

LET YOUR BBC MICRO
TEACH YOU TO
PROGRAM

by Tim Hartnell

1

2

Introduction
Welcome to this book on the BBC Microcomputer. Even if you knew
nothing about computers and programming when you begin, you
should end up with quite a degree of knowledge by the time you finish
working through it. And if you already know some BASIC, you should
know even more by the time you turn the last page.

I've assumed that you don't know anything about programming, so
some of the material in here may seem a little simple to you. I make no
apology for this, as there is a time in all our programming lives when
we know nothing. We have all had to start from square one at some
stage or another.

I suggest you read through the material in this book in the order in
which it is presented. The development from topic to topic is carefully
graded, so working through the book, and — most importantly —
entering the material into your computer as you read, in the sequence
in which it is presented here should assist you in developing your
programming skills. Special thanks to Jeremy Ruston who provided a
substantial quantity of material for the latter part of the book, to Roger
Munford who prepared extensive notes on many of the functions of
the BBC Microcomputer, and to Graham Charlton for Microsoft
versions of some of the programs.

This book has been a pleasure to write, because the BBC
Microcomputer 'co-operates well' with a programmer, and the
computer shows the result of careful design. Your BBC
Microcomputer should be a companion for years to come. I hope this
book will assist you in making the most of your new machine.

Tim Hartnell,
London W12, 1982

3

LET YOUR BBC MICRO TEACH YOU TO
PROGRAM

First published in Great Britain by:

INTERFACE PUBLICATIONS,
44 - 46 Earls Court Road,
LONDON W8 6EJ

(c) Hartnell, 1982

First printing - June, 1982
Second printing - December, 1 982
Third printing - February, 1 983

ISBN 0907563 14 7

All rights reserved. No part of this
publication may be reproduced, stored
in a retrieval system, or transmitted
in any form or by any means, electronic,
mechanical, photocopying, recording or
otherwise, except for the sole use by
the purchaser of this volume, without
the prior, written permission of the
copyright holder. No warranty in
respect of the contents of this volume,
or their suitability for any purpose,
is expressed or implied.

Any enquiries regarding this book should
be directed by mail to the publisher.

INTERFACE PUBLICATIONS also publishes
THE BBC MICRO REVEALED, by Jeremy
Ruston, available from the above
address for £9.95 (inc. p & p).

4

The PRINT Statement
PRINT is probably the most-used command in BASIC. It is the
command which allows the computer to communicate with the user.

Type the following line into your computer, and then press RETURN:

PRINT 5

You'll see that the computer obediently prints the number five. You
can use the PRINT command to make your computer act as a
calculator. Enter the following and press RETURN:

PRINT 5+3

When you press RETURN, you'll see it prints up the correct result.
This 'direct calculation mode' can work out problems as complex as
you wish. Try the following (remembering to press ENTER to make the
computer act on what you've typed in):

PRINT SQR (8 + 1)

This asks the computer to PRINT the square root (that's what SQR
means) of the sum of the numbers in brackets, that is, the square root
of nine. If your computer is functioning correctly, you should have got
an answer of three. Don't worry about the SQR at this time. We will
come to it later on.

So you can see that PRINT can be used in the direct mode to print out
numbers, and the results of calculations. It can also print out words.
Type in the following, then press

RETURN:

PRINT HI THERE

Instead of happily printing HI THERE, the computer comes up with
what is called an error message. In this case, the error message reads
No such variable. We'll look at variables in due course, but for now,
keep in mind that if we want the computer to print out words, the
words must be enclosed within quote marks. Enter and run (that is,
press RETURN after typing it in) the following:

PRINT "HI THERE"

You"ll see the words HI THERE appear on the line below the one
which you typed in.

5

To recap quickly: Simply used as a command, typing PRINT2 + 3 will
tell the computer to print out the result of that addition. Entering
PRINT "WORDS" will get the computer to print out everything which
is within the quote marks.

Computers use programs, and it is now time to write our first, simple
program. Enter and run the following:

10 REM PROGRAM ONE
20 PRINT”THIS IS A DEMONSTRATION”
30 PRINT 1
40 PRINT 2
50 PRINT “THIS IS THE END”

When you RUN this (which you do by typing in the word RUN, then
pressing RETURN), you should see:

>RUN
THIS IS A DEMONSTRATION

1
2

THIS IS THE END

While we have this program in the computer, let's learn a little more
about programs. Type in LIST, then press RETURN. You'll see the
program listing comes back. Notice that every line starts with a line
number. The first line, in this case number 10, starts with the word
REM. REM is computer talk for REMARK, and is used in a program
when you want to explain what is going on in within a program, or
what a program is (as in this case), so that when you return to it later,
you'll know what is going on. The computer ignores REM statements
when it comes to them.

A REM statement is made up of a line number, then the word REM,
and some text. The message can be made up from almost anything
you like — letters, numbers or punctuation marks — although it is best
to keep the messages as clear and brief as you can. Although anything
typed after the word REM is ignored by the computer when it is
running a program, a REM line still uses up memory.

REM statements are often like the following:

10 REM THIS WORKS OUT THE SCORE

10 REM FIND THE ANGLE

6

There is no reason why there should be just one REM statement, but if
the commentary you wish to add to a particular area of a program is
one which may take up more than one line of text, it is important to
place the word REM at the beginning of each new line. For example:

60 REM THE MULTIPLICATION ROUTINE IN WHICH

70 REM THE TWO VARIABLES A AND B

80 REM ARE MULTIPLIED TOGETHER

So long as each REMark line starts with the word REM, the computer
will ignore the text that follows on that line (although the complete
program listing, REMs and all, will be printed if a LIST is requested). If
you forget to place REM at the beginning of what is intended to be a
REM statement, the computer will assume the line is a statement it
does not understand, and reward you with an error message. Type in
the number 10, then press RETURN, then type in LIST, and press
RETURN again. You'll see your program reappear as follows:

20 PRINT"THIS IS A DEMONSTRATION"
30 PRINT 1
^0 PRINT 2
50 PRINT "THIS IS THE END"

Line 10 has disappeared. It is very easy to get rid of lines you don't
want in a computer, just by typing in the relevant line number, then
pressing RETURN. Try typing in line 10 again, as it was before, but
leaving out the REM statement. Enter the following line, then run the
program:

10 PROGRAM ONE

You'll get the error message 'Mistake at line 10', because the computer
does not know what to do when it comes across the word PROGRAM.
It has nothing within its instruction set which corresponds to the word
PROGRAM.

7

Editing
We can put the word REM back in, and illustrate how the BBC
Microcomputer's editing facilities work. Type in 10 REM, then go to
the key with the arrow on it above the word RETURN. Press this once,
and you'll see a solid square appear after the word REM and a flashing
line (the cursor) move up a line. Keep pressing the arrowed key until
you reach the line which reads 10 PROGRAM ONE. You will probably
find that the flashing cursor is underneath the space after the number
10. When you've done this, press the COPY key (under the RETURN
key) and hold it down until the words PROGRAM ONE are 'copied'
after the word REM in your new line 10. Now press RETURN. This may
sound confusing if you're not reading this book while seated at your
computer, but should make sense if you are. Test that the new line is
in place by typing in LIST, and then pressing RETURN. The program
should reappear, with the word REM in the right position in line 10.
Check that it is correct by entering RUN, then pressing RETURN.

Just to recap, the REM statement has two uses. One is to act as an aid
so you and your friends can untangle programming webs you've
woven. The second use is to act as a separator between individual
routines in a large program; to split it into visually separate blocks.

At the end of the book is a chapter called 'Improving your programs'
which discusses the concept of 'structured programming'. The use of
REMs in this second way is described in more detail at that point.

8

LIST and RENUMBER
LIST is the BASIC command which we use to get the computer to
print out the whole of the program it is currently holding. You can
simply enter L., instead of the whole word. Try it now. Type in L. and
press RETURN. The program should list out in full. All lines in the
program are LISTed in numerical order, rather than in the order in
which they were entered into the computer. The computer
automatically sorts its lines into order. Enter the following, press
RETURN, and then LIST the program again:

15 PRINT "THIS IS A NEW LINE"

You'll see it stays at the bottom of the listing when you first press
RETURN, but after typing in L. and press RETURN again, you'll see it
snuggled into its proper position, as follows:

10 REM PROGRAM ONE
15 PRINT "THIS IS A NEW LINE"
20 PRINT"THIS IS A DEMONSTRATION"
30 PRINT 1
^•0 PRINT 2
50 PRINT "THIS IS THE END"

The BBC Microcomputer has a very useful facility to renumber lines.
You can number lines with any interval you choose (like starting at
one, then going up in ones), but this does not leave any space for
additional lines to be inserted. If you type in RENUMBER, then press
RETURN, then LIST, then RETURN again, you'll see the following:

10 REM PROGRAM ONE
20 PRINT "THIS IS A NEW LINE"
30 PRINT"THIS IS A DEMONSTRATION"
^0 PRINT 1
50 PRINT 2
60 PRINT "THIS IS THE END"
As you can see, line 15 has been changed to line 20, and all the
subsequent lines have been renumbered. RENUMBER is a useful
command to remember, and you can use it whenever you need
additional space between lines, or before you SAVE a program on
cassette, or print it out on a printer.

If you simply type LIST, the entire program will be listed by the
computer. However, by varying the listing format, a number of useful

9

variations can be achieved. These allow you to examine individual
portions of the program. Let's add a few more lines before we do so.
Add the following:

70 PRINT "HI"
80 PRINT "THERE"
90 REM HI THERE

100 PRINT 4

LIST 10,50 will only allow the lines number 10 to 50 to be listed. Any
lines numbered higher or lower than this will not be included.

LIST 70 will only list line 70

LIST ,70 will print all the lines up to, and including, line 70

LIST 70, will print out all the lines above line 70, including line 70

You can halt a listing at any point by pressing ESCAPE.

RUN, STOP, END, NEW,
OLD
As you've no doubt realised, the RUN command is used to start the
computer operating on a program which you have entered into the
computer, either by typing it in, or by loading a program in from
casssette. The computer executes all the lines stored in its memory,
starting from the lowest number, and working through in order.
Various commands, as you shall see shortly, can make the program
loop back on itself, but in essence, the computer works through a
program in line number order, unless told to do otherwise.

If you want the program to STOP at a particular point, you can use,
naturally enough, a command called STOP. Enter 35 STOP, press
RETURN, then run the program. It will print out:

THIS IS A NEW LINE

THIS IS A DEMONSTRATION

Then, after a blank line, will be the message "STOP at line 35". BBC
BASIC includes another word which does exactly the same thing, but

10

does not print out an error statement. Change line 35 to 35 END, press
RETURN, then run the program again. You'll find it prints out the two
lines as before, but does not print out a message like "END at line 35".
You can use these commands wherever you wish a program to
terminate. Other computers are not as tolerant as this. Some, like the
Acorn Atom, demand that an END statement ends each program, and
responds with a beep and an 'Error' message if the END is left off. You
do not need to worry on the BBC Micro. The END is optional.

We'll return to look at PRINT In a little more detail in a moment, but
there is one more (actually, two associated) command I'd like to
discuss first, NEW and OLD.
The command NEW will erase any program from the computer's
memory, and should always be used to remove anything from the
memory before you start writing a new program. If you don't do this,
and you use different line numbers for the second program, you'll find
the lines may well be interwoven with the old program. The NEW
command is fairly brutal on most computers, causing it to dramatically
forget everything. Try it now on your computer.

Type in NEW, press RETURN, then enter LIST, and RETURN again.
You'll find the 'greater than' symbol beside the flashing cursor appears
immediately below the word LIST — but no listing. Try LIST 10, then
RETURN, and you'll get the same nothing result. However, and this is
useful to remember, the BBC Micro has tucked the program away in
another part of memory, just in case you change your mind. Type in
OLD, then RETURN, then LIST and RETURN again and, as if by
magic, the program has been restored. OLD is pretty easy to
remember as the opposite of NEW.

11

PRINT formatting and
TAB
To complete our exploration of the PRINT command, type in NEW
again to get rid of the program. Now enter and run the following:

10 REM xxpRINT FORMATS**
20 CLS
30 PRINT
40 PRINT
50 PRINT
60 PRINT "HI"60
70 PRINT "HI"|70
80 PRINT 12 3
90 PRINT 1,2,3

100 PRINT i;z;3
110 PRINT J 1I2J3

Follow this explanation carefully, and you should learn a lot about the
way the BBC Micro formats its print output, you can then use what
you've learned to arrange output of your own programs as you wish.
I'll go through the program line by line, a practice which will follow,
from time to time, in the rest of the book.

10 — Title REM statement
20 — CLS is the command to clear the screen
30-50 — Each of these words PRINT, with nothing following,

prints a blank line, moving the next print position down a
line. This explains the gap at the top of the screen before
anything is printed.

60 — This prints the word HI and then, leaving a space, prints
the number 60. Note that the number can follow the word
but will not necessarily be printed immediately after it, as
does happen in the following line.

70 — The three apostraphes (shift the 7 key), as you can see,
have exactly the same effect as three blank PRINT lines,
and are far more convenient to use. Note also that the 70 is
printed hard up against the word HI. The semi colon (;)
between the close quote marks and the number ensure
they will be printed together in this way.

80 — This allows the numbers 1,2 and 3 to be printed in neat
little rows. Note that there must be a space between them
or the computer will print them as 123 or 12 and 3 or 1 23.

12

90 — This line uses commas between the numbers ensuring
they will be printed in separate rows.

100 — The semicolons between the numbers ensures that,
after the initial space between the left hand side of the
screen and the numbers, the numbers will be printed hard
up against each other.

110 — The semicolon before the first number ensures the
printing starts at the extreme left hand edge of the screen.

You can use these within PRINT statements to create the effects you
need. Clear the current program with NEW, then enter and run the
next program, changing line 30 as shown, to produce the effects
shown. Don't worry about what the rest of the program means at this
stage. It will be explained shortly.

10 REM xxPRINT TWOxx
20 FOR J=1 TO 10
30 PRINT J
40 NEXT J

>RUN
1
2
3
4
5
6
7
8
9

10

10 REM xxpRINT TWOxx
20 FOR J=1 TO 10
30 PRINT J?
40 NEXT J

>RUN
12 3
9 10>

13

10 REM **PRINT TWO**
20 FOR J=1 TO 10
30 PRINT hJJ
40 NEXT J

>RUN
12345678910>

TAB (for tabulate) is a command which is very useful to combine with
the word PRINT. It moves the PRINT position across the number of
lines specified in the brackets following the number. Change line 30 so
it reads as in the following program, and run it:

10 REM **PRINT TWO**
20 FOR J=1 TO 10
30 PRINT JJJ" II *
40 NEXT J

>RUN
1 2 3 4 5 6 7 8 9 10

10 REM **PRINT TWO**
20 FOR J=1 TO 10
30 PRINT TAB(J)|J
40 NEXT J

>RUN
1

2
3

4
5

6
7

8
9

10

14

And then like this:

10
20
30
40

RUN
1

REM xxPRINT TWOxx
FDR J=1 TO 10
PRINT TAB(3*J)JJ

JNEXT

7

3

5
6

7
8

9
10

We are now going to introduce a program which will be used in a few
other places throughout this book to illustrate different aspects of the
computer's actions, so I suggest you enter it, even though you may
not know what all the lines mean, and then SAVE it on tape, so you
can load it in again when we refer to it later (such as in the section on
READ and DATA).

10 REM TABULATOR ROCKET RANGE
20 M0DE7
30 FOR d=10 TO 1 STEP -1
40 PRINT '"d
50 T=TIME
60 REPEAT UNTIL TIME-T>50
70 NEXT J
80 REPEAT
90 Q-RND(29)+1

100 U=128+RND(5)
110 FOR rocket=l TO 71 READ ROCKET*
120 PRINT TAB(0 > #CHR*(129) I” (’* JTAB(Q)

$CHR*(U) J ROCKET* I TAB (36) »CHR*(129)J")"
130 NEXT rocket
140 T«TIME
150 REPEAT UNTIL TIME-T=2

15

160 SPACE -RND(10)
170 SOUND 16,-RND(5)-10 ,RND(3)--1 ,RND(20)
180 FOR prints TO SPACE
190 PRINT TAE!(0) JCHR$< 129) J " (" JTAE!(37) J ") "
200 NEXT print
210 RESTORE
220 T=TIME
230 REPEAT UNTIL TIME-T==2
240 UNTIL FALSE

II

II

II

250 DATA “ 1 • • • •* * +++
260 DATA " + + +
270 DATA " +++ 11, “ +++
280 DATA " <X> "

SAVE
You SAVE programs by typing in the program, connecting up your
cassette recorder as shown in the manual, then typing in SAVE
followed by the name of the program within quote marks. In this case,
I suggest you use the name ROCKET, so you would type in SAVE
"ROCKET", then follow the instructions given by the computer.

These mean you must turn your cassette recorder on, and start to
record, and once you've done this, press the RETURN key. You'll see
the word ROCKET appear, followed by a series of numbers as the
computer saves the program in blocks. When it has all been saved,
after a few seconds, the computer will beep to tell you it is finished,
and the 'greater than' symbol will reappear, followed by the flashing
cursor.

I suggest you make a habit of saving each program three times in a
row, on a C-12 or C-15 (i.e. computer) cassette, and you only put
one program on the side of each tape. Label the tape clearly with the
load name (i.e. with ROCKET In this case). Although it may seem
wasteful to use up the whole side of a cassette with just one program,
recorded three times, the frustration you will save yourself by not
having to search through tape after tape for a program you want will
more than compensate for using more cassettes than is strictly
necessary. The program is recorded three times just in case the tape

16

gets damaged at some point, or you accidentally erase part of the
tape, or — as sometimes happens — one SAVEing of a program just
refuses to load properly.

You should clean the recorder's heads frequently (using liquid, not a
tape cleaner ribbon in a cassette) to ensure the clearest possible signal
is put onto the tape.

Now let's return to our TABULATOR ROCKET RANGE.

