TEMP21\bbcteachprog_Page_025.png‎
	‎G:\TEMP21\bbcteachprog_Page_026.png‎
	‎G:\TEMP21\bbcteachprog_Page_027.png‎
	‎G:\TEMP21\bbcteachprog_Page_028.png‎
	‎G:\TEMP21\bbcteachprog_Page_029.png‎
	‎G:\TEMP21\bbcteachprog_Page_030.png‎
	‎G:\TEMP21\bbcteachprog_Page_031.png‎
	‎G:\TEMP21\bbcteachprog_Page_032.png‎
	‎G:\TEMP21\bbcteachprog_Page_033.png‎
	‎G:\TEMP21\bbcteachprog_Page_034.png‎
	‎G:\TEMP21\bbcteachprog_Page_035.png‎
	‎G:\TEMP21\bbcteachprog_Page_036.png‎
	‎G:\TEMP21\bbcteachprog_Page_037.png‎
	‎G:\TEMP21\bbcteachprog_Page_038.png‎
	‎G:\TEMP21\bbcteachprog_Page_039.png‎
	‎G:\TEMP21\bbcteachprog_Page_040.png‎
	‎G:\TEMP21\bbcteachprog_Page_041.png‎
	‎G:\TEMP21\bbcteachprog_Page_042.png‎
	‎G:\TEMP21\bbcteachprog_Page_043.png‎
	‎G:\TEMP21\bbcteachprog_Page_044.png‎
	‎G:\TEMP21\bbcteachprog_Page_045.png‎
	‎G:\TEMP21\bbcteachprog_Page_046.png‎
	‎G:\TEMP21\bbcteachprog_Page_047.png‎
	‎G:\TEMP21\bbcteachprog_Page_048.png‎
	‎G:\TEMP21\bbcteachprog_Page_049.png‎
	‎G:\TEMP21\bbcteachprog_Page_050.png‎
	‎G:\TEMP21\bbcteachprog_Page_051.png‎
	‎G:\TEMP21\bbcteachprog_Page_052.png‎
	‎G:\TEMP21\bbcteachprog_Page_053.png‎
	‎G:\TEMP21\bbcteachprog_Page_054.png‎
	‎G:\TEMP21\bbcteachprog_Page_055.png‎
	‎G:\TEMP21\bbcteachprog_Page_056.png‎
	‎G:\TEMP21\bbcteachprog_Page_057.png‎
	‎G:\TEMP21\bbcteachprog_Page_058.png‎
	‎G:\TEMP21\bbcteachprog_Page_059.png‎
	‎G:\TEMP21\bbcteachprog_Page_060.png‎
	‎G:\TEMP21\bbcteachprog_Page_061.png‎
	‎G:\TEMP21\bbcteachprog_Page_062.png‎
	‎G:\TEMP21\bbcteachprog_Page_063.png‎
	‎G:\TEMP21\bbcteachprog_Page_064.png‎
	‎G:\TEMP21\bbcteachprog_Page_065.png‎
	‎G:\TEMP21\bbcteachprog_Page_066.png‎
	‎G:\TEMP21\bbcteachprog_Page_067.png‎
	‎G:\TEMP21\bbcteachprog_Page_068.png‎
	‎G:\TEMP21\bbcteachprog_Page_069.png‎
	‎G:\TEMP21\bbcteachprog_Page_070.png‎
	‎G:\TEMP21\bbcteachprog_Page_071.png‎
	‎G:\TEMP21\bbcteachprog_Page_072.png‎
	‎G:\TEMP21\bbcteachprog_Page_073.png‎
	‎G:\TEMP21\bbcteachprog_Page_074.png‎
	‎G:\TEMP21\bbcteachprog_Page_075.png‎
	‎G:\TEMP21\bbcteachprog_Page_076.png‎
	‎G:\TEMP21\bbcteachprog_Page_077.png‎
	‎G:\TEMP21\bbcteachprog_Page_078.png‎
	‎G:\TEMP21\bbcteachprog_Page_079.png‎
	‎G:\TEMP21\bbcteachprog_Page_080.png‎
	‎G:\TEMP21\bbcteachprog_Page_081.png‎