TAB (X) and TAB (X,Y)
The important lines for this discussion are 120 and 190, as these make
use of TAB in printing. Line 120 behaves as follows:

TAB (0) — This is not strictly necessary, but ensures that the first
PRINT is hard against the left hand edge of the screen
CHR$(129) — This ensures that the next thing printed will be red. The
colour commands are described in detail later on in the book
"(" — This prints a (red) left hand bracket
TAB(Q) — Q is a number between 2 and 30 (chosen in line 90) which
determines how many spaces across the PRINT position will move
CHR$(U) — This determines the colour of the rocket which will be
printed
ROCKET$ — This is part of the rocket, selected by the READ statement
in line 110. Don't worry about this at the moment, as we will be using
the ROCKET program again when discussing READ/DATA/
RESTORE in due course. For now, it is enough to realise that
ROCKETS is part of the series of plus signs which you see in lines 250
to 280.
TAB (36) — After the part of the rocket on that line has been printed,
the PRINT position moves across to the 36th position on the line,
where CHR$(129) turns the following ")" red to put a border down the
right hand side of the screen.
Line 1900:
TAB(0) — As above
CHR$(129);"(" - As above
TAB (37);")" — This moves the PRINT position across to the 37th
position, to print the bracket for the right hand border. Line 190 is used
a random number of times (between one and ten times, chosen in line
160) to put a space between the rockets.

17

So far we have only used TAB with a single number in brackets after
the word. Remember, TAB(A) will move the start of the PRINT
position A spaces across a line. You can have the word TAB followed
by two numbers, such as TAB(6,10) which will move the PRINT
position six spaces across, and 10 down. The top left hand corner of
the screen is zero, zero, so TAB(0,0) indicates that the printing will
begin in the top left hand corner of the screen. The left hand side of
the screen in numbered 0, while the right hand side is 19, 39 or 79. We
have been working in Mode 7 to date (the mode your computer is
automatically in when you first turn it on), and in this mode, the screen
is 40 characters wide, so the position furthest to the right is numbered
39.

The following program, SQUASH, uses TAB(X,Y) to position a ball
(line 620) and a bat (line 530). You use the "Z" and "M" keys to move
the slide (the bat) at the bottom of the screen right and left
respectively. The program keeps track of how long you keep the ball in
flight, and gives you a score at the end based on this time. Pressing
any key at the end of the game will give you a new game.

You can make the game easier by changing the zero after INKEY$ in
line 140 to a five or a 10, and add a delay loop between lines 170 and
180. A delay loop is simply something like 175 FORQ= 1 TO300:NEXT
Q. You may also wish to change the sound the ball makes when it
bounces. Simply change the third figure after the word SOUND in
lines 650 and 660. Try 120 + RND (130) or 240 + RND(14) for two
different effects.

This listing may well look pretty horrifying at the moment. Once you've
finished working through this book, you may wish to come back to
programs like this, and try and work out what each section of the
program is doing. You'll be surprised to see how much of it you can
decipher.

10 REM x SQUASH *
20 REM Move bat us ins ‘the "Z“ and “M" keys
30 MODE. 7
40 HIGHSCORE-O
50 F’ROCset^up
6 0 REMJKJKJKXOiOKSKXOKXXXCXOKX
70 REPEAT
80 PRINT TAB(0 f23)?CHR$(128+RND(5))

>"High score is "JHIGHSCORE
90 PRINT TAD(0,5)|CHR$(RND(5)+128)}

"You have kept the ball in play"
100 PRINT CHR$(RND(5)+128) J

"for "J(TIME DIV 10)/10|" seconds

18

110 A$-INKEY$(0)
120 xFX 15,1
130 IF A$-"Z" OR A$-"M" THEN PR0CMOve_bat
140 PROCnove_bBl1
150 PRINT TAB(B+11,19)JBAT$
160 UNTIL end
170 IF TIME DIV 100>HIGHSCORE

HIGHSCORE=TIME DIV 100
180 TI-TIME
190 REPEAT UNTIL TIME>TI+90
200 *FX 15,1
210 FOR T~0 TO 3
220 SOUND T+16,-15,RND(100)+100,255
230 NEXT T
240 TIME-0
250 REPEAT UNTIL TIME>150
260 xFX 15,0
270 xl-X 12
280 PROCnewqane
290 REMxxxxxxxxxxxxxxxx
300 DEF PROCset_up
310 LOCAL
320 PRINT TAB(10,10)$ STRING*(20,CHR$(255)
330 FOR T=0 TO 10
340 PRINT TAB(10 ,T+10) JCHR$(255) *,

TABOO,T+10) JCHR$(255)
350 NEXT T
360 BAT*-"___ "
370 NOBAT*="
380 x«i:y»i:l«i:m»i
390 TIME-0
400 B-10
410 PRINT TAB(11+B,19)JBAT$
420 xFX 11,1
430 xFX 12,1
440 vdu 230202; o;o;o;
450 ENDPROC
460 REMxxxxxxxxxxxxxxx
470 DEF PROCrtove_bBt
480 IF A*="M" AND B=16 THEN ENDPROC
490 IF A*="Z" AND B=0 THEN ENDPROC
500 PRINT TAB(11+B,19)JNOBAT*

19

510 IF A$==="M" THEN B-B+l
520 IF A*-"!" THEN B~B~1
530 P RIN T T A B(11+B,19)? BA T $
540 ENDPROC
550 REM***************
560 DEF PROCiwve_ball
570 PRINT TAB(11+X,11+Y)?" "
580 IF L+X>18 OR L+X<0 THEN L--L?

SOUND 1,-15,157,1
590 IF M+Y>8 OR M+Y<0 THEN M--M?

SOUND 1,-15,167,1
600 X=X+L
610 Y“Y+M
620 PRINT TAB(11+X,11+Y)?"x"
630 IF Y”8 AND (X<B OR XXB+2)) THEN

end-TRUE ELSE erid~FALSE
640 P=TIME
650 ENDPROC
660 REMxxxxxxxxxx*
670 DEF PROCnewgane
680 PRINT'"11 CHR$(RND(5)+128)?

"Press any key for a new gaMe"
690 A$«GET$
700 CLS
710 GOTO 50
720 ENDPROC

You can use TAB with either the PRINT statement or the INPUT
statement. Experiment with TAB, and with the use of; and , in PRINT
statements, until you are confident you know what they are doing.

20

Random numbers
Random numbers are very useful for games playing, for creating
designs and sounds, and for changing the colour of PRINT
statements. We will look at their use in creating coloured PRINT
output in the section on graphics, and at their use in making sounds in
the SOUND part of the book. Right now we'll examine the production
of random numbers, and use them in a few simple programs.

The BBC Microcomputer allows you to generate random numbers of
two types — floating point between zero and one, and integers. Both
these types can easily be set to be greater than, or less than, zero (i.e.
to be positive or negative numbers).

Enter and run the following to see a range of numbers between zero
and one:

10 PRINT RND (1)

20 GOTO 10

You'll get a list of numbers something like this:

0.918826409
0*266114519
0*102944293
0*295019549
3.66730662E-3
0*386568779
0*964225042
0*310764692
0*451954321
0 *128487876
0*220589199
0*440212717
0.749411825
0*521860198
0.967153116
0*711896141
0*765480196
0.356654011
0.988525593
0.274666697

21

You'll find that random integers are often of far more use than are
these numbers between zero and one. Most computers demand a
quite complex statement (like INT(RND(1)*30) +1) to get random
whole numbers, but a routine to do this already exists within the
computer. Change the 1 in line 10 to a 10, so it reads PRINT RND(10),
and run the program again. You're like to get a series of numbers such
as the following:

8
7
1
8
3
9
7
9
6
7
3

10
8
2
8
6
7

X..
3

The computer takes the number in brackets (known as the argument
of the function) and selects numbers at random between one and that
number. To get negative random numbers, just put a minus sign in
front of the word RND. Try that, and run it again, to get a result like
this:

-1
-1
-6
~6
-9

-6
-10

22

You can use the random number generator for any application where
you need to emulate a random activity in the real world, like the
distribution of weeds in a garden, the spread of clouds in the sky, or
the result of rolling die. The next program emulates the role of a
six-sided dice. Enter and run it a few times. Note that the single quote
mark in line 30 is found on the 7 key.

10 REM *DICE ROLLER*
20 CL..S
30 INPUT ''' "HOW MANY TIMES

WILL I ROLL THE DIE? "A
40 FOR B=1 TO A
50 PRINT RND(6>
60 NEXT B

>RUN
HOW MANY TIMES WILL. I ROLL THE DIE? 7

4

4

While the theoretical distribution of numbers between one and six with
a six-sided die suggests each number has an equal chance of coming
up in a long, long series of rolls, the totals produced when you use two
dice, approaches the following distribution:

23

Total No. of ways Probability Percentage
Showing it can be thrown

2 1 1/36 2.77%
3 2 2/36, 1/18 5.55%
4 3 3/36, 1/12 8.33%
5 4 4/36, 1/9 11.11%
6 5 5/36 13.88%
7 6 6/36, 1/6 16.66%
8 5 5/36 13.88%
9 4 4/36, 1/9 11.11%

10 3 3/36, 1/12 8.33%
11 2 2/36,1/18 5.55%
12 1 1/36 2.77%

To test just how random the random number generator is, enter and
run the following program, which rolls two dice as many times as you
request.

10 REM *TWO DICE*
20 CLS
30 INPUT "'"HOW MANY TIMES WILL I

ROLL THE DICE? "D
'IO CLS
50 DIM A(12)
60 FOR O1 TO D
70 DIE1~RND(6)
80 DIE2~RND(6)
90 PRINT TAB(2,3) fDIEl,DIE2

100 SUM=DIE1 + DIE2
110 A(SUM)“A(SUM)+1
120 FOR E:!--2 TO 12
130 PRINT TAB(5»E:+3) <E:

,A(E) ,INT(A(E:)/C*100)
l'tO NEXT E:
150 NEXT C

Here's the result of one run when I got the computer to roll the two
dice over 700 times. The top two figures (3 and 4) are the result of the
current roll. Next, from there down, the numbers 2 to 12 in the left
hand column are the totals we are looking for, followed by the number
of times that total has been rolled in the current run. The final column
shows the approximate percentage distribution of each of the totals.

24

3 4
2 23 37.

3 34 W.

58 77.

5 90 127.

6 105 14%
7 133 177.

8 91 127.

9 75 10%
10 73 9%
11 38 5%
12 26 3%

You can see that this run has approach the theoretical distribution
fairly closely, which suggests the random number generator is
performing its task properly. The numbers produced are not totally
random, but are from a very long list of numbers, so long that no
pattern can be discerned.

Acey Duecy
Here's a very simple game which shows the random number generator
in action. You can see from the sample run how to play it. The game is
not really much of a game, but entering and running it is well worth
while. Once you've played a few rounds of the game return to this
book for a discussion of the program. You should be pleasantly
surprised at how much you have already learned.

10 REM *ACEY DUECY*
20 D=20
30 REPEAT
40 CLS
50 A=RND(13)
60 B~RND(13)
70 IF ABS(B~A)<2 THEN 50
80 C=RND(13)
90 IF A:-C OR B=C THEN 80

100 PRINT ""MY FIRST NUMBER IS "JA
110 PRINT "MY SECOND IS "JB
120 PRINT 'CHR$<133)|"YOU HAVE $"|D

25

130 PRINT ""HOW MUCH DO YOU BET MY NEXT"
HI) PRINT "NUMBER LIES BETWEEN "lAI" AND "JBJ"?"
150 INPUT E
160 IF E>D THEN 150
170 IF E<1 PRINT CHR$(129)J"COWARD!!"
180 PRINT '"MY NUMBER IS "*,C
190 IF E<1 THEN 270
200 IF NOT <C>A AND C<B OR C<A AND OB) THEN 240
210 PRINT "WELL DONE, YOU WIN $";2xE
220 D==D+2*E
230 GOTO 270
240 PRINT "SORRY, YOU LOSE $"JE
250 D-D-E
260 IF D<1 THEN 290
270 A$-GET$
280 UNTIL FALSE
290 PRINT "YOU ARE BROKE"

MY FIRST NUMBER IS 9
MY SECOND IS 11
YOU HAVE $20
HOW MUCH DO YOU BET MY NEXT
NUMBER LIES BETWEEN 9 AND 11?
?3
MY NUMBER IS 13
SORRY, YOU LOSE $3
MY FIRST NUMBER IS 8
MY SECOND IS 5
YOU HAVE $17
HOW MUCH DO YOU BET MY NEXT
NUMBER LIES BETWEEN 8 AND 5?
?2
MY NUMBER IS 10
SORRY, YOU LOSE $2
MY FIRST NUMBER IS 1
MY SECOND IS 3
YOU HAVE $15
HOW MUCH DO YOU BET MY NEXT
NUMBER LIES BETWEEN 1 AND 3?
?0

26

COWARD!!
MY NUMBER IS 10
MY FIRST NUMBER IS 10
MY SECOND IS 13
YOU HAVE $15
HOW MUCH DO YOU BET MY NEXT
NUMBER LIES BETWEEN 10 AND 13?
?15
MY NUMBER IS 3
SORRY, YOU LOSE $15
YOU ARE. BROKE

Let us have a look at this program, line by line:

10
20

30
40
50

60
70

80
90

100-110

120

130-140

160

170

180

190

200

Title REM statement
Sets the variable D, which is the amount of money you
have to equal $20
Starts a REPEAT/UNTIL loop which terminates in line 280
Clears the screen
Sets the first number (A) equal to a random number
between 1 and 13
Does the same for B
Checks to see if the difference between the two numbers
to select two new numbers
Chooses a third number between one and 13 (C)
Checks to see if C equals A or B and, if so, goes back to
line 80 to choose a new number
Tells the player what the two numbers are, using the two
apostraphes after the word PRINT to creat two blank lines
Prints out, in purple, the amount of money the player has.
In mode 7, preceding a print line with CHR$(133) causes
the following material to be printed in purple (magenta).
Asks the player to enter a bet regarding the likelihood of
the third number lying between the first two
If the player attempts to bet more money than he or she
has, goes back to accept another entry
If the player enters a bet less than one, prints the word
COWARD in red (using CHR$(129)).
Prints out the third number, using an apostraphe to print a
black line
If the bet was less than $1, goes to line 270 to await a new
round of the game
Checks to see if the player has lost, and if so, sends action
to line 240

27

210 Congratulates the winner
220 Adds the winning amount (2*E, where E is the amount bet)

to the player's money (D)
230 Sends action to line 270 for the next round
240 Prints out the "SORRY, YOU LOSE" message
250 Deducts the loss (E) from the player's money (D)
260 Checks to see if the player has less than $1 and if so

goes to the "YOU ARE BROKE" message
270 Waits for any key press
280 Goes back to the line after the word REPEAT, in this case

line 40, to clear the screen for a new game

Reading through this explanation a couple of times, and looking
carefully at the line or lines it refers to, should teach you quite a bit
more about programming. There are a number of specific commands
which we will look at in more detail, but you're probably starting to
pick up quite a bit at this stage.

Variables
You will have noticed in the previous program that a series of letters
were used to represent numbers. The letter A was assigned (in line 50)
to a number between one and 13, B was assigned in the same way in
line 60 and C was assigned in line 80. The amount of money you had
was assigned to variable D in line 20. The letters A, B, C and D in this
program are called variables.

There are three basic types of variables: integer numeric, numeric and
string (alphanumeric).

Almost any combination of letters and numbers can be used as a
variable in BBC BASIC, so long as it begins with a letter, and there are
no punctuation marks or symbols within the name. So SMUDGEPOT
and D17 are valid variable names, while 2 SMUDGE and 1D7 are not.
Numeric variables, letters or combinations of letters and numbers
beginning with a letter, are simple to use. You can assign a variable of
this type to any number within the computer's numerical range.

As you probably know, the computer uses scientific notation to
display numbers larger than nine digits long, with the number as a
single digit and eight decimal places, followed by the letter E (for
exponention) and the power of ten to which the number is to be
multiplied. Enter and run the following demonstration which shows
the variable A in use, being assigned to a number which is being
multiplied repeatedly by 10, and then printed.

28

100 REM **SCIENTIFIC NOTATIONxx
110 A-1234
120 A=10*A
130 PRINT A
140 GOTO 120

12340
123400

1234000
12340000

123400000
1,234E9

1.234E10
1.234E11
1»234E12
1.234E13
1.234E14
1/234E15
1.234E16
1.234E17
1»234E18
1.234E19

You can see that after the number becomes nine digits long
(123400000), it is printed as 1 something, followed by E and a power of
10. Looking at the listing tells us another couple of things about
variables. The variable is assigned by just entering the name of the
variable (in this case, A), followed by an equals sign, and the value
which we want assigned to the variable. If we said A = 99, then
following this with PRINT A would produce 99. Line 120 looks a little
odd. The asterisk (*) stands for multiply in BASIC. Line 120 seems to
be saying that A is equal to 10 times itself, which — in terms of
standard arithmetic — is not true. Any line which assigns a value to a
variable has, as an optional word, LET in it. Some BASICS insist on the
word being used, so line 110 would have to read LET A = 1234, and
line 120 would read LET A = 10*A. BBC BASIC regards LET as
optional, but it is possibly easier to understand what is happening in an
assignment statement if you either use the word LET, or mentally
place it in position.

Try typing in things directly, such as LET B = 13, press RETURN, then
enter PRINT B, then RETURN again. A 13 will appear. Follow this by

29

entering B = 16, RETURN, PRINT B, RETURN. A 16 will appear,
showing that the LET is optional. Despite this, you may, as I suggested
a moment ago, prefer to use LET for the time being, until you are
familiar with assignment.

Integer variables can be used whenever whole numbers only (i.e. 8,
504, 33 or 2398) are used. These use up less memory, and are
processed more quickly than are ordinary variables, which can
accommodate floating point numbers. Integer variables are indicated by
the presence of a percentage sign following the name of the variable.

Enter and run this simple routine to see integer variables in action.

10 REM VARIABLES - INTEGER NUMERIC
20 A%^4
30 PRINT A%
40 A%^4.2
50 PRINT A%

You should see the number 4 printed out twice. The first time (line 30)
this is what you would expect, as the 4 had been assigned to A% in
line 20. However, in line 40, A% is assigned to 4.2 but the .2 is ignored
when the variable is printed. Although I pointed out that integer
variables used less memory, and were processed more quickly than
were floating point variables, in most cases the additional speed is not
significant. However you will find times when you want maximum
speed (as in programs using moving graphics), and in these the speed
difference can be quite significant.

30

String variables
String variables are a series of letters, followed by a dollar sign. Enter
A$ = "HELLO", press RETURN, then PRINT A$, RETURN, will give
you HELLO. ABECD$ = "THING A TRY A", RETURN, PRINT
ABECD$, RETURN will give you THING A TRY A, complete with the
spaces. You can put anything, including numbers, symbols,
punctuation marks and letters within the quote marks, to be assigned
to a string variable. A series of letters and whatever, within quote
marks in this way, is known as a string.