	‎G:\TEMP21\bbcteachprog_Page_082.png‎
	‎G:\TEMP21\bbcteachprog_Page_083.png‎
	‎G:\TEMP21\bbcteachprog_Page_084.png‎
	‎G:\TEMP21\bbcteachprog_Page_085.png‎
	‎G:\TEMP21\bbcteachprog_Page_086.png‎
	‎G:\TEMP21\bbcteachprog_Page_087.png‎
	‎G:\TEMP21\bbcteachprog_Page_088.png‎
	‎G:\TEMP21\bbcteachprog_Page_089.png‎
	‎G:\TEMP21\bbcteachprog_Page_090.png‎
	‎G:\TEMP21\bbcteachprog_Page_091.png‎
	‎G:\TEMP21\bbcteachprog_Page_092.png‎
	‎G:\TEMP21\bbcteachprog_Page_093.png‎
	‎G:\TEMP21\bbcteachprog_Page_094.png‎
	‎G:\TEMP21\bbcteachprog_Page_095.png‎
	‎G:\TEMP21\bbcteachprog_Page_096.png‎
	‎G:\TEMP21\bbcteachprog_Page_097.png‎
	‎G:\TEMP21\bbcteachprog_Page_098.png‎
	‎G:\TEMP21\bbcteachprog_Page_099.png‎
	‎G:\TEMP21\bbcteachprog_Page_100.png‎
	‎G:\TEMP21\bbcteachprog_Page_101.png‎
	‎G:\TEMP21\bbcteachprog_Page_102.png‎
	‎G:\TEMP21\bbcteachprog_Page_103.png‎
	‎G:\TEMP21\bbcteachprog_Page_104.png‎
	‎G:\TEMP21\bbcteachprog_Page_105.png‎
	‎G:\TEMP21\bbcteachprog_Page_106.png‎
	‎G:\TEMP21\bbcteachprog_Page_107.png‎
	‎G:\TEMP21\bbcteachprog_Page_108.png‎
	‎G:\TEMP21\bbcteachprog_Page_109.png‎
	‎G:\TEMP21\bbcteachprog_Page_110.png‎
	‎G:\TEMP21\bbcteachprog_Page_111.png‎
	‎G:\TEMP21\bbcteachprog_Page_112.png‎
	‎G:\TEMP21\bbcteachprog_Page_113.png‎
	‎G:\TEMP21\bbcteachprog_Page_114.png‎
	‎G:\TEMP21\bbcteachprog_Page_115.png‎
	‎G:\TEMP21\bbcteachprog_Page_116.png‎
	‎G:\TEMP21\bbcteachprog_Page_117.png‎
	‎G:\TEMP21\bbcteachprog_Page_118.png‎
	‎G:\TEMP21\bbcteachprog_Page_119.png‎
	‎G:\TEMP21\bbcteachprog_Page_120.png‎
	‎G:\TEMP21\bbcteachprog_Page_121.png‎
	‎G:\TEMP21\bbcteachprog_Page_122.png‎
	‎G:\TEMP21\bbcteachprog_Page_123.png‎
	‎G:\TEMP21\bbcteachprog_Page_124.png‎
	‎G:\TEMP21\bbcteachprog_Page_125.png‎
	‎G:\TEMP21\bbcteachprog_Page_126.png‎
	‎G:\TEMP21\bbcteachprog_Page_127.png‎
	‎G:\TEMP21\bbcteachprog_Page_128.png‎
	‎G:\TEMP21\bbcteachprog_Page_129.png‎
	‎G:\TEMP21\bbcteachprog_Page_130.png‎
	‎G:\TEMP21\bbcteachprog_Page_131.png‎
	‎G:\TEMP21\bbcteachprog_Page_132.png‎
	‎G:\TEMP21\bbcteachprog_Page_133.png‎
	‎G:\TEMP21\bbcteachprog_Page_134.png‎
	‎G:\TEMP21\bbcteachprog_Page_135.png‎
	‎G:\TEMP21\bbcteachprog_Page_136.png‎
	‎G:\TEMP21\bbcteachprog_Page_137.png‎
	‎G:\TEMP21\bbcteachprog_Page_138.png‎