The variable name does not have to be in upper case (capital) letters.
You can get lower case letters by pressing the CAPS LOCK key, next
to the CTRL key. Pressing the CAPS LOCK key again will return you to
upper case.

Crickets
There is, strange to say, a correlation between the temperature and
the number of times a cricket chirps each minute. The following
program converts the number of chirps per minute into the
temperature, in degrees Fahrenheit. Enter and run it a few times. Note
that the variable chirp is set equal initially to 80 in line 20. this is
converted into the variable temperature in line 30, and this latter
variable is used in the PRINT statement in line 40. The variable chirp is
incremented by a random number between one and seven in line 60,
there is a short delay (line 70) and then the program returns to line 30
to go through the whole process again. It will run for a long, long time
(until you exceed the highest possible number the BBC
Microcomputer can cope with) if you do not interrupt its running with
the ESCAPE key.

10 REM Chirp converter
20 chirp-80
30 temperature-INT<(chirp/^J+^O *5)
^0 PRINT '"The temperature is "I temperature
50 PRINT "when there are "Jchirpl" chirps*"
60 chirp-chirp+RND(7)
70 FOR J^l TO 800JNEXT J
80 GOTO 30

31

>RUN
The temperature is 60
when there are 80 chirps*

The temperature is 62
when there are 87 chirps*

The temperature is 63
when there are 91 chirps*

The temperature is 64
when there are 95 chirps*

The temperature is 65
when there are 100 chirps*

The temperature is 65
when there are 101 chirps*

Although it takes a little longer to type in long variable names, these
have a clear advantage over use of names like A, B and C2. You
know, without having to refer back, what each variable represents.
Here is another program which uses two variable names to help make
it clear what is going on. Enter and run this.

10 REM xxxVARIABLESxx
20 WORD$~"THE NUMBER IS "
30 NUMBER-3
40 CL.S
50 PRINT '''WORD$?NUMBER
60 PRINT '"THE SQUARE OF "INUMBER
70 PRINT TAB(5)|"IS "*NUMBERxNUMBER
80 PRINT ""AND THE SQUARE ROOT"
90 PRINT "IS "?SQR(NUMBER)

32

To summarise:

• Numeric variable — This can have any name, so long as it
starts with a letter and does not contain punctuation or
symbols

• Integer numeric variable — The name is as above, but with
a percentage sign at the end. This takes less memory, and
is processed more quickly than an ordinary numeric
variable, but can only be assigned to a whole (i.e.
non-floating point) number

• String variable — This is a letter or combination of letters
and numbers, starting with a letter and ending with a dollar
sign, which is assigned to anything within quote marks.

Variable names of all three types may be of upper or lower case letters
(or a combination of these), but they do not mean the same thing.
That is, a$ is not the same as A$.

All variables can be assigned by use of a LET statement, which is
optional, followed by the name of the variable, an equals sign, and
then the value to be assigned to the variable.

INPUT
The INPUT statement is used to get information from a user while a
program is actually running. The computer stops when it comes to an
INPUT statement and waits for an entry of some kind from the
keyboard before it will continue with the execution of the program.

Enter and run the following, which shows numeric inputs in action.
The program will wait for you to enter one number, then press
RETURN, then wait for another number. After you have pressed
RETURN again, it will print the sum of the two numbers.

10 REM **INF’UT*X
20 INPUT X
30 INPUT Y
40 Z=X+Y
50 PRINT Z

>RIJN
?3
?6

9

33

As you can see, the computer generates a question mark while waiting
for your input in each case. That is OK so far as it goes, but you would
not have known what to do when you ran the program unless you
had read it in this book. There is a simple way to rectify this, by
programming in user prompts. The preceding program can easily be
rewritten so that the user has no doubt as to what he or she is meant to
do.

10 REM xxlNPUTxx
20 INPUT "GIVE ME A NUMBER",X
30 INPUT "AND ANOTHER",Y
TO Z-X+Y
50 PRINT Z

GIVE me: A NUMBER93
AND AN0THER96

9

Running this shows that the computer prints up the words within the
quote marks, adds a question mark, then waits for the input. If you
don't want a question mark, then leave the comma betwen the end of
the material in quote marks and the name of the variable. You can
combine the inputs into a single line, as follows:

10 REM xxlNPUTxx
20 PRINT "GIVE ME TWO NUMBERS,"
30 INPUT "PRESSING RETURN BETWEEN THEM",X,Y
^0 Z = X + Y
50 PRINT Z

>RUN
GIVE ME'. TWO NUMBERS,
PRESSING RETURN BETWEEN THEM?3
?66

69
Run this again, this time entering the numbers in one lot, separated by
a comma, before you press RETURN. That is, when it asks for the first
number, enter it as something like 3, 5 and you'll see it will accept that
for the two numbers. Try it now and see.

The comma between the two numbers informs the computer that two
separate items of information have been entered. As it is looking for
two pieces of information, it will continue processing from this point.
You'll notice that the number you enter sits up hard against the INPUT
statement when it is printed. To get around this, you can put the

34

question mark within the quote marks, then put a space or two, and
leave off the comma to suppress the question mark.

Here's a program now which shows a number of inputs in action,
some using the idea mentioned above to move the entered figure away
from the input statement.

Bird Cage
The game is BIRD CAGE. In its first incarnation in England, this game
had the somewhat improbable name of Sweat-Cloth, and when
exported to the United States in the early years of the 19th century, it
was first known as Sweat. Its name changed through the years to
Chucker-luck, Chuck-Luck, Chuck-a-Luck or just plain Chuck.
Nowadays, because of the equipment used in the non-computer
version, the game is often called The Bird Cage.

The bird cage is an enclosed wire cage holding three dice. Players bet
on the likelihood of a particular number coming up. If, for example,
they place their money on six, and one of the three dice ends up with a
six showing, they get their money back. If all three dice show six, then
they get three times their money. It is a fairly simple game, but one
which arouses passion among bird cage devotees.

After the program listing is a line by line explanation of the program.

10 REM**Bird Cage**
20 REM**Showing use of INPUT**
30 M0DE7
40 M:~30
50 GOSUB290
60 INPUT"Size of bet? "A
70 IF A>M THEN 60
80 PRINT 'AM "You are betting ‘
90 M-M-A

100 INPUT"Which number will fal
110 IF B<1 OR B>6 THEN 100
120 FOR C=1 TO 3
130 W~0
140 GOSUB 330
150 D-RNDC6)

35

160 PRINT''A$J"Diet "JCt" fell "ID
170 IF D-E: W-A»PRINT' A$ I "Arid you win '"IN
180 M==M+W
190 GOSUB 290
200 NEXT C
210 GOSUB 330
220 GOSUB 330
230 CLS
240 IF M>0 THEN 50
250 PRINT'CHR$(128+RNDC6))|CHR$<141)I

"The gene is over, as you are broke!"
260 PRINT CHR$(128+RND(6))|

CHR$<141)/‘The qawe is over, as you are broke!"
270 SOUND 1t-15,RND(20)+30,20
280 GOT0250
290 A$-CHR$<128+RND(6))
300 PRINTA$JCHR$(141)J"Stake is now
310 PRINTA$|CHR$(141)‘/‘Stake is now $"M'
320 *FX 15,0
330 TIME-0
340 REPEAT UNTIL TIMEJ50
350 SOUND 1,-15,RND(128)+127,5
360 SOUND 2,-15,RND(128)+127,5
370 RETURN

10-20 REM statements for title, purpose
30 Sets the Mode to 7, the normal mode when you turn your

computer on
40 Sets the variable M, which is the amount of money you

have, to 30
50 Sets action to the subroutine starting at line 290

(sub-routines are discussed a little later in the book)
60 This INPUT statement gets the size of the player's bet
70 If the player tries to bet more than he or she has, action

goes back to line 60 for another input
80 This PRINT statement uses A$ as the colour control code.

A$ is assigned in line 290. Assigning strings to control
colour in Mode 7 is discussed in the section of the book on
using the graphics

90 This line subtracts the size of the bet (A) from the player's
stake (M)

100 This INPUT asks the player to predict which number
between one and six, will show when the dice fall

36

110

120-200

210-220

230
240

250-280

290
300-310

320
330-370

The player's prediction is checked, and if it is greater than
six, or less than one, is rejected, and action goes back to
line 100 for a new input
This loop does a number of things. The variable W holds
the win, if any, and this is set to zero for each of the three
rolls. Line 140 sends action to the subroutine from line 330,
which makes a few noises, and delays a little while. A
delay like this is often used to enhance games. Too quick a
reaction is sometimes undesirable. Line 150 actually rolls
the die, and line 160 informs the player of the result of the
roll, using A$ to determine the colour of the line. Line 170
checks to see if the number shown on the die is the same
as the one predicted by the player, and if it is, prints out a
win message, and assigns W to equal the size of the
player's bet. Line 180 adds this to the money total. If the
player has not won on that roll, W still equals zero (from
line 130) so the player's total is not updated. Line 290 goes
to the subroutine which prints out how much money the
player now has.
The delay/noise subroutine is called twice, to give a longer
delay between rounds of the game.
Clears the screen
This checks to see if the player has any money left (i.e. if M
is greater than zero) and, if so, sends action back to line 50
for a new round.
If the player is broke, prints out an endless message to that
effect, in doubleheight letters. CHR$ (141) puts the letters
in double size.
Selects a colour code, which is assigned to A$
Prints out the money the player has left, using double
height letters again
Clears the input buffer.
This is the sound/delay subroutine which is called
throughout the program.

37

Compound Interest
Here is another program to show the INPUT statement in action. It
also shows the use of explicit names for variables, which make it easier
to understand what is going on. You may well want to save this
program on cassette, as it has a degree of practical application.

10 REM SIMPLE AND COMPOUND
20 REM INTEREST
30 CLS
-40 INPUT ' ' '“PRINCIPAL'SPRINCIPAL
50 INPUT"INTEREST'Sinterest
60 INPUT '“FOR HOW MANY YEARS">YEARS
70 CLS
80 PRINT7 --- “
90 PRINT"YEAR SIMPLE COMPOUND DIFFERENCE"

100 PRINT"--- "
110 FOR MONEY=1 TO YEARS
120 SIMPLE=PRINCIPAL+MONEY*PRINCIPAL*(interest/100)
130 COMPOUND=INT(10OxPRINCIPAL*(1 + interest/l00)AMONEY)/100
140 DIFFERENCE = INT(100*(COMPOUND-SIMPLE))/I 00
150 PRINT J MONEY J TAB(8)JSIMPLE J TAB(17)J COMPOUND J
160 PRINT TAB(27)^DIFFERENCE
170 NEXT MONEY

:>RUiX!
PRINCIPAL?100
intere;:st?b<25
FOR HOW MANY YEARS712

YEAR SIMPLE COMPOUND DIFFERENCE
—....—...—...... -- -...... —------------
1 108.25 108.25 0
2 116.5 117.18 0.68
o 124.75 126.84 2.09
4 133 137.31 4.31
5 141.25 148.64 7.38
6 149.5 160.9 11.39
7 157.75 174.17 16.42
8 166 188.54 22.54
9 174.25 204.1 29.85
10 182.5 220.94 38.44
11 190.75 239.17 48.42
12 199 258.9 59.89

38

This program works out compound and simple interest, for a principal
and interest rate you determine, over the number of years you decide.
The variable 'interest' is written in lower case letters to prevent the
computer thinking it is the function I NT followed by something
incomprehensible. From time to time you'll notice that variable names
will be rejected by the computer. This is because you will have tried to
use a reserved word (i.e. a word from the vocabulary of BBC BASIC).

The final program in this section on INPUT is also a useful program.
You use it to determine the arithmetic, or harmonic, mean from a list
of numbers which you enter when the program is running. Again,
you'll see that explicit variable names have been used.

Arithmetic mean
10 REM ARITHMETIC
20 REM AND HARMONIC MEAN
30 MODE 7
40 PROCMenu
50 REMxxokxxxscxxxxxjk
60 REM ARITHMETIC MEAN
70 PRINT TAB(12,3)J"ARITHMETIC MEAN"
80 PRINT'"ENTER THE NUMBERS YOU WISH ME"
90 PRINT "TO USE TO DETERMINE

THE ARITHMETIC MEAN"
100 PRINT "ENTER E TO END YOUR INPUT"
110 INPUT Q$
120 IF 0$=="" THEN 110
130 IF Q$=="E” THEN 170
140 SUM-SUM+VAL.(Q$)
150 TALLY=TALl.Y+l
160 GOTOllO
170 PRINT " "THE ARITHMETIC

MEAN IS "JSUM/TALLY
180 PROCrtenu
190 REMxxxxxxxxxxxx
200 REM HARMONIC MEAN
210 PRINT TAB(12,3)J"HARMONIC MEAN"
220 PRINT'"ENTER THE NUMBERS YOU WISH ME"

39

230 PRINT "TO USE TO FIND THE HARMONIC MEAN"
240 PRINT "ENTER E TO END"
250 INPUT
260 IF Q$="" THEN 250
270 IF Q$=="E" THEN 310
280 SUM=SUM+(1/VAL(Q$))
290 TALLY‘=TALLY+1
300 GOTO250
310 PRINT''"THE HARMONIC MEAN IS "J

1/(SUM/TALL.Y >
320 PROCnenu
330 REMxxxxxxxxxx
340 DEF PROCMeriu
350 PRINT''"SELECT THE PROGRAM YOU WANT?"
360 PRINT'TAB(5)?"1 - ARITHMETIC MEAN"
370 PRINT'TAB(5)?"2 - HARMONIC MEAN"
380 PRINT'TAB(5)?"3 - TO END THE PROGRAM"
390 Z=GET
400 Z-Z-48
410 IF Z=3 END
420 CLS
430 TALLY-0
440 SUM-0
450 ON Z GOTO 60,200
460 ENDPROC

>RUN
SELECT THE PROGRAM YOU WANT?

1 - ARITHMETIC MEAN
2 HARMONIC MEAN
3 - TO END THE PROGRAM

ARITHMETIC MEAN
ENTER THE NUMBERS YOU WISH ME
TO USE TO DETERMINE THE ARITHMETIC MEAN
ENTER E TO END YOUR INPUT
?100
7234
754*678
7234
7-664*86
7234
?E

40

THE ARITHMETIC MEAN IS 31*9696667
SELECT THE FROGRAM YOU WANT*

1 -- ARITHMETIC MEAN
2 - HARMONIC MEAN
3 - TO END THE PROGRAM

HARMONIC MEAN
ENTER THE NUMBERS YOU WISH ME
TO USE TO FIND THE HARMONIC MEAN
ENTER E TO END
?100
?234
?54*678
?234
?~-664*86
?234
?E
THE HARMONIC MEAN IS 151 *-494768

GOTO
One important ability in programming is to be able to branch to
different parts of the program during execution. Without this, the
program would always run from the lowest line number to the highest,
and then stop. One statement which allows you to move around the
program at will is GOTO. The GOTO statement consists of a line
number followed by the word GOTO and another line number, or
followed by a calculation (such as GOTO 2*X, or GOTO 200 + 340).

If the computer came across 140 GOTO 190, it would jump
immediately from line number 140 to line 190. This is called an
unconditional branch. That is, it is a jump that does not depend on the
existence of any condition. Once at line 190, the program continues to
execute in order, until it comes to the end, or comes to another line
directing it somewhere else.

You can use GOTO to produce programs which run for ever. These
can be quite effective, especially at the end of a game. Run the
following to see this in action:

10 PRINT ’’YOU HAVE WON!!!!
20 GOTO 10

41

IF...... THEN GOTO
The IF statement has a similar function to GOTO, but it will only
reroute the program IF certain conditions are fulfilled. This creates a
conditional branch. The IF statement is made up of a line number
followed by the words IF and GOTO separated by a relationship which
must be determined before leaving the line. There are six relation
operators which can be used to compare two variables. These are:

= equal to
> greater than
< less than
< > not equal to
> = greater than or equal to
< = less than or equal to

These operators are used to connect the IF........THEN statements to
form the condition to be determined.

Here's an example:

70 IF Z > = 10 GOTO 100 or 70 IF Z > = 10 THEN 100

This will be read by the computer to mean IF the value of the variable Z
is greater than, or equal to, 10 THEN the program will branch to line
100. If Z us less than 10, the program will continue normal execution,
with line 80.

This gives the computer decision-making power, the real source of a
computer's apparent ability to think. You can use IF...GOTO to
terminate a 'win condition' message such as we used before after a
certain number of cycles. Enter and run the following:

10 x=o
20 PRINT "YOU HAVE WON!!!! II ♦

30 X=X+1
40 IF X<25 GOTO 20

This will ensure that YOU HAVE WON!!!! is printed out a limited
number of times.

IF... is not just used to branch to new lines. NEW the program, and
enter the following. You'll see it has a similar effect, although the
IF.... is not just sending the program to a line number.

42

II ♦

10 x-o
20 X^X^l
30 IF X<25 PRINT "YOU HAVE WON!!!!
40 GOTO 20

This program is not as useful as the other one, as it will not terminate
even when it has finished printing out YOU HAVE WON!!!! You can
easily discover this by running it, then pressing ESCAPE, and then
PRINT X, RETURN.

This does not stop the program from demonstrating that IF can be
followed by a number of commands. You can chain the results of an IF
statement. If the initial condition is false, the computer will forget that
line, and move onto the next one. Try this example:

10 X~0
20 x==x+:i.
30 IF" X<25 PRINT "YOU HAVE

WON!!!! "|JGOTO 20
^0 END

This will only execute the jump back to line 20 if X is less than 25. The
PRINT message and the GOTO 20 are both conditional on the result of
the IF statement. If X is not less than 25, the computer will not process
the rest of the line, but will move onto line 40, to END.

The BBC Microcomputer is a little more tolerant of syntax in
statements than are many other computers. The word THEN is implied
in an IF statement (IF the cat is hungry THEN feed it), but it is not
necessary to include it. IF X = 25 THEN GOTO 40 is accepted, as is IF
X = 25 GOTO 40 and IF X = 25 THEN 40.

It is perhaps worth mentioning that, in other areas, the BBC machine is
a fairly dogmatic creature. If you specify that a program branch is to be
made only if the value of Z, for example, is equal to 6, the program will
continue in a never- ending loop if Z is not exactly equal to 6, no matter
how close it is (like 5.999999). If you think the value might be
fractionally different from the one you want as a condition for
branching, make sure you specify that the relational operator should
be, say, greater than 5.5, or greater than or equal to 5.9, rather than
just equal to 6.

To show the flexibility of the IF statement, enter and run the following
program, then return to the book for a discussion of the various parts

43

of the program. This game is based on one which was played in the
film "Last Year at Marienband". There are a certain number of
'matches' at the start of the game, and you and the computer take it in
turns to take one or more away. The maximum number you can take is
shown at the top of the screen. The player who takes the last match
loses. The computer is not infallible.

Matchsticks
10 REM xMATCHSTICKS*
20 E^O♦Z-15+RND(9)tCLS
30 IF 2*(Z/2)-Z THEN Z=Z+1
40 H-2+RND(2)
50 PRINT '""MAXIMUM TO TAKE IS "JH"
60 IF E>0 PRINT "YOU TOOK " JEJ

TAB(20):"I TOOK "Q"
70 FOR K=1 TO Z
80 PRINT KJ” "I
90 IF RND(4)"1 PRINT

100 NEXT K
110 INPUT""HOW MANY WILL YOU TAKE",E
120 IF E>H OR E<1 THEN 110
130 CLStZ=Z-E
140 IF Z=0 PRINT"'""I WIN"t END
150 Q=Z-1-INT((Z-1)/<H+1))x(H+l)+RND(4)~1
160 IF Q>Z OR Q<1 OR Q>H THEN 150
170 Z^Z-0
180 IF Z=0 PRINT "'"I TOOK "J

QI", SO YOU WIN".END
190 GOTO 50

Here is a sample run of it:

MAXIMUM TO TAKE IS 3

MAXIMUM TO TAKE IS 3
12 3 4 5

8 9 10 11 12
15 16 17 18 19

HOW MANY WILL YOU TAKE?3

44

YOU TOOK 3 I TOOK 3
1 2
3 4 5
7 8
9 10 11

HOW MANY WILL YOU TAKE?2
MAXIMUM TO TAKE IS 3
YOU TOOK 2 I TOOK 3

1
2 3 4

HOW MANY WILL YOU TAKE?1
MAXIMUM TO TAKE IS 3
YOU TOOK 1 I TOOK 2

12 3
HOW MANY WILL YOU TAKE?1
MAXIMUM TO TAKE IS 3
YOU TOOK 1 I TOOK 3

1
HOW MANY WILL YOU TAKE71
I WIN

6

12 13

5 6

4 5

10 Title
20 Assigns the variables, E is the number of matches taken by

the human player, Z is the starting number of matches
30 This IF statement checks a condition, and if it is so (i.e. Z is

an even number) adds one to it
40 Assigns a value of 3 or 4 to H
50 Prints out the value of H
60 If the human has made a move (i.e. E is greater than 0)

then PRINTS
70-100 Prints the numbers corresponding to matches left, using

the IF in line 90 to randomly start a new line
110 Accepts the player's input
120 Uses the IF statement to check the validity of the player's

move
130 Clears the screen, deducts the player's number from the

matches left
140 Uses an IF statement to see if the game is over. The END is

ignored if the IF condition is found to be false
150 Works out the computer's response
160 Uses an IF statement to check three conditions, any one of

which (if true) would mean the computer had thought of
an illegal move. If any of these three conditions is
evaluated as true, the computer returns to line 150 for
another move

170 Subtracts the computer's move from the matches
180 Uses an IF to see if the number of matches is zero, and if it

is concedes defeat, and ENDs
190 Sends action back to line 50 for another round

45

IF...THEN... ELSE
The BBC Microcomputer's dialect of BASIC contains a very useful
variation of IF. It can be programmed to do something if the condition
being tested for is found to be true, and something else, other than
just go to the next line, if the condition is found to be false. Try the
following, entering a series of numbers from one to nine. Line 1020
determines that any number except five triggers the message THAT
WAS NOT FIVE, and entering FIVE triggers THAT WAS FIVE. Notice
that the THEN is not needed in the line, although its presence is
implied.

1000 REM IF THEN ELSE
1010 INPUT"ENTER A NUMBER FROM ONE TO NINE"A
1020 IF A=5 PRINT "THAT WAS FIVE" ELSE PRINT "THAT WAS NOT FIVF"
1030 GOTO 1010

Graphs
You can use IF.. .THEN.. .ELSE to produce some very interesting
graphs. You simply enter the function you would like graphed, in
terms of X, in line 100. This is not the most efficient method of
graphing on the BBC Microcomputer, but it is useful at this point to
illustrate IF.. .THEN.. .ELSE. Try the formulae given, then create a
few of your own. It is probable that you will have to change the scaling
for certain formulae.

10 REM GRAPH
20 M0DE7
30 REM Enter the function you would like
40 REM graphed, in terMS of X,
50 REM and Y, in line 100
60 PRINT
70 FOR Y~10 TO - 10 STEP -1
80 PRINTYJ
90 FOR X--10 TO 10

100 IF Y-X*X<*5 PRINT "x"J ELSE PRINT
110 NEXT X
120 PRINT

46

130 NEXT Y
140 PRINT TA8(10)J"098765432101234567890"

>RUN
1OXXXXXXX♦♦»,♦,.xxxxxxx

C) XV XV XV W XV W XV Mr XV W XV XV XV XV XV XV
7 zK JR Ax zK aC ax M 4 444 $ m >K zK/K zK zK JK zK

QXXXXXXXXr♦«,tXXXXXXXX
*7 MZ MX W MZ MZ MZ MZ XV XV XV MZ XV XV XV MZ MZ/ AX Ax Ax Ax Ax AX Ax Ax 4 4 4 4 ^zRm/KznMzAztvzn

6XXXXXXXX, , « » (XXXXXXXX
5xxxx«*>kx. t t t ,xxxxxxxx
71 MZ MZ MZ MZ MZ MZ MZ MX MZ MZ MZ MZ MZ MZ XV MZ MZ MZ“AxAxAxAxAx«xAXAxAx4 4

m zv. Ax zn Ax AS AS AS AS 4 4 4 zrk Ai AS AS AS Ak AS AS

O MZ MZ XV MZ MZ MZ MZ MZ MZ MZ XV MZ MZ MZ SV MZ SV MZAX JK JK AX AX Ax Ax Ax Ax 4 4 jJhJKmmJRmflsJRJK

/R n\ /R As m As As ns m 4 ns ns ns As As ns /R As /R ns

nwwwvzwwwwv/wwwwwwwvwwww
U AS ns ns /R ns AS AS nS /R ns /R ns /Is As /R /Is ns jr^ As As

e|, /R As /Is /Is ns ns As /Is AS <R AS /Is AS ns AS AS AS ^R /R /R ns

.... ''zWXVWMZWXVWMZMZWXVXVWWMZWWWWWW
zr» ZR zA AX zrfc ZiX Zw Zo AX tn rn Ax AX /R AX /R AV /fi jn AX rn

Z*x MZ MZ VIZ MZ MZ MZ MZ MZ MZ VIZ VIZ MZ MZ MZ XV MZ MZ VIZ VIZ MZ MZ■■"vJ/KAva. AVJKaVAVAVAVAVAVAVAV AVAVAVAVAVAVAVAV

I As As As As AS ns /R As /R /R /R As ns As AS /R AS /R /R AS AS

-5XXXXXXXXXXXXXXXXXXXXX
7 MZ MZ XV MZ XV XV MX MZ MZ MZ XV MZ MZ XV X1Z MZ MZ MZ XV MZ MZ

*7 XV XV XV XV XV XV XV XV MX XV XV XV XV XV XV XV XV MZ XV MZ MZ / xRAxZnAlzKAvAx/txAxMzKMmMAvAxAvAxAxmm

O XV XV XV MZ XV MZ XV XV MZ XV XV MZ XV MZ MZ MZ MZ XV MZ MZ s^J Jr Jr /R JR JR JR JR JR JR JR JR JR ns JR JR JR JR ^R JR JR JR

/R AS rR /R /R <R AS ns AS AS AS AS /R AS AS AS /R /R /R AS

‘I ftwwwwwwwwwwwwwwwwwww
J* sJASAS/RASASAS/R AS AS /R AS /R /R AS AS AS AS /R AS AR AR

098765432101234567890

47

100 IP Y~XxX>.
>RUN

5 PRINT "x"; ELSE PRINT

10♦♦ ♦ ♦ ♦ ♦ .XXXXXXX.
9. 4 4 4 4 4 4 4

MJ MJ MJ JR JR JR JR 4 4 4 4 4 4 4 4

8. 4 4 4 4 4 4 4
Mf MJ MJ W MJ JR jR iR JR Ak 4 4 4 4 4 4 4 4

7. 4 4 4 4 4 4 4 W Mf W W MJ JR JR JR JR 4 4 4 4 4 4 4 4

6 4 4 4 4 4 4 4 4 W W MJ MJ MJ JR m JR JR 4 4 4 4 4 4 4 4

5 4
4 4 4 4 4 4 4 MJ MJ W MJ MJ ^R 4R JR JR JR 4 4 4 4 4 4 4 4

4.
4 4 4 4 4 4 4 ♦ XXX ♦ 4 4 4 4 4 4 4 4

3* 4 4 4 4 4 4 4 ♦ xxx* 4 4 4 4 4 4 4 4

2* 4 4 4 4 4 4 4 ♦ XXX* 4 4 4 4 4 4 4 4

1 4
4 4 4 4 4 4 4 ♦ ♦ x ♦ ♦ 4 4 4 4 4 4 4 4

0. 4

-It
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

-2. 4

~3» 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

-5. 4

-6. 4

-7. 4

-8» 4

-9. 4

10. 4

09876543210123^567890

100
RUN

IF ABS(Y) --XXX>4'5 PRINT I ELSE PRINT II 114
♦ t

10
9
8
7
6
5

3
7

4

1
0

-1
-7

4 44 ♦ ♦

4 44 4 4 44 4

44 4 4 444 4 4

4 4 4 44 4 4 44

4 44 4 4 44 4

4 4 4 4 4 4 4

44 4 4 4 4 4

4 44 4 4 4

4 44 4 4

444 4 4 44

W W MJ W MJ Mt? MJ/R JR JR JR JR JR 4

ur MJ MJ MJ MJ JR JR ^R

JR JR JR ^R

M/ MJ W MJ WJR m JR JR JR 4

5K JiC
5K JK
4 XXX
♦ XXX
♦ XXX

4X4

4 4 44 44

44 444

4 4 44 4 4

4 4 44 4 4

4 4 44 4 44

44 4 4 4 4 4 4

44 44 4 44 4 4

44 4 4 4 4 44 4 4

4 44 4 4 4 4 4 4 4

4 4 4 44 4 4 4 4 4

4 4 4 44 4 4 4

44 4 4 4 4 4 4

4 4 4 4 4 4 44

4 4 4

♦ XXX

4 44 4 4 44 4 4

44 4 4 4 4 44 4

4 44 44 4 4

48

100 IF7 SQR (AEiiS (YxX*2)) ~X< ♦ 5 PRINT
ELSE PRINT

>RUN
10 ❖ 4 4 4 4 4 4 4 4 4^4444444444

9 ♦ 4 4 4 4 4 4 4 4 4^4444444444

8 ♦ 4 4 4 4 4 4 4 4X4444444444

7 ♦ 4 4 4 4 4 4 4 4^4 4 44444444

6 ♦ « 4 4 4 4 4 4 4 4X4444444444

5 ♦ 4 4 4 4 4 4 4 4X44444444 XX

4 * ♦ 4 4 4 4 4 4 4
W W W W w4 m $ 4 4 4 zrv m m m

3 ♦ 4 4 4 4 4 4 4 ♦ x ♦ ♦ tXXXXXX

2 ❖ 4 4 4 4 4 4 4 4 4X4 *xxxxxxxx

1 4 4 4 4 4 4 4 4 4

0 ♦ 4 4 4 4 4 4 4 4 W W V/ Mf MZ•*T\ /V\ /8\ 2i\ /!% ji\ /»% /!\ /ft

-1 * 4 4 4 ♦ 4 4 4 4

-2 ♦ 4 4 4 4 4 4 4 4
M/ W M/ w w w v/ w wt M 4 XJKJKXXa\)K)K

-3 4 4 4 4 4 4 4 4 4
M/ W WP \V W W W

~4 4 ♦ 4 4 4 4 4 4 4
M/ M/ MZ W4 m 4 4 f 4 * A m m At

-5 ♦ 4 4 4 4 4 4 4 4 4X44444444XX

-6 4 4 4 4 4 4 4 4 4 4X4444444444

-7 ♦ 4 4 4 4 4 4 4 4 4^4444444444

-8 ♦ 4 4 4 4 4 4 4 4 4X4444444444

-9 ♦ 4 4 4 4 4 4 4 4 4X4444444444

10 ♦ 4 4 4 4 4 4 4 4 4X4444444444

098765*432101234567890

49

100 IF ABS(YxX)-XxX>♦5 PRINT
ELSE PRINT

>RUN
10.XXIIXXXXI.MIXXIIIII.
9♦♦xxxxxxxx♦xxxxxxxx..
8,♦♦xxxxxxx.xxxxxxx...

__ O W SV SV SV W SV W SV W W W W SV W SV SV
j 4 /K/K/K*«s?RMmM/tsJK/ls* *

__ n W SV SV SV SV VZ SV W SV SV UZ SV SV SV SV W SV SV

7. 4 wwwwww wwwwww4 4 4 4 4

6 ♦ ♦ WWWWW WWWWW* + 4 /ft /ft m /ft /ft /ft /ft /R Kx m 4 4 4 4 4

5. ♦ ♦ ♦ ♦ +)K)K)K)K«)K)K)K)Ko 4 4 4 4 4

4. 4 WWW WWW4 4 4 4 ♦ /ft/R/ft<^x/Rnx< $ 4 4 4 4 4

3. 4 ♦ ♦♦♦♦♦XXtXX„f 4 4 4 4 4

2. 4 4444444^4^4444 4 4 4 4 4

1. 4 44444444444444 4 4 4 4 4

0. 4 44444444444444 4 4 4 4 4

-1. 4 44444444444444 4 4 4 4 4

-2. 4 4444444^4^4444 4 4 4 4 4

-3. 4 4 4 4 4 4 4 3KX 4 4 4 4 4 4 4 4 4

-4. 4
SV W W W W SV4 4 4 4 4 «x /R 4 & ™ 4 4 4 4 4 4 4

-5 ♦ 4 WWWW WWWW4 4 4 4 /ft jxx /ft /ft + /ft /ft jrt 4 4 4 4 4 4

-6 ♦ 4 WWWWW WWWWW £ £ £ ^R H> /R ^X 4 4 4 4 4

-7. 4 wwwwww wwwwww £ /R ^R /R /R «x ^R £ ^xx ^x /R ^x /ft /R 4 4 4 4

-8. 4 w w w w w w w w w w w w w w /ft ^ft /R /R /x ^X ^ft £ /R ^ft ^ft ^X ^ft /ft 4 4

098765432101234567890

100 IF YxX-XxX/1♦l>0.25
PRINT *'x"$ ELSE PRINT "."J

>RUN
10 4 4 4 4 4 4 4 4 4 4 WWWWWWWWWW4 /R /ft /R /ft /ft /ft /R /ft /ft /R

9 4 4 4 4 4 4 4 4 4 4 w w w w w w w w w /x /ft /ft /R /R /ft ^R «ft /ft 4

8 4 4 4 4 4 4 4 4 4 4
xt/ xv xv xv xv xv w xv* /K/ft/lx/lx/ft/lx/ft/ft 4

7 4 4 4 4 4 4 4 4 4 4 w w w w w w w £ ^R /R ^R ^R ^ft Xx ^R Q 4

6 4 4 4 4 4 4 4 4 4 4
WWWWWW4 /ft /ft /ft /ft /ft /ft + 4 t 4

5 4 4 4 4 4 4 4 4 4 4
w w w w w4 ^b /ft /ft /ft /R 4> 4 4 f 4

4 4 4 4 4 4 4 4 4 4 4 ♦XXXX» 4 4 4 4 4

3 4 4 4 4 4 4 4 4 4 4 ♦ 4 4 4 4 4 4

2 4 4 4 4 4 4 4 4 4 4 4 XX 4 4 4 4 4 4 4 4

1 4 4 4 4 4 4 4 4 4 4 4444444444 4

50

0
1

4

4

*
4

4

*
4

*
♦

♦

c- ♦ 4 4 4 4 4 4 ♦ * ♦ ♦ 4 4 ♦ ♦

* 4 4 4 4 4 4 4 ♦ 4 ♦ ♦ ♦ 4 *
X..

3
4
5

4

4

<

4 * 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4

4 4 4 4

4 4 4 4

4

mx*
xxxxx*

4 4 4 4 4 4 4 4 4

4

4

4

4

4 4 4 4 4 4 4 4

4 4 4 4 4 4

-to
-7
-8
-9

4 <• 4 4

)K)K}KX<>KX>K ♦4

xxxxxxxx♦
< X)K>X)K>K5K>K)K)K

-1 0XX<)O:)K)KftX<X)K ♦

4 4

4 4

4

4 4 4 4 4 4 4 4

4

4

4

4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4

4

098765432101234567890
4 4 4 4 4 4 4 4 4

FOR/NEXT loops
FOR/NEXT loops are additional useful parts of your BASIC working
tools on the BBC Microcomputer. It makes sense to study them now,
because the last series of programs relied heavily on two FOR/NEXT
loops, the Y loop which started at line 70 and end at 130, and the X
loop which ran from line 90 to line 110. Because these are slightly more
complex than the simplest FOR/NEXT loops, well leave the
discussion of those alone for the time being.

A FOR/NEXT loop is made up of two statements used to control a
series of cycles of a part of a program. FOR begins the loop, specifying
how many times the loop is to be executed, and the NEXT statement
occurs at the end of the sequence, returning the program to the
statement line following the one containing the FOR command.

FOR statements are made up of the line number, following by the
FOR, a numeric variable (a single letter, or any combination of letters
and numbers starting with a letter, but without punctuation marks or
symbols), an equals sign, a numeric expression (a number, or a
previously assigned numeric variable), the word TO and finally,
another numeric expression (number of previously assigned numeric
variable) which is different from the first one. That may sound
incredibly complicated, but it is really quite simple.

51

The FOR line reads:

100 FOR J = 1 TO 100

or

100 FOR CAR = A TO B

The NEXT line, which terminates the loop, is of the form:

200 NEXT J

or

200 NEXT CAR

You can omit the control variable (the J or the word CAR) after the
word NEXT, but it is best in the early stages of your programming to
keep it there, just so you know what is going on.