	‎G:\TEMP21\bbcteachprog_Page_139.png‎
	‎G:\TEMP21\bbcteachprog_Page_140.png‎
	‎G:\TEMP21\bbcteachprog_Page_141.png‎
	‎G:\TEMP21\bbcteachprog_Page_142.png‎
	‎G:\TEMP21\bbcteachprog_Page_143.png‎
	‎G:\TEMP21\bbcteachprog_Page_144.png‎
	‎G:\TEMP21\bbcteachprog_Page_145.png‎
	‎G:\TEMP21\bbcteachprog_Page_146.png‎
	‎G:\TEMP21\bbcteachprog_Page_147.png‎
	‎G:\TEMP21\bbcteachprog_Page_148.png‎
	‎G:\TEMP21\bbcteachprog_Page_149.png‎
	‎G:\TEMP21\bbcteachprog_Page_150.png‎
	‎G:\TEMP21\bbcteachprog_Page_151.png‎
	‎G:\TEMP21\bbcteachprog_Page_152.png‎
	‎G:\TEMP21\bbcteachprog_Page_153.png‎
	‎G:\TEMP21\bbcteachprog_Page_154.png‎
	‎G:\TEMP21\bbcteachprog_Page_155.png‎
	‎G:\TEMP21\bbcteachprog_Page_156.png‎
	‎G:\TEMP21\bbcteachprog_Page_157.png‎
	‎G:\TEMP21\bbcteachprog_Page_158.png‎
	‎G:\TEMP21\bbcteachprog_Page_159.png‎
	‎G:\TEMP21\bbcteachprog_Page_160.png‎
	‎G:\TEMP21\bbcteachprog_Page_161.png‎
	‎G:\TEMP21\bbcteachprog_Page_162.png‎
	‎G:\TEMP21\bbcteachprog_Page_163.png‎
	‎G:\TEMP21\bbcteachprog_Page_164.png‎
	‎G:\TEMP21\bbcteachprog_Page_165.png‎
	‎G:\TEMP21\bbcteachprog_Page_166.png‎
	‎G:\TEMP21\bbcteachprog_Page_167.png‎
	‎G:\TEMP21\bbcteachprog_Page_168.png‎
	‎G:\TEMP21\bbcteachprog_Page_169.png‎
	‎G:\TEMP21\bbcteachprog_Page_170.png‎
	‎G:\TEMP21\bbcteachprog_Page_171.png‎
	‎G:\TEMP21\bbcteachprog_Page_172.png‎
	‎G:\TEMP21\bbcteachprog_Page_173.png‎
	‎G:\TEMP21\bbcteachprog_Page_174.png‎
	‎G:\TEMP21\bbcteachprog_Page_175.png‎
	‎G:\TEMP21\bbcteachprog_Page_176.png‎
	‎G:\TEMP21\bbcteachprog_Page_177.png‎
	‎G:\TEMP21\bbcteachprog_Page_178.png‎
	‎G:\TEMP21\bbcteachprog_Page_179.png‎
	‎G:\TEMP21\bbcteachprog_Page_180.png‎
	‎G:\TEMP21\bbcteachprog_Page_181.png‎
	‎G:\TEMP21\bbcteachprog_Page_182.png‎
	‎G:\TEMP21\bbcteachprog_Page_183.png‎
	‎G:\TEMP21\bbcteachprog_Page_184.png‎
	‎G:\TEMP21\bbcteachprog_Page_185.png‎
	‎G:\TEMP21\bbcteachprog_Page_186.png‎
	‎G:\TEMP21\bbcteachprog_Page_187.png‎
	‎G:\TEMP21\bbcteachprog_Page_188.png‎
	‎G:\TEMP21\bbcteachprog_Page_189.png‎
	‎G:\TEMP21\bbcteachprog_Page_190.png‎
	‎G:\TEMP21\bbcteachprog_Page_191.png‎
	‎G:\TEMP21\bbcteachprog_Page_192.png‎
	‎G:\TEMP21\bbcteachprog_Page_193.png‎
	‎G:\TEMP21\bbcteachprog_Page_194.png‎
	‎G:\TEMP21\bbcteachprog_Page_195.png‎