The NEXT statement then, is made up from a line number, the word
NEXT, and the variable set as the control in the FOR statement, earlier
in the program. The NEXT sequence is used solely to tell the computer
when the sequence of programming which is being repeated is to stop.
When the value of the control variable (J or CAR) reaches the value set
in the FOR statement (the second numeric variable set in the FOR
statement), the program passes through the loop for the final time and
then continues with the line following the one containing the word
NEXT.

Enter and run these simple examples:

10 FOR A~1 TO 10
20 PRINT , Af2*A,A*A
30 NEXT A

RUN
1 2 1
2 4 4
3 6 9
4 8 16
5 10 25
6 12 36
7 14 49
8 16 64
9 18 81

10 20 100

52

10 A:~5
20 B-16
30 FOR controls TO E:
40 PRINT >control?2xcontrol>controlA2
50 NEXT control

>RUN
5 10 25
6 12 36
7 14 49
8 16 64
9 18 81

10 20 100
11 22 121
12 24 144
13 26 169
14 23 196
15 30 225
16 32 256

In the first example, the control variable is A, and line 20 prints out A
itself, two times A and A squared. Note that the limits of the control
loop are stated explicitly in line 10 (1 TO 10). In the second example,
the control variable is a word, 'control'. It performs exactly the same as
A does in the first example, with line 40 printing out the value of
control, or two times control, and of control square. Notice that the
little up arrow (found two keys to the right of the zero key) means
'raising to the power', so using this arrow followed by a 2 is the same
as multiplying something by itself (as at the end of line 20 in the first
example).

Note that the limits of the FOR/NEXT loop are two variables, A and B,
which have been previously defined. You will find there are many
programs when you will want a limited FOR/NEXT loop, with the
limits a result of things that have occurred elsewhere in the program.

53

Nested loops
As you've just seen, a FOR/NEXT loop allows us to alter the value of
one variable (by a count of one in the cases we've studied), to repeat a
programmed series of events a specified number of times. Now,
suppose there were two or more variables to be operated upon. In this
case, you would need to vary both values. This can be done quite
simply by nesting loops, in which one loop, controlled by one set of
FOR/NEXT statements, operates within another set.

Enter and run the following program, which nests a B loop within an A
loop. It also contains a third loop (M), to slow things down, but the
important loops for this demonstration are A and B.

10 REM FOR/NEXT - NESTED LOOPS
20 FOR A=1 TO 12
30 FOR B®1 TO 12
-‘IO PRINT B|" tines "lAI" is "JAXB
50 NEXT B
60 FOR M=1 TO 1000 ♦NEXT M
70 PRINT'''
80 NEXT A

When you run this, you'll see it prints out the multiplication table, from
1 X 1, to 12 X 12, pausing slightly between each set of numbers. The M
loop puts the pause between each set. Part of the run is:

T tines 7 is 28
5 tines 7 is 35
6 tines 7 is T2
7 tines 7 i s 49
8 tines 7 i s 56
9 tines 7 i s 63

10 tines 7 is 70
11 tines 7 i s 77
12 tines 7 i s 84

1 tines 8 is 8
2 tines 8 is 16
3 tines 8 is 24

54

4 times E3 is 32
times E3 i s 40

6 times E3 i s 48
7 times E3 i s 56

In this program, the control variable A stays at one, while the loop
controlled by B runs from one to 12. After the pause (line 60), the
control variable A increases by one, and the B loop runs through
again, this time with the A equal to two, and so on, until the B loop has
run through with the A equal to 12. There is no reason why you should
have only two nested loops.

It is vital that the control variables of nested loops be in the correct
order, that is, the first loop begun is the last one to end. Try swapping
lines 50 and 80 of this program,and see what happens. You should find
it prints out the 'one times table', and then stops with the error
message 'No FOR at line 80'.

Remember that the control variable for the NEXT statement need not
be stated when programming on the BBC Microcomputer. The clever
machine automatically knows which NEXT corresponds with which
FOR, thus removing the possibility of incorrectly nesting loops.
Change lines 50 and 80 into just NEXT, and delete the M from the end
of line 60. You should find the program runs perfectly. Although you
can omit the NEXT control variable, I repeat the suggestion given
earlier to leave it in, just to make it clear in your mind what is
happening.

55

STEP
For this next discussion, we need the program TABULATOR ROCKET
RANGE which was introduced earlier. You'll recall I suggested that
you should save it on tape so you could load it in again when needed,
in case you did not do so, here is the listing again.

10 REM TABULATOR ROCKET RANGE.
20 MODE?
30 FOR J~:L0 TO 1 STEP -1
*0 PRINT '"J
50 I-TIME
60 REPEAT UNTIL TIME-T>50
70 NEXT J
80 REPEAT
90 Q~RND(29)+1

100 U-128+RND(5)
110 FOR rocket=l TO 7*READ ROCKET*
120 PRINT TAB(0 > JCHR*(129)?"<"JTAB(Q)JCHR*(U)?

ROCKET*»TAB(36)?CHR*(129)t")"
130 NEXT rocket
1*0 T-TIME
150 REPEAT UNTIL TIME~T=2
160 SPACE :=:RND(10)
17 0 SOUND 16 , --RND (5) -• 10 , RND (3) --1 s RND (20)
180 FOR Pririt«l TO SPACE;
190 PRINT TAB(0>tCHR*(129)|"("JTAB(37)>")"
200 NEXT print
210 RESTORE
220 INTIME
230 REPEAT UNTIL TIME--T=2
2*0 UNTIL FALSE
250 DATA " + +++ "
260 DATA “ •♦•++ +++ "
270 DATA " +++ +++ 11
280 DATA " <*> "

The important lines for our discussion at this point are 30, 40 and 70.
You'll see when you run the program that this causes the numbers 10
down to 1 to appear on the screen. The word STEP (in line 30) after
the 1 controls this. Change the —1 following the word STEP to —2,
and see what happens. If no STEP is specified, the computer assumes

56

you want a positive STEP of 1, which is what has been needed in the
earlier examples in this section.

The STEP command, then, is used within a FOR/NEXT loop to allow
the user to specify the value of the increment (or decrement) of the
control variable. The STEP does not have to be a whole number,
although you must ensure — if the number which follows the word TO
in the initial FOR statement is lower than the number before the TO —
that the STEP is negative. Try the following examples:

10 FOR A=100 TO 1 STEP ••••12*5
20 PRINT A
30 NEXT A

>RUN
100

87 * 5
75

62.5
50

37*5
25

12*5

10 FOR A=:10 TO 1 STEP -0*719
20 PRINT A
30 NEXT A

>RUN
10

9*281
8*562
7.843
7*124
6.405
5.686
4.967
4.248
3*529
2*81

2*091
1*372

57

REPEAT/UNTIL
Whereas a FOR/NEXT loop should always run its full course, another
pair of statements — REPEAT/UNTIL — are available on the BBC
Micro which will cycle through a loop only until a specified condition is
satisfied. You'll see, if you look back at the listing of TABULATOR
ROCKET RANGE, in lines 50 and 60, the REPEAT/UNTIL sets a
variable T to equal the value of the internal clock (TIME), then holds
the program with a REPEAT UNTIL until the difference between T and
TIME is 50. Also within this program is a master REPEAT/UNTIL loop,
which starts in line 80 and terminates (UNTIL FALSE) in line 240. A
REPEAT loop which terminates with UNTIL FALSE will run for ever, or
until BREAK is pressed.

10 MODES
20 REPEAT
3 0 GCOL. 0fRND(16)-l
*f0 MOVE. RN.DC1280) ,RND(1024)
50 PLOT 85fRND(1280) ,RNDCI.024>
60 UNTIL FALSE

You'll find this simple program (which you should run in Mode 2
changing line 10 to Mode 5, if you have a Model A) produces a
splendid demonstration of chaotic triangles. Note that the REPEAT
(line 20) and UNTIL FALSE (line 60) makes the program run forever.

Now try the next program, which uses the UNTIL as a specified
control. The program is written for a Model B machine, but will work
adequately in Mode 5 on a Model A. It produces some startling results,
as though a stone has been thrown at the centre of the TV screen.

10 REM xxoKEJroken
20 REPEAT
30 MODEO
40 REPEAT
50 A=RND(8)-1
60 B=RND(8)-1
70 UNTIL AOB
80 VDU 19,0,8,0,0 ,0
90 VDU 19,1,A,0,0 ,0

100 REPEAT
110 C-RND(1280)
120 [>”RND(1024>

58

130 MOVE: 640*500
140 draw c*d
150 UNTIL RND(50)~25
160 UNTIL FALSE ’.

There are three REPEAT/UNTIL loops. The first one starts at line 20
and terminates at line 160. This is the master loop, which continues for
ever. The second loop starts in line 40 and ends in line 70. A and B, the
random numbers calculated in lines 50 and 60, control the foreground
and background colours for the 'broken glass', and this loop cycles
until A is different from B (see line 70). The third REPEAT/UNTIL
operates from line 100 to 150, and cycles until the random number
generated in line 150 is 25. You can work with this program to produce
a number of variations. One variation would ensure that every line
plotted was in a random colour, so that the background changed
colour slowly, but the foreground colour changed for every line.

GOSUB and RETURN
A subroutine is a block of program within a larger program which
performs one specific task. The main program is executed, line by line,
until the subroutine is called, by the GOSUB command. The computer
goes to the specified number, works through in line order from that
point, until it hits the word RETURN. This is the signal for the
computer to return to the main program, to the line after the one
which sent it to the subroutine.

A subroutine is useful if a particular set of calculations has to be carried
out a number of times within a program, and at different places within
the program. For example, in a financial program, there may be a
number of VAT calculations to be done at different points within the
program. Whenever this need arises, the program is told to GOSUB,
and it stays in this subroutine until it hits the word RETURN, when it
returns to the line after the GOSUB command.

A subroutine is written exactly like the main program, except that it is a
program within a program, and is bounded by two lines, one
containing the GOSUB and the other is the RETURN line. The GOSUB
command is made up from a line number, followed by the word
GOSUB, and another line number. The line 40 GOSUB 100 tells the
computer to branch to line 100 and continue executing the program in
order, just as if line 40 had said GOTO 100. However, when the
program reaches a line containing the word RETURN, the action

59

reverts to the main program, at the line number which follows the one
containing the GOSUB statement (in this case, the first line number
after 40).

A simple example, showing GOSUB and RETURN, is as follows. Enter
and run it a few times, then come back to the book for a discussion on
it.

10 REM KXMgosub/returri denoox
20 CLS
30 repeat
40 INPUT'''"Enter b nunber "A
50 GOSUB 100
60 UNTIL FALSE
7 0 REM XXXXXXXXXMXXXXXOKXXJKX
80 REM Subroutine follows
90 REM

100 PRINT '"Your nunber is "JA
110 PRINT J A?" squared is "JA*A
120 PRINT "The square root of "JA

J” is "JSQRCA)
130 RETURN

>RUN
Enter b number
Your number is

4573
4573

4573 squared is 20912329
The square root of 4573 is 67*6239603

After line 20 clears the screen, lines 30 and 60 set up the master
REPEAT/UNTIL loop. Line 40 asks you to enter a number, using
INPUT, then line 50 transfers control to the subroutine starting at line
100. The required calculations are carried out, and the results of them
printed, within the subroutine, then line 130 returns control to the line
after the one which sent control to the subroutine that is line 60. As
line 60 is the termination of the REPEAT/UNTIL, action goes back to
line 40, where a new number is requested, and the whole merry dance
begins again.

Enter and run the following program, which plays a kind of
BLACKJACK, to see subroutines doing something a little more
interesting than the demonstration we've just run.

The card game Blackjack is, as I suppose you know, pretty popular. In
his book Beat the Odds, Microcomputer Simulations of Casino
Games, (Hayden, 1980), Hans Sagan says it is "probably the most

60

popular and widely-played banking card game in the States. It is
played in gambling houses, private clubs, political clubrooms,
barracks, troops transports, back rooms of all kinds, and places you
may never have heard of". With a recommendation like that, how
could the program fail?

Mr Sagan's opinion is backed up by John Scarne, who points out in
his authorative work Scarne's Encyclopedia of Games: "Blackjack is
the most widely-played banking card game in the world". Sagan
points out that Blackjack is "the one casino game where the player
may have a chance". Part of that chance is based on the fact that the
cards removed from a pack as a game is played change the odds of
other cards appearing — and knowing the odds can be of some benefit
in deciding what to do. The player's slight advantage is stymied in this
version, because the BBC Micro has somehow acquired an infinite,
constantly-replenished deck of cards.

Despite this, the computer plays reasonably well, and will certainly
give you a run for your money. There is no direct betting in the game
and this is a feature you may well want to add in due course. You may
also, when you feel confident of your programming ability, change the
program so that it goes through a pack of cards before there is a need
to reshuffle. Enter and run the program, then return to the book for a
discussion on it.
10 REM **B1ackJack**
20 REM **(C) Hartnell 1982**
30 B$="The BBC Microcomputer has "
40 C$="The Mere human has “
50 M=0:MODE7:GOTO230
60 CA=RND<11)♦IF M>0 PROCsketch
70 IF CA=11 AND D+CA>21 CA=1
80 D=D+CA
90 IF MM AND CAO1 AND CA<11 PRINTCHRSC128+

RND(6))JCAJ" has been dealt”
ioo m=m+i:return
110 CA=RND<11)tPROCsketchJIF CA=11 AND B+CA>21 CA=1
120 time=o:repeat until timemoo :b=b+ca
130 IF MM AND CAO1 AND CA<11 PRINTCHR*(128+

RND(6))JCAJ" has been dealt”
140 RETURN
150 Z=128+RND(6)
160 PRINTzCHR$(Z)|"Enter A for another card"
170 PRINT TAB(3)JCHR$(Z)J"or S to stand"
180 g=o:g$=get$:g=-(g$="A")
190 RETURN
200 PRINT '''CHR$(128+RND(6)M"Do you

want another game? (Y or N>"
210 A$=GET$:iF ASC(A$)<> ASC('‘N”) RUN
220 PRINT 'z''CHR$(128+RND(6))|"OK> thanks for playing"?

SOUND RND(3),-15,RND(100)t1?GOTO220
230 print7z':d=o:b=o:gosub6o:h=ca
240 gosub6o:a=ca:gosubiio:e=ca
250 GOSUB110JF=CA

61

260 PRINT'CHRS(128+RND(6))JBtJH
270 PRINT'CHR$(128+RNDC6))$C$$E}“ and “JF
280 PRINTCHR$<128+RNDC6))$"totalling “JE+F
290 D=H+AtB=E+F
300 GOSUB1505IF G=1 THEN 380
310 IF D<17 THEN 430
320 IF DO21 PRINTCHR$<128i-RND(6));B$;D'CHR»(128+RND(6));C$;B
330 IF B=D AND BO21 PRINTCHRS(128+RND(6))J

“so this round is a"JCHR$(128+RND(6>)I“draw"
340 IF B>21 OR D?>21 THEN 20 0
350 IF B>D PRINT'CHR$(128+RNDC6)) JTABC9) T'You win!"
360 IF BCD PRINT'CHR*(128+RND(6));TAB(11>;"I win!”
370 GOTO200
380 GOSUB110
390 PRINT CHR$(128+RND(6)>;C$:CA;“t total is “IB
400 IF B>21 PRINT CHR$(129)J“You've busted, so I win’‘“♦GOTO200
410 GOTD300
420 TIME=0 »REPEAT UNTIL TIMEM50
430 PRINT 'CHR$<128+RND(6))*,B$|D
440 TIME=0:REPEAT UNTIL TIME>150
450 GOSUB60
460 PRINT CHR$(128+RND(6))J"The total is now “|D
470 time=o:repeat UNTIL TIME>100
480 IF D>21 PRINT CHRt(129)|"I've busted, so you win!’"IGOTO200
490 IF DC17 THEN 450
500 GOTO 320
510 END
520 DEF PROCsketch
530 IF CA=1 PRINTCHR$(129)|“ACE"♦ENDPROC
540 IF CACll ENDPROC
550 T=RND(3)
560 IF T=1 PRINT CHR$(130)|“Jack"
570 IF T=2 PRINT CHR$(131) *, “King"
580 IF T=3 PRINT CHR$(132)J“Queen"
590 ENDPROC

>RUN
8 has been dealt
3 has been dealt
The BBC Microcomputer has 2
The mere human has 8 and 3
totalling 11
Enter A for another card

or S to stand
5 has been dealt
The mere human has 5> total is 16
Enter A for another card

or S to stand
3 has been dealt
The mere human has 3> total is 19
Enter A for another card

or S to stand

62

The BBC Microcomputer has 11
5 has been dealt
The total is now 16
8 has been dealt
The total is now 24
I've busted# so you win!!
Do you want another game? (Y or N)
6 has been dealt
4 has been dealt
The E:BC Microcomputer has 6
The mere human has 6 and 4
totalling 10
Enter A for another card

or S to stand
6 has been dealt
The mere human has 6# total is 16
Enter A for another card

or S to stand
The BBC Microcomputer has 13
2 has been dealt
The total is now 15
ACE
The total is now 16
8 has been dealt
The total is now 24
I've busted# so you win!!
Do you want another game? (Y or N)
9 has been dealt
5 has been dealt
The BBC Microcomputer has 5
The mere human has 9 and 5
totalling 14
Enter A for another card

or S to stand
3 has been dealt
The mere human has 3# total is 17
Enter A for another card

or S to stand
The BE:C Microcomputer has 8
6 has been dealt
The total is now 14

63

3 has been dealt
The total is now 17
The BBC Microcomputer has 17
The mere human has 17
so this round is adraw
Do you want another qame? (Y or N)
OK, thanks for playing
OK, thanks for playing
OK, thanks for playing
OK, thanks for playing
OK, thanks for playing

Look at line 230. It includes an instruction to GOSUB 60. Referring to
line 60, we see CA= RND(11). CA is the card from one to 11, with one
as an ACE, and eleven a picture card. Line 70 checks to see if the
number dealt is an eleven, and if it is, checks to see if this would bring
the total over 21. If it does, the eleven is changed to a one. Line 100
includes the RETURN instruction, which sends action to the H = CA at
the end of line 230, the instruction after the one to GOSUB. The
computer is well able to find a RETURN destination like this buried
within a multistatement line, but the GOSUB destination must always
be at the start of a line. Your programs will be much easier to read if
they do not include any multistatement lines, but will take up more
space than necessary. It may well be worth writing a program initially
in single statement lines, then 'tightening it up' later, by joining lines
together.

ON GOTO.... ON GOSUB
The word ON, preceding either GOTO or GOSUB, produces a special
kind of branching, related to the IF/THEN result. An ON.. .GOTO or
ON.. .GOSUB statement is made up from a line number followed by
the word ON and the result of a previous calculation. This value is
followed by the words GOTO or GOSUB and a list of numbers,
separated by commas.

For example 150 ON X GOTO 200,300,400,550 will send action to line
200 if X equals one, to line 300 if X equals two, to 400 if X equals 3 and
to line 550 if X equals 4.

When a GOSUB is used instead of a GOTO command, the same thing
happens as with an ON...GOTO, except that at the end of the
subroutine, action reverts to the line after the ON.. .GOTO. Try the
following simple example:

64

10 REMxxori gosub deMOXX
20 REPEAT
30 X~F<ND(3)
40 FOR TO 500 ♦ NEXT J
50 ON X GOSUB 70, 90,110
60 UNTIL FALSE
70 PRINT "ONE"
80 RETURN
90 PRINT "TWO"

100 RETURN
110 PRINT "THREE"
120 RETURN

>RUN
ONE
TWO
TWO
TWO
THREE
THREE
TWO
ONE
THREE

This routine converts the value of X generated randomly in line 30 into
a word, using the ON.. .GOSUB in line 50.

Finally in this section, here are two 'poetry' programs which use
ON.. .GOSUB (see line 80) to randomly join words together. As you
can see from the sample runs, the 'poetry' produced is pretty awful,
although some lines (such as SPIRIT IS NEAR HUMAN HIGHROAD)
suggest a new era in the creation of old wise sayings.

10 REM xxxF'oetxxx
20 REM Showing ON GOSIJB
30 FOR J-l TO RNDC3)
^0 PRINT
50 NEXT
60 time==o:repeat until time>40
70 D:=RND(13)
80 ON D GOSUB 110,120,130,140,150,160,

170,180,190,200,210,220,230,230
90 TIME=0tREPEAT UNTIL TIME>9

100 IF RND(3)=1 THEN 30 ELSE 70

65

110 PRINT"WATCHING "JtRETURN
120 PRINT"HUMAN "J IRETURN
130 PRINT"DWELLING "J IRETURN
1-10 PRINT"IS NEAR "I tRETURN
150 PRINT’TEARING "HRETURN
160 PRINT"SPIRIT "J IRETURN
170 PRINT"ALIEN "HRETURN
180 PRINT"SMOKY "JIRETURN
190 PRINT"HIGHROAD "ItRETURN
200 PRINT"SELF "JtRETURN
210 PRINT"DREAMER "JtRETURN
220 PRINT"COMES 11JI RETURN
230 PRINT"WAITS THEN FOR "H RETURN

>RUN
SELF FEARING SMOKY
SELF
DWELLING SMOKY
WAITS THEN FOR IS NEAR
SPIRIT IS NEAR HUMAN HIGHROAD
WATCHING
SELF SPIRIT HIGHROAD SPIRIT COMES
SELF DWELLING
SMOKY ALIEN SPIRIT
SELF SELF WAITS THEN FOR
IS NEAR HUMAN HIGHROAD
FEARING DREAMER
COMES
WATCHING DREAMER WAITS THEN FOR COMES SMOKY
DREAMER
SELF HUMAN
HUMAN HIGHROAD ALIEN SMOKY IS NEAR
HIGHROAD COMES
FEARING DREAMER SMOKY WATCHING
FEARING SPIRIT WAITS THEN FOR SMOKY
FEARING HUMAN IS NEAR

10 REM xxxPoet***
20 REM Showing ON GOSUB
30 FOR J=1 TO RND<3)
40 PRINT

66

50 NEXT
60 TIME-01 REPEAT UNTIL TIMEMO
70 D»RND(13)
80 ON 0 GOSUE: 110 , 1.20 ,130,140 , 150 >160 , 170 >

180,190,200,210,220,230,230
90 TIME=0{REPEAT UNTIL TIME>9

100 IF RND(3)=1 THEN 30 ELSE 70
110 PRINT"VERDANT GLADES "{{RETURN
120 PRINT"WHISPERING HILLS "{{RETURN
130 PRINT-SOFT "{{RETURN
140 PRINT"HUSHED ”{{RETURN
150 PRINT-SHADOWED O'ER "{{RETURN
160 PRINT-SILENT " {{RETURN
170 PRINT-PATHWAY "{{RETURN
180 PRINT-LEAVES "{{RETURN
190 PRINT-WAVING "{{RETURN
200 PRINT-FALLING "{{RETURN
210 PRINT-YEARNING "{{RETURN
220 PRINT"LOVERS "{{RETURN
230 PRINT-TREADING SOFTLY "{{RETURN

LOVERS

LOVERS
WHISPERING HILLS

TREADING SOFTLY VERDANT GLADES HUSHED

HUSHED FALLING TREADING SOFTLY
VERDANT GLADES PATHWAY VERDANT

VERDANT GLADES VERDANT GLADES
PATHWAY

LOVERS

WAVING LOVERS PATHWAY

67

WHISPERING HILLS
VERDANT GLADES YEARNING WHISPERING HILLS

HUSHED

LEAVES

LOVERS SILENT

VERDANT GLADES YEARNING WHISPERING HILLS

TREADING SOFTLY VERDANT GLADES

LEAVES FALLING TREADING SOFTLY

DIM and ARRAYS
The DIM statement is used to set up a list which you can easily access.
You may find it necessary, in some programs, to refer to elements of a
long list of numbers, such as if you INPUT a quantity of DATA, and
you wish to use it in certain ways, such as PRINTing it in order or
magnitude.

An ARRAY is a set of memory spaces reserved in the computer, and
referred to by the name of the array, and by a subscript. To produce an
array to hold three elements, you enter DIM A(2) which creates spaces
for an array called A. To hold four elements, you enter DIM B(3). On
the BBC Microcomputer, there is always one more element of an array
than the number in brackets which follows the DIMensioning of the
array.

Enter and run the following program which should make it a little easier
to understand.

10 REM XX ARRAYS DEMO
20 DIM EK 3)
30 FOR A=0 TO 3
40 EKA) ^RND(IO)
50 NEXT A
60 FOR A-0 TO 3

68

70 PRINT ’’BC'IAr’) IS " JB(A)
80 NEXT A

B (0) IS
B(l) IS 2
B (2) IS
B (3) IS 10

E:<0> IS 2
E: < 1) IS 9
B(2) IS 9
E: (3) IS 3

As I pointed out, an array contains one more element than the number
which is used to dimension it, so the array B in the sample program
contains four elements. You may well find it easier to 'forget' that the
subscripts start at zero, and dimension an array with the number of
elements you need, ignoring array element subscripted zero. Note that
elements of an array are called subscripted variables.

As you can see from line 20 of the program you've just run, the
computer needs you to DIMension an array before you can use it, with
a DIM statement. The DIM statement is made up of a line number
followed by the word DIM, and the name of the array, with the size of
the array enclosed in brackets.

You can dimension more than one array at a time by using a line as
follows: 100 DIM A(4),B(2),S(60). Just separate each of the array
names with a comma.

The arrays we've been talking about so far are one-dimensional arrays,
suitable for such things as holding a list of numbers. However, you can
have arrays of more than one dimension. These arrays are called,
reasonably enough, multidimensional arrays, and are set up with a
DIM command having more than one subscript. Enter and run the
following program:

10 REM xx MULTI-DIMENSIONAL
20 REM ARRAYSxx
30 DIM A(3,3)
-^o FOR E!~0 TO 3
50 FOR 0=0 TO 3
60 A(E, C)-RND(9)
70 print "Acwvicr) is
80 NEXT C

”JA(BtC)

69

When you run it you'll see something like this:

90 NEXT B
100 PRINT 012 3"'
110 FOR B»0 TO 3
120 PRINTJBI" ";A(B,0)r’ "|

A(B,1);" "JA(B,2>J" "JA(B,3)
130 NEXT B

A(0,0) IS 3
A<0,l) IS 4
A(0,2) IS 2
A(0,3) IS 3
A(l,0) IS 5
A<ltl) IS 7
Ad,2) IS 6
Ad,3) IS 3
AC2,0) IS 9
A(2,l) IS 6
A(2,2) IS 8
A(2,3) IS
A(3,0) IS 6
A(3,l) IS 8
A(3,2) IS 1
A(3,3) IS 7

0 1 2 3

0 3 4 2 3
1 5 7 6 3
2 9 6 8 4
3 6 8 1 7

Firstly the elements of the array will be filled with numbers between
one and nine, and these are printed out by line 70 so you can see what
is held by each element of the array. The little table printed below them
shows how the elements of the array are organised. Any element can
be accessed by giving its co-ordinates within the array. If this is so,
element 3, 3 should lie where the two threes intersect, i.e. on the
number 7. You'll see from looking above in our sample run that, in
fact, A(3,3) does equal 7.

DIMensioning an array consumes memory, so do not set up an array
larger than you need. The number of elements in an array is the first

70

number within the brackets plus one, multiplied by the second number
plus one. Therefore, the array A(3,3) has 16 (3 plus 1 times 3 plus 1)
elements. You can see from our sample run that this is so.

There is no reason why you should not have arrays with more than two
dimensions, except for the fact that they can quickly become quite
difficult to handle, and the number of elements rockets quite
alarmingly. Here is a program to DIMension and fill a
three-dimensional array. Although the array is only A(2,2,2), you can
see the number of elements is quite large(3*3*3)

10 REM x* MULTI-DIMENSIONAL
20 REM ARRAYS**
30 DIM A (2,2,2)
^0 FOR B-0 TO 2
50 FOR 00 TO 2
60 FOR D-0 TO 2
70 A (B> C,D)-RND<9)
so print
90 PRINT “) IS nJA(B,C,D)

100 NEXT D
110 NEXT C
120 NEXT B

>RUN
A (0,0,0) IS 9
A (0,0 11) IS 2
A(0,0,2) IS 5
A(0,1,0) IS 3
A (0,1,1) IS 4
A(0,l,2) IS 7
A(0,2,0) IS 7
A (0,2,1) IS 5
A(0,2,2) IS
Ad,0,0) IS 6
Ad,0,1) IS 7
Ad,0,2) IS 2
A d , 1,0) IS 2
A d , 1,1) IS 9
Ad, 1,2) IS 9
A d , 2,0) IS 7
Ad,2,1) IS 6
Ad,2,2) IS 8
A(2,0,0) IS

71

A(2,0,l) IS 3
A(2,0,2) IS 2
A(2,1,0) IS 4
A(2,l,l) IS 5
A(2,l,2) IS 1
A(2,2,0) IS 1
A(2,2,l) IS 9
A(2,2,2) IS 4

Increase the number of dimensions to five, as in our next example, and
although it is only A(1,1,1,1,1), there are now 32 (2*2*2*2*2)
elements.

10 REM x* MULTI-DIMENSIONAL
20 REM ARRAYS**
30 DIM A(1 11»11► 1,1)
^0 FOR B-0 TO 1L

50 FOR C=0 TO 1
60 FOR D=0 TO 1L

70 FOR E~0 TO jL
80 FOR F~0 TO 1L
90 A(B,C,D ,E,F) -RND(9)

100 PRINT " A("?E>♦<1 ii ♦ p ♦ ii n«r\
110 PRINT “) IS ";a<b,c,d,e,i
120 NEXT F
130 NEXT E
HO NEXT D
150 NEXT C
160 NEXT B

>RIJN
A(0 ,0,0,0 ,0) IS 3
A (0 ,0,0,0 ,1) IS 9
A(0 ,0,0,1 ,0) IS 1
A(0 ,0,0,1 ,1) IS 7
A(0 ,0,1,0 ,0) IS 6
A(0 ,0,1,0 ,1) IS 1
A(0 ,0,1,1 ,0) IS 8
A(0 ,0,1,1 ,1) IS 9
A(0 ,1,0,0 ,0) IS 5
A(0 ,1,0,0 ,1) IS 5
A(0 ,1,0,1 ,0) IS 1
A(0 ,1,0,1 ,1) IS 8

72

A(0 11 d d d> IS 8
A(0 ? 1 d d d) IS 1
A(0 ,1 d d d) IS 9
A(0 d d d d) IS 3
A(1 >0 d d d) IS 2
A(1 >0 d d d> IS 1
A(1 ,0 d f 1 d) IS
Ad ,0 d d d) IS 9
Ad ,0 d d d) IS 7
Ad d t 1 d d) IS 3
Ad d * 1 d d) IS 1
Ad ,0 f 1 d d) IS 2
Ad ? 1 d d d) IS 2
Ad d d d d) IS 8
Ad >1 d d d) IS 1
Ad d d d d) IS 9
A (1 r 1 d d d) IS
Ad d f 1 d d) IS 8
Ad f 1 d f 1 d) IS 2
Ad d t1 d d> IS 6

Here is a version of the game MASTERMIND (the name is copyright
Invicta Plastics) to show single-dimensional arrays in use. The game is
simple to play. The computer 'thinks of' a four-digit number, and you
have ten guesses to work it out. A correct digit in the wrong position
within the code gives you a 'white', while a correct digit in the correct
position gives you a 'black'.

10 REM kxMASTERMIND
20 M0DE7
30 DIMCK) ,G(4)
zf0 CLS
50 PRINT''ZCHR(133)
"I 8M thinking of a four-digit nunber/’

60 PRINTCHR$<133)?"which you
have 10 goes to discover"'

70 PRINT''CHR*(129)?"All four
digits are different."'''

80 PRINTCHRX 129) J"Press any key to begin"
90 A$==GET$

100 CLS? PRINT'"
110 C(1)®RND(9)

73

120 FOR Z=2T04:C(Z)«RND(9)
130 F 0 R J •-1T 0 Z 1 i IF C (J) === C (Z) T H EZ N110
140 NEXT?NEXT
150 forg-itoio:printchr$(133):

"Enter guess number "JG
160 INPUT A t Al-A ♦ PRINT

CHR$(11):CHR*(11):CHR$(11)
170 FORZ=1TO4tG(Z)«A-1OxiNT(A/l0)
180 A=INT(A/10).NEXT
190 b=o:w~o
20 0 F 0 R Z »1T 0 4:IF C (Z)<>G(Z)T HEN22 0
210 B=B+1IG(Z)=0
220 NEXT
230 FORZ=1TO4 tIFG(Z)=0THEN270
240 FORJ~1T041IFC(Z)<>G(J)THEN26 0
250 W==W+1
260 NEXTJ
270 NEXTZ
280 PRINTA1 :CI-IR$(132): "scored":

CHR$ (129) J B: " black" :: IFBO1 PRINT"®" :
290 PRINTCHR$(132): "arid" :CHR$(129) :w:

" white": IIFWO1 PRINT"®"
300 IFW=1PRINT
310 IFB=4 PRINTCHR$(133):"You guessed it.,

♦ in Just ":g:" guess":tIFG>l PRINT "es"
320 IFBO4NEXTG
330 PRINT CHR$(134):"The code was":

chr$ (129): c (4): co) :c (2) :c(i)

The next program, to keep your personal finances in order, uses the
array A to hold the relevant amounts of money.

It is a fairly simple, but very useful, personal accounts program. When
you first RUN it, you'll see that the balance — naturally enough — is
zero. You can work out a series of accounts by using GOTO 70,
instead of RUN, to keep the 'previous balance' (variable B) intact.
Note that the Centronics printer has turned all the pound signs into a
single apostrophe ('). Enter these as pound signs.

The program is set up to deal with six categories — cheques, credit
cards, rates, mortgage, standing orders, and monies in — as well as a
seventh, salary earned, but can easily be modified to handle as many
categories as you like. Simple change the six in line 40 (M = 6) to the

74

number of categories you need. As well as this, you'll have to add
additional data on the ON F GOSUB line, line 180, so the computer will
have extra destinations for additional categories. Simply add the
categories before the start of the initialisation procedure (line 400).
Note that 'monies in' are recorded as negative numbers, and will be
shown as such in the display, which is updated after each entry is
made.

It would be very easy to modify this program to give you an option to
dump the accounts onto a printer. The modification should be entered
between lines 210 and 220.

Note the use of the GET function in line 540, to stop the program until
any key is pressed.

10 REM ^Personal accounts*
20 REM (C) Hartnell/Ron Jones
30 MODE 7
40 M“6
50 DIM ACM)
60 PROCinitialise
70 GOSUB230
80 INPUT'"Any changes (Y or N)"Z$
90 IF Z$:~"N" THEN 20 0

100 SOUND l,-7,RND(50)+75,3
110 INPUT7 "Nunber "Kill- K>M OR I«1 THEN 110
120 SOUND 1 ,--7, RND (50)+75,1
130 INPUT'"New anount"E
140 IF K~6 E~-E
150 A(K)~E
160 GOTO 70
170 PRINT FJ
180 ON F GOSUB 330,340,350,360,370,380
190 PRINTTAB(4) |"'"|A(F)
200 INPUT"Salary"S«GOSUB230JR-S-T+B
210 PRINT"Balance '"JRJB^R
220 END
230 T=0tCLStPRINT''TAB(12)?CHR$(128+RND(5))J

"Personal accounts"
240 PRINT'TAB (4) J "Previous balance '"*,B'
250 FOR F=1 TO M
260 SOUND INTCF/2) ,--RND(15) ,F*20 ,RND(F)
270 PRINT 'Ft

75

280 ON F GOSUB 330,340,350,360,370,380
290 PRINT" S"{A(F)
300 T=T+A(F)
310 NEXT F
320 RETURN
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

PRINT CHR$(133){"Cheques out"{1RETURN
PRINT CHR$(129){"Credit card(s)"{{RETURN
PRINT CHR$(130){"Rates"{{RETURN
PRINT CHR$(131){"Mortgage"{{RETURN
PRINT CHR$(132){"Standing orders”{{RETURN
PRINT CHR$(133){"Monies in"{{RETURN
REM xxxxxxxxxxxxxxx
DEF PROCinitialise
B=:0
SOUND 1,-5,100,7
PRINT' ' ''"This is a personal accounts prograM"
PRINT'"To save the balance after an earlier"
PRINT "run, use GOTO 70 rather than RUN*"
PRINT' "The prograM is set up at present"
PRINT "to cater for six itens* If you need"
PRINT "to have More, change the value of M"
PRINT TAB(6){"in line nunber 40♦"
PRINT "Note that"{CHR$(129){"Monies in"
PRINT "is shown as a negative nuMber"
PRINT' "Press any key to start the prograM*♦
Z-:GET

540 ENDPROC

So far we've been looking at numeric arrays. Note that the name of the
array does not have to be a simple variable like A, B or C. Here are
some sample valid array names:

10 REM
20 REM
30 DIM
40 DIM
50 DIM
60 DIM
70 DIM

VALID ARRAY NAMES
5^ MZ MZ \1Z MZ W MZ A1Z

jR /Tb ^R ^R tn ^R jR ZR m ZR m ^R ^R

ARRAY(9)
array(9)
end„of„the_worId(32,5)
My._dog_is_black(30,44,2)
A234C76)

76

Notice that the array called 'ARRAY' is quite different from the one
called 'array'. The arrays 'end_ of_ the_ world' and
'My_ dog_ is_ black' contain the underline character (shift on the £
key), not the hyphen or minus sign. Line 70 shows another valid array
name. So long as it starts with a letter, and does not contain symbols
or punctuation (apart from the pound sign and the underline) it will be
accepted as a valid array name.

String arrays
You can also have string arrays, which are very similar to numeric
arrays. Enter and run the following program to see the string array in
practice, entering five words (each followed by RETURN), when
prompted.

10 REM STRING ARRAYS
20 DIM A$(4)
30 FOR E:=0 TO 4
40 INPUT A$(B)
50 NEXT B
60 FOR E:=0 TO 4
70 PRINT A$(E:)
80 NEXT B

>RUN
?WATER
7REAS0N
?WASTE
7TERR0R
?ANGLOPHILE
WATER
REASON
WASTE
TERROR
ANGLOPHILE

The BBC version of BASIC is far more tolerant of array names than
most other BASICs. Here, for example, are some of the valid string
array names:

10 REM VALID ARRAY NAMES
20 REM xxxxxxxxxxxxx^xxx

77

30 DIM ARRAY*(77)
40 DIM TESTING*(87,23)
50 DIM better „Mari_th8n„you*(12,2,2)

Note that the main difference between a string array and a numeric
array is the dollar sign immediately following the name. This tells the
computer the name refers to a string.

Here's a string sort program to show string arrays in use. As set up,
and as demonstrated in the sample run, the program caters for five
words. To adapt it for more, change the 5 in lines 20, 30 and 40 to the
number of words you need to sort. This introduces a slight redundancy
as a string array (like a numeric array) starts at zero, rather than one,
but it is simpler to pretend to forget about the zero element when
analysing how a program of this type works, than it is to try and keep
the zero element in mind.

10 REM XXSTRING SORTxx
20 DIM W*(5)
30 B=0tG=5
40 FOR A-l TO 5
50 INPUT W$(A)
60 NEXT A
70 Z=1
80 B=Z+1
90 IF7 B>G THEN 160

100 IF W*(B)>W*(Z) THEN 120
no z=z+i:goto80
120 Q*~W*(Z)
130 N*(Z)“W*(B)
140 H*(B)-Q*
150 GOTOllO
160 PRINT W*(G)
170 G=G~1
180 IF G>0 THEN 70

>RUN
7LATCH
7BREATH
?BREAD
?DRAIN
7DRAG0N

BREAD
BREATH
DRAGON
DRAIN
LATCH

78

There are, then, two primary uses of the DIM statement, to create
arrays for (a) numeric arrays; and (b) string (alphanumeric) arrays.
There is a third use of the DIM statement which is used to reserve bytes
in memory. To reserve n bytes, you enter DIM A n-1. There must be a
space between the A and n-1, and there are no brackets. Use of the
DIM statement for this purpose is outside the scope of this book, but is
mentioned for completeness.

String Handling
Our discussion of string arrays leads us neatly into strings, and string
handling. As you've probably realised by now, a string is a collection of
alphanumeric characters within quote marks (including symbols and
spaces, if desired). It is assigned to a variable whose name ends with a
dollar sign. The same names which were given as valid for string arrays
are valid for string names. So A$, niggle$, WORD$ and
HI_ THERE_ BOB$ are all valid string names. Strings are assigned in
much the same way as are numeric variables, by a statement of the
form A$ = "HI". The LET (as in LET A$ = "HI") is optional, but
makes for greater sense in the earlier stages of programming.

There are a number of very useful string functions, which can be used
for manipulation of strings, and for extracting parts of the strings. The
functions are:

ASC(X$) This gives the ASCII code of the first character in
X$, so if X$ equalled BBCMICRO, ASC(X$) would
give 66.

CHR$(66) We can check to see if, in fact, 66 is the code of the
first letter of X$ (i.e., if it is the code of B) by asking
the computer to PRINT CHR$(66). This goes give a
B. In effect, CHR$ is the opposite of ASC, and
turns a code back into a character.

LEFT$(X$,n) This gives a string containing the n leftmost
characters of X$, so LEFT$(X$,3) will give "BBC".

LEN(X$) This function gives the length of a string, so using
our string, X$, of "BBCMICRO", we get LEN(X$)
of 8.

MID$(X$,n,m) This string function produces a string from X$
which is m characters long, starting from character
number n. MID$(X$,3,4) gives "CMIC".

RIGHT$(X$,n) This function is the opposite, as may be expected,
of LEFT$, and gives the n rightmost characters in
the string. RIGHT$(X$,5) gives "MICRO"

79

STR$(A) This turns a variable (A) into a string, so if the
variable was 234, the string version would be
"234". This may not seem to be much use, but
allows certain manipulation of numbers when they
are strings which would be extremely difficult in
their numeric form.

VAL(X$) This is the 'opposite' of STR$(A) and takes the first
numeric value found in the string and turns it into a
number. Thus VAL(X$), where X$ equals ''22 +
34" would return 22. In some BASICs, the VAL
function evaluates the whole of the string, so VAL
("22 + 33") would give 55. On the BBC Micro
however, it gives 22.

Here is a printout from the BBC Microcomputer showing the string
functions in operation.

>X$^,,BBCMICROH

>PRINT ASC(X$)
66

>PRINT
B

CI-IRM66)

>PRINT
BBC

L.EFT*(X*, 3)

>PRINT LEN(X*)
8

>PRINT
CMIC

MID*(X*,3 ,4)

>PRINT
MICRO

RIGHT*(X* >5)

>X*="12+43"
>PRINT X*
12+43

>PRINT VAL. (X*)
12

>X=z 12+^3

80

>PRINT X

>X$=STR$(X)
>PRINT X$
55
>PRINT LEN(X$)

2
>X$="22+54+43"
>P.XS
22+54+43
>X=VAL(X$)
>P.X

22

>X$="22/22"
>X~VAL(X$)
>P»X

22

Now we have a version of the program ALPHA, which shows ASC
and CHR$ in use. The computer 'thinks of' a letter of the alphabet, and
you have to try and guess it. This program runs in Mode 7, and has a
'highest score' feature. In this case, it is a lowest score feature, as you
are trying to guess the computer's letter in the shortest number of
goes.

Run the program, then return to the book for a discussion on it.

10 REM
20 REM Showing the use of ASC and CHRS
30 CLS
40 D=0
50 C=1tA=64+RND(26)
60 SOUND 1,-15,120,20
70 PRINT77CHRS(128+RND(6)) | "I an thinking of a letter♦ ♦ . "
80 PRINT77CHRS(128+RND(6)>I"Try to guess it*.*"
90 PRINTzCHRS(128+RND<6))J"Enter your guess nunber "C

100 INPUT AS
110 IF ASC(AS)=A THEN 180
120 PRINTzCHRS(128+RND(6))}"No, it is not "AS
130 PRINT7CHRS<128+RND(6))I"Try closer to the "
140 IF ASCCASXA PRINT CHRS (128+RND (6)) J "end" ♦,

ELSE PRINT CHRS(128+RND(6))J"start"J
150 PRINTCHRS<128+RND(6))|"of the alphabet"
160 C=C+1
170 GOTO 90
180 PRINT7CHRS(128+RND(6))|"Yes, I was thinking of "AS

81

190 F'RINTZCHR$<128+RND(6)) |"That took "C" guesses"
200 IF C<D OR D=0 THEN D=C
210 PRINTZCHR$<128+RNDC6))|"Your best

score this gane is "Dzzz'*
220 TIME=0
230 REPEAT UNTIL TIME?>30 0
240 GOTO50

The variable for the "highest score" is D, and this is set to zero line 40.
The number of guesses is controlled by the variable C, set in line 50.
The balance of line 50 chooses a letter. What it is actually doing is
choosing a number between 65 and 90, because 65 is the code of A
(PRINT ASC ""A" would give 65) and 90 is the code of Z. Line 60
produces a short burst of sound to indicate that the computer is ready,
and lines 70 to 80 announce that it is "thinking of a number". Line 90
requests the guess, giving the number of the guess (C) as it does so.
Line 100 accepts the player's guess as a string (A$). The code (ASC) of
this guess is compared with the computer's number (A), and if they
are the same, action is sent to line 180 where the "congratulations"
message is printed out.

Line 140 uses the IF/THEN... .ELSE we learned about earlier to tell
the player to try closer to the beginning or the end of the alphabet.
Line 160 adds one to the guess count, and line 170 sends the computer
back to line 90 for the next guess.

The next program — Music Maker — uses other string functions
which allow you to enter your melody as a string, which is then
interpreted, and the music played.

The principle of the program is very simple. The BBC Micro's sound
command has four parameters, and is written in the form SOUND 1,
-15, 128,4. The first number after the word sound chooses the
channel (0 to 3), the second is the volume (-1 to -15, with -15 the
loudest), the third number is the pitch (0 to 254) and the fourth is the
duration (from one upwards).

The channel (parameter one) is fixed in this program to be channel one
(the first number after the word SOUND). The volume varies randomly
from -11 to -15, the pitch and duration are set by the melody which
you enter as a string. (The SOUND command will be looked at in more
detail a little later).

Lines 40 and 50 set the initial display to tell you to "Enter your song",
and — once you have done this — to determine the speed, from one
(very fast) to nine (slow). The speed is accepted in lines 80 and 90.

The main REPEAT/UNTIL loop, which actually turns the elements of
the string into "music", runs from line 110 to 200. Line 120 calls up a
procedure (PROCdisplay) to print the words "Music Maker' in a
random colour, on a randomly coloured background, on the screen.

82

How to enter a song:

The program works by accepting the notes you need as letters,
running as follows: CDEFGABcdefgabx, Note that the highest 'c' is
accepted as an 'x'. After each letter comes a number, which
determines the duration on the note. A rest is shown by a P (for
'pause'), so a string which read "A3B4c5P2c3" would play the note A
for a count of three, followed by B for a count of four, c for five, a rest
of two then c again for three. The program will play the music over and
over again until you press BREAK.

There are three sample songs, which you can enter by typing MODE 4,
RETURN, then GOTO 270. The program will quickly stop with an error
code. To play the first song, enter — as a direct command — A$ = Z$,
then follow this by GOTO 80, when you will be asked how fast you
want "Cielito Lindo" to be played. To get song two, enter A$ = M$,
followed by GOTO 80. To get your BBC Microcomputer to play scales,
enter SCALE$ = A$, then GOTO 80. You can easily store tunes
you've worked out in strings in this way.

10 REM *Music Maker*
20 MODE 4
30 REM (C) HARTNELL 1982
40 VDU 19,3,3,0,0,0
50 UDU 19,0,4,0,0,0
60 PRINT" '
70 INPUT"Enter your song "AS
80 PRINT"How fast? 1 (very fast) to 9 (slow)
90 SF’EEDS=GETS ♦ TEMPO=ASC (SPEEDS) -48

100 REM***********
110 REPEAT
120 PROCdisplay
130 FOR J=1 TO LEN(AS)-1
140 BS=MIDS(AS,J,1)
150 N^-53*(BS«"C")-61*(BS="D,,)-69*(BS=" E")

-73*(BS-”F")-81*(BS~"G")-89*(BS~"A")
-97*(BS="B")-101*(BS="c")
-117x<B$==,,e,,)~121x(B$=,,f,,)~129x(B$=,‘<a,,>
-137*(BS~"a")-145*(BS~"b")-149* (BS="'x“)

160 D=VAL(MIDS(AS,J+l,1))
170 IF BS-"P" THEN GOTO 220
180 SOUND 1,-(RND(5))-10,N,D*TEMPO
190 NEXT J
200 UNTIL FALSE
210 REM**************
220 FOR Z=0 TO D*TEMPO
230 SOUND 1,0,0,0
240 NEXT

83

250 GOTO 190
260 REM ****S3rtple songs follow****
270 Z$="clclA2BlGlclClA2BlGlclclA2B1G1F1D5

BlBlB2AlGlFlFlD2ElFlGlGlG2FlElDlC5e3d2clA6d3
d2clelc4GlA2GlAlAlGlfIf ld2BlGlAlA1G2F1G1E1D1C8'' t
REM Cielito Lindo

280 REM*************
290 M$="G3E1G3E1G1A1G1F1E1G2G1C1C1C1D1E1E1E1E1

D1D1D1E1D3P1G3E1G3E1G1A1G1F1E1G2G1C1C1C1D1E1E1
ElClDZClBlClF'lclBl A6cl A1G6C1B1C1C1C1D1E2E1C1D2C1B1
C1P1c1B1A6c1A1G6 ElDlClClClDlE2ElClD2ClBlC'4P‘£t" t
REM SHE WORE A YELLOW RIBBON

30 0 REMxxxxxxxxxxxxx
310 SCALE$=,,C1D1E1F1G1A1B1c4P4m: SCALE
320 REMxxxxxxxxxxxxx
330 DEF PROCdisplay
340 CLS
350 UDU 19,3,RND(3),0,0,0
360 VDU 19,0,RND(7),0,0,0
370 PRINT TAB(RND(20) ,RND(26))•'## Music Maker *♦”
380 ENDPROC

GET, GET$,
IN KEYS

INKEY,

These four commands are related, but they behave in slightly different
ways, and expect different input from the keyboard. They share the
characteristic that you do not need to press RETURN after pressing a
key.

GET
This waits for a numeric input before continuing. It will wait forever for
your key press. Try the following, waiting a different time before each
key press. The reason for the 'different time' will become clear in due
course. Enter a number from one to nine, by pressing the key of that
number, and you'll see it print out YOU PRESSED 6, YOU PRESSED 1
and so on. Touch the zero key to end, when it will print out YOU
PRESSED 0 and on the next line END OF DEMO.

84

10 REM **GET DEMO**
20 REPEAT
30 A-GET
40 PRINT 11 YOU PRESSED n;A-48
50 UNTIL A«48
60 PRINT “END OF DEMO”

The code of the "1" key is 49, so subtracting 48 from this code (which
is what the keyboard reads), allows it to print out the number of the
key you pressed. Try touching some of the alpha, or control keys.
TAB, for example, will give -39 and RETURN will give -35. It is
useful to build up a list of the code which each key returns for use in
interactive games and other programs.

The next program — Prediction — uses the GET function. In this
game, you have to try and anticipate the number (from one to nine)
the computer will think of next. The computer's number is shown on
the screen near the top, and the bottom number is the score. The
lower the score at the end (when you manage to successfully predict
the computer's number), the better. This is a fairly trivial game, but
shows GET in action, and may well give you ideas for better games
you can write. The screen will stay blank until you press a key.

10 REM *xPrediction*x
20 MODE7
30 E=9
40 W=RND<9)
50 Q=0
60 REPEAT
70 Z=GET-48
80 IF Z>0 AND Z<10 PRINTTAE:(E, 12) |CHR$

(128+RNDC6))J"Your nunber is "JZ
90 0=0+1

100 IF RND(3)>1 THEN 120
110 W=RND(9)
120 PRINTTAEJ (5»8) I CHR$ (129+W/2) "My number is
130 PRINTTABCE,14)?CHR$<128+RNDC6)) T’The score is "JQ
140 IF W=Z THEN 130
150 UNTIL FALSE

85

GET$
GETS is similar to GET, except that it waits for a string input (one
character long). Here's a variation of our first program for GET,
showing this.

10 REM **GET$ DEMOX*
20 REPEAT
30 A$=GET$
<J0 PRINT "YOU PRESSED "A
50 UNTIL A*="0"
60 PRINT "END OF DEMO"

>RUN
YOU PRESSED H
YOU PRESSED G
YOU PRESSED R
YOU PRESSED 0
END OF DEMO

The 'Prediction' program can easily be modified to accept a GETS.
Just change line 70. Notice how this uses one of the string functions
mentioned a short time ago to convert the string into a number.

10 REM xxPrediction**
20 MODE7
30 E=9
10 W=RND(9>
50 Q=0
60 REPEAT
70 Z=ASC(GET»>-18
80 IF Z>0 AND Z<10 PRINTTAB<E,12>?

CHRS(128+RND(6))J"Your number is " |Z
90 Q=Q+1

100 IF RND(3»1 THEN 120
110 W=RND(9)
120 PRINTTAB(5,8)>CHR$(129+W/2)"My number is "JW
130 PRINTTAB(Er14)|CHR$<128+RND(6))J"The score is "JQ
140 IF W=Z THEN 130
150 UNTIL FALSE

86

INKEY, INKEY$
The difference between the GETs and the INKEYs is that while the
GET will wait forever for a key entry, INKEY sets a time limit. The time
limit follows the word INKEY, or INKEY5, as follows: INKEY(40) or
INKEY$(40). The number in brackets following the word is the time the
program will wait, in hundredths of a second. The function will give a
zero (INKEY) or a null string (INKEY$) if no key is pressed within the
time limit.

The next program — Maze Maker — shows INKEY$ in action. Using
the "A", "Z", and "." keys, you have to move the $ sign from the
bottom left hand corner to the top right-hand one, without crossing
any of the little white squares. Note that no path through is
guaranteed, and there is no mechanism for checking that you don't
cheat. At the end, the number of 'moves' it took you is printed on the
board, using CHR$(128 + RND(5)) to make the colour change
randomly. You may well wish to use this effect to end your own
games.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230

REM Maze Maker
REM Use the A Z , ♦ keys
REM to Move the $ sign
REM froM the bottom left-hand
REM corner to the top right-hand
REM one. No path through is
R E M g u a r a n t e e d !
M0DE7
S—0
FOR item-l TO 920
IF RND(3)-1 PRINT CHR$(255)J ELSE PRINT " "J
NEXT itcm
PRINTTAB(0,0)?"
PRINTTAB(0,1)
X*=39tY=21
m^x:n=y
PRINT !AB (X, Y)
S=S+1
A$=INKEY$(0)
IF A$="" THEN 190
IF A$:=’’A'’ AND Y>0 Y-Y-l
IF A$=”Z” AND Y<22 Y-Y+l
IF A$-"t" AND X<39 X=X+1

87

240
250
260
270
280
290
300

310

IF A*::"," AND X>0 X=X-1
IF X~0 AND Y=0 THEN 280
PRINTTAB(M,N) $" ”
GOTO 160
REPEAT
PRINTTAB(12,10)JCHR$(128+RND(5) P'You Made it!!"
PRINTTAB(10,12)JCHR$(128+RND(5)J
, "It took you "JS;" Moves"UNTIL. FALSE

Note in line 190 that the delay after INKEY$ is set at zero. This ensures
the program continues without a break, whether you are pressing a
key or not. You'll find it easier to know which keys to press for right
and left movement by noting that the 'greater than' and 'less than'
symbols point in the respective directions.

The next program — Road Runner — shows INKEY$ in action again.

In this program you are attempting to drive a long line of letter V's
down a twisting, turning track of red hash symbols (shown in this
listing as £ signs). Your controls are "Z" and "M" which move you left
and right respectively.

Line 140 moves the track randomly, making sure that it does not stray
off the edge of the screen. Line 150 prints the V, which is scrolled up
(as is the tract) by lines 220 and 240. The function readch(X,Y), which
starts at line 290, checks the status of the position the V will next
occupy, and if it finds anything other than a 32 there (32 is a space, see
line 200) sends action to the procedure "end", which starts at line 370.

The one in brackets after INKEY$ in line 250 ensures that the computer
waits one hundredth of a second before proceeding. Line 260
interprets the INKEY$, and by using the logic within each pair of
brackets, ensures that the V is not allowed to go off either side of the
screen. This program uses a REPEAT/UNTIL loop (see lines 130 and
270) to keep it running until the loop is exited by line 200. Note in line
270 it says UNTIL FALSE. This means that the loop will continue for
ever, unless there is an exist condition within the loop which is
satisfied, or the BREAK key is pressed.

If you'd like to slow the program down, change the one at the end of
the SOUND statement in line 230 into a two or a three, and/or change
the one in brackets into two or three in line 250.

:L 0 R IE M k F< o a d R u n n er#
2 0 RIEM (C) Hartnell 1982

88

50 M0DE7
60 TIME=0
70 A ""10
80 X”:13
90 Y~12

100 FORJ^l TO 22
110 PRINT
120 NEXT J
130 REPEAT
140 A=A+RND(2)x(A>1)~RND(2)*(A<27)
150 PRINT TAP(X™1,Y)JCHR$(132)J ”V"
160 LX«POS
170 LY-VPOS
18 0 Z=F N r e a d c h (X , -{+ 1)
190 VDU 31,LX,LY
20 0 IF ZO32 PROCerid
210 PRINT TAP(A,22) $ CHR$(129)|"£"£TAP(A+7122)>

CHR$(129):"£"♦CHR$(128+RND(5)>J (
TIME DIV 10)/10J" Miles"

220 PRINT
230 SOUND 0 t --7- (RND (8)) t RND (3) f 1
240 PRINT
250 C$~INKEY$(1)
260 X=X+(CI=”Z" AND X>2)••••(C$~"M" AND X<38)
270 UNTIL FALSE
280 REMJKJKxxjkxxokxxxxx
290 DEF FNreadch(X,Y)
300 LOCAL AZ,C
310 VDU 31,X,Y
320 AZ™135
330 CMJSR(&FFF4)
340 C=C AND &FFFF
350C-C DIV &100
360™C
370 DEF PROCerid
380 M~(TIME DIV 10)/l() - 0*9
390 REPEAT
40 0 PRINT TAP(0,23)? CHR$(128+RND(5))»

"End of race, you lasted for ",MJ" Miles"
410 SOUND 0 ,--15,RND(12) ,RND(5)

89

420
430
440
450

S 0 U N D 1t 15 , F< N D (12) t F< N D (5)
SOUND 3,-15,RND(12),RND(5)
UNTIL. FALSE.
ENDPROC

SOUND
The SOUND statement on your computer is very versatile. It is easy to
use, and if you avoid the use of ENVELOPE the first few times you use
the SOUND command, you should find it fairly easy to master. Even
without ENVELOPE, you'll find there is a wide variety of sounds you
can make to incorporate into your programs.

As was pointed out a short time ago, the word SOUND is followed by
four parameters. The first (0 to 3), chooses the sound channel, the
second (0 to -15) sets the volume, with -15 being the loudest, the
third chooses the pitch of the note (0 to 255) and the fourth controls its
duration (1 to 254). A simple, two-line program which puts the sound
output through its paces indefinitely, producing a sort of weird
electronic music, is:

10 SOUND RND(4)-1 *-RND(15) ,RND(25^> >RND(20)
20 GOTO 10

We can demonstrate the statement in action more precisely with the
following routine, which sets the volume at maximum (-15) and the
duration at one. Enter and run this program to hear it in action. You
can read the channel (the left hand column) and the pitch (the right
hand one) as the program runs.

10 REM xxSOUND DEMO**
20 V0LUME--15
30 DURATION-* 1
^0 FOR CHANNEL-0 TO 3
50 FOR PITCH*-! TO 255 STEP 3
60 SOUND CHANNELtVOLUMEPITCHfDURATION
70 PRINT CHANNEL,PITCH
80 NEXT PITCH
90 NEXT CHANNEL

You'll see that the first run, when CHANNEL is set to zero, produces a
strange sound, quite unlike the music produced when the CHANNEL

90

is one, two or three. This is because channel zero is for noise, and the
other three allegedly for music. The rising tone produced on channels
one, two and three is, I'm sure you'll agree, quite effective.

You can change this, by putting the volume in a loop, to produce a
totally different sound. Try to predict what this routine will produce,
before you run it. You're almost certain to be wrong. Modify the above
program, by adding lines 55 and 75 below, and changing lines 50 and
70 as indicated.

10 REM xxSOUND DEMOxjk
30 DURATION-!
^0 FOR CHANNEL-0 TO 3
50 FOR PITCH*: 1 TO 10 0 STEP 3
55 FOR VOLUME--15 TO -1
60 SOUND CHANNEL,VOLUME,PITCH,DURATION
70 PRINT CHANNEL,VOLUME,PITCH
75 NEXT VOLUME
80 NEXT PITCH
90 NEXT CHANNEL

If all went well, you should have heard a strange series of cymbal-like
sounds, followed by notes played on a rather flat piano.

There is, of course, no reason why even random noise should not be
musical. The following routine, "Bamboo flute", produces music of a
sort, which — although somewhat atonal — is certainly better than the
mishmash of noise produced by the two-line routine at the beginning
of this section.

10 REM xxBsnboo flutesxx
20 REPEAT
30 VOLUME--10 -RND(5)
^0 CHANNEL.-RND(3)
50 PITCH-RND(8)x30
60 DURATI0N-2XRND(10)
70 SOUND CHANNEL,VOLUME,PITCH,DURATION
80 PRINT CHANNEL,PITCH
90 UNTIL FALSE

The SOUND statement can also produce quite creditable sound
effects, such as the following.

10 REM xxstesM trainxx
20 K--15
30 REPEAT

91

^0 SOUND 0,K,100,6
50 SOUND 1,Kf120 >5
60 SOUND 2,K,M0
70 SOUND 3,K,160 ,3
80 T-TIME
90 REPEAT UNTIL TIME-T>30

100 K=K+0.5
110 UNTIL K-0

Experimentation is the only way to discover how wide the range of this
command is.

Let's leave noise alone for a moment, and try to produce some 'real
music' from the computer.

The next routine turns the bottom row of keys (Z to the 'less than') into
a one octave piano. It uses several things we've learned so far in the
book. Enter and play a few melodies on it, then we'll have a closer look
at the listing.

10 REM X* PIANO xx
20 REPEAT
30 xFX 15,0
50 A~GET
60 M~~53x < A~9 0) -~61 x (A~~=88) -69x (A^67)

-73*< A~86)~8lx(A~66)-89x(A^78)-97x(A=77)-1
OlxCA-'W

70 IF M~0 THEN 50
80 FOR 15 TO -5
90 SOUND 1,J,M,1

100 SOUND 2,J,M4
110 NEXT J
120 UNTIL. FALSE.

Lines 20 and 120, of course, set up a master REPEAT/UNTIL loop to
keep your piano playing. Lines 30 flushes the buffer so that if you
linger on a key, it will not play endlessly. Once you've run the program
a few times, delete line 30 and see what effect this has. *FX 15,0 is a
useful command to use in any programs which read the keyboard
through GET, GET$, INKEY or INKEY$. M is the variable to be
assigned to the pitch value in the sound command.

Line 50 read the keyboard, and the long line 60 changes the value read
by the GET function into a pitch value corresponding to the note
required.

92

Line 60 uses the way the BBC Microcomputer evaluates true and false.
If the condition within the brackets is true, the computer returns -1. It
returns zero if the condition within the brackets is false. The number in
front of each bracket (like -53) is the pitch value. If A equals 90 (that
is, the Z key is being pressed), the computer evaluates that as true,
- 1, so M is set equal to 53 (that is, - 53* -1). This is so for the rest
of the line. If a key other than the eight on the bottom row has been
pressed, all the conditions within brackets will be zero; so M will equal
zero. In this case, the computer will go back to line 50 to read the
keyboard again. Lines 80 to 110 'play' the note, using the volume loop
(lines 80 and 110) to produce a sound somewhat like a piano. You can
turn your computer into an 'autopiano' by making some changes and
additions to the program. I have not renumbered it, so you can easily
convert your 'piano' to play itself.

10 REM xx AUTO PIANO xx
20 REPEAT
30 xFX 15, 0
50 A-RND(*17)+43
60 M--53x(A=90)-61x<A-88)-69x(A=67)

73*(A-86)-81*(A-66)-89* < A=78)-97*(A=77)-1
01x(Ass44)

70 IF M-0 THEN 50
75 PRINT CHR$<128+RND(6>),M
80 FOR J=-15 TO -1 STEP RND(3)
90 SOUND 1,J,M,RND(3)

100 SOUND 2,J,M,RND(5)
110 NEXT J
120 UNTIL RND(10)=l
122 PRINT 'CHR$(128+RND(6)),"PAUSE"'
125 FOR J---15 TO -1
130 SOUND 1,J,53,5
140 NEXT J
150 RUN

The possible permutations of this program are endless. Here is another
version which produces a tone somewhat closer to an electronic organ
trying to be a violin. Again, the program has not been renumbered, so
you can easily modify your earlier program.

10 REM X* AUTO PIANO xx
15 REM xx WITH VIBRATO xx
20 REPEAT
30 *FX 15, 0

93

50 A=-RND(47)+43
6 0 M»-53*< A“90)-61x(A=88)-69x(A=67)

-73* (A=86)-81 x (A=66)-89X (A==78) ~97x (A=77) -1

There is no reason why the 'piano' should be restricted to one note at a
time. This final version play 'chords' (or, at least, two notes at once).

01x(A~44)
70 IF M-~0 THEN 50
75 PRINT CHR$(128+RND(6)),M
80 FOR J=1 TO RND<10)+5
90 SOUND 1, -10“"RND(5) ,M,RND(3)

100 SOUND 2,-10-RND(5),M,RND(3)
105 SOUND 3,--10-RND (5) ,M,RNDC3)
110 NEXT J
120 UNTIL RND(14)=5
122 PRINT 'CHR$(128+RND(6)),"PAUSE"'
125 FOR J=1 TO RND(10)+10
130 SOUND 1,-15,53,5
135 SOUND 2,-6~RND(5),69,5
136 SOUND 3,-6-RND(5),81,5
140 NEXT J
150 RUN

10 REM xx AUTO PIANO xx
15 REM xx WITH VIBRATO xx
16 REM xxAND 'CHORDS"xx
17 DIM E(2)
20 REPEAT
40 FOR B=1 TO 2
50 A=RND<47>+43
60 E (B) =-53x (A=90) --61X (A-88) -69x (A=67)

--73x (A-86) -81x (A-66) ~89x (A=78) ~97x (A~77
)-10 lx(A~44)

65 NEXT B
70 IF E(l)"0 OR E(2)~0 THEN 40
75 PRINT CHR$(128+RND(6)),E<1),E(2)
80 FOR J-=l TO RND(10)+5
90 SOUND 1,-10~RND(5),E(1),RND(10)

100 SOUND 2,-10-RND(5),E(2),RND(10)
105 SOUND 3,-10-RND(5),E(1),RND(3)
110 NEXT J
120 UNTIL RND(14)-5

94

122 PRINT 'CHR$(128+RND(6)) ,"PAUSE"'
125 FOR J^l TO RND(10)*10
130 SOUND 1,-15,53,5
135 SOUND 2,-6-RND(5),69,5
136 SOUND 3,--6-RND(5),81,5
HO NEXT J
150 RUN

You should now be in a better position to understand the 'Music
Maker' program, introduced a short while ago in the string handling
section of this book.

The GET$ function is used in line 90 to get a number between one and
nine to set the speed of the program. Line 150 should now make
sense. It uses some of the same numbers outside the brackets as does
'Auto-piano', and — within the brackets — evaluates for portions of
the string A$ which holds the melody. You can use the information
within line 150 for which number corresponds to which note to write a
program for a two octave piano program.

To recap our discussion to date on SOUND. The statement has four
parameters, the first of which (voice, or channel number) can be from
zero (noise) to three. The second parameter controls the volume, and
can be set from 0 to -15, with -15 the loudest. The third figure after
the word SOUND is the pitch, and this can be any number from zero to
255, while the fourth parameter — which controls the duration of the
note — can have any value from one to 254.

You will find, from time to time, that sounds tend to continue after the
line which generated them as long been passed. The computer, when
necessary, stacks up notes and waits for the sound channel to be clear
so it can play them. If you want a note to be played immediately, in
effect to dismiss the notes stacked up waiting for their turn, you can
use a slightly more elaborate form of the SOUND statement.

The computer can stack up to four notes at a time, and the full
SOUND statement can tell it how many notes you wish to play. The
statement, in its full version, is as follows:

SOUND &HSFC, volume, pitch, duration

The first parameter after the ampersand, H can have a value of 0 or 1.
In general use, it will be set to equal 0. It has a specific task when used
in conjunction with the ENVELOPE statement. For all intents and
purposes, at this stage, we can assume H will always equal zero.

95

The second one, S, dictates the number of notes which are to be
sounded at once. S can equal 0,1,2 or 3, and when set to zero, allows
the notes to be played one at a time, in turn. This is the way the
SOUND statement operates in its simpler form.

The third parameter, F, can be set to equal 0, when the SOUND
statement operates as normal, accepting the notes in the order in
which they are 'queued up'. If F is set to 1, all the waiting notes are
suppressed, the note which is sounding is cut off, and the newest note
is sounded.

C stands for Channel, the voice which we have used in the past. It is
set to 0 1, 2 or 3.

ENVELOPE
The SOUND statement is relatively simple, although it can — as you
have seen — produce quite exotic effects. However, the computer's
noise-making abilities really come into play when the ENVELOPE
statement is introduced. The ENVELOPE statement is, however,
somewhat bewildering to use. It is followed by 14 parameters. A
proper discussion of ENVELOPE is outside the scope of a book like
this, but here is some material to start you thinking about, and using it.
You can generally define up to four ENVELOPES within a program.
The next routine will define ENVELOPES at random, and shows the
range of each of the 14 parameters.

10 REM XXENVEL.OPE DEFINERx*
20 NUMBER~RND(4)
30 lenQth«RND(127)-128x(RND(2)®l)
40 PITCHi»128”RND(256)
50 PITCH2=128-RN0(256)
60 PITCH3«128-RND(256)
70 STP1"-RND(256)-1
80 STP2=RND(256)-1
90 STP3“RND(256)~1

100 AMPATT=127-RND(255)
110 AMPDEC==127-RND(255)
120 AMPSUS^-RNDC1281+1
130 AMPREL«-RND<1281+1
140 TARGATT~RND(1271-1
150 TARGDEC-RND(1271-1

96

160 ENVELOPE NUMBERtlengthtPITCHIt
PITCH2,PITCH3 ,STP1,STP2,STP3,AMPATT tAMPDEC tA
MPSUS,AMPREL , TARGATT tTARGDEC

II

170 SOUND 17/2,10 0,255
180 PRINT' ?NUMBER/' "J 1ength?" "JPITCH1?

*7 ♦ Il
X.. ?

* ii
i

"JPITCH3,"
"JAMPATT,"

AMPRELJ" "JTARGATT/' "JTARGDEC
185 FOR J=1 TO 200SNEXT J
190 RUN

decay phase

Variable Name
Parameter Range Function
Number 1—4 This is the identifying

number
length 1-127 plus 128 for

dont't repeat Length of each step
PITCH 1 -128 to 127 All three govern

changes
PITCH 2 -128 to 127
PITCH 3 -128 to 127 in pitch
STP1 0 to 255 Number of steps in

each
STP2 0 to 255 section
STP3 0 to 255
AMP ATT -127 to 127 Change of amplitude

per step in attack
phase

AMPDEC -127 to 127 Change during decay
phase

AMPSUS -127 to 127 Change during sustain
phase

AMPREL -127 to 127 Change during release
phase

TARGATT 0 to 126 Target level at end of
attack phase

TARGDEC 0 to 126 Target level at end of

Experiment with the ENVELOPE statement. You're sure to discover
some very interesting sounds.

97

R E AD / DATA/R ESTO R E
READ and DATA are very convenient ways of accessing information
within a program. It is relatively simple to use. Enter and run the
following program, which shows READ and DATA in action, and then
return to the book for an explanation of how it works.

10 REM READ/DATA
20 REM mmxxmxmx
30 REM xxxRead the DATA
40 REM xxxxxxxxxxxxxxxx
50 DIM 8(5)
60 FOR A=1 TO 5
70 READ■ 8(A)
80 NEXT A
90 REM X

100 REM Print it beck
110 REM xxxxxxxxxxxxxxxx
120 FOR C=5 TO 1 STEP -1
130 PRINT 8(0
140 NEXT C
150 DATA 13,35241,88,2,1999999

>RUN
1999999

2
88

35241
13

In line 70, the computer comes across the instruction READ....
Whenever it finds a READ instruction, it goes to the first item
following the word DATA, and READs that, in this case, into an array.
The DATA items can be anywhere in the program (although it is useful
to keep them fairly close to the READ statement which refers to them).

Return to the program TABULATOR ROCKET RANGE which we have
used a few times before in this book. Here's the listing again to refer
to.

98

10 REM TABULATOR ROCKET RANGE
20 M0DE7
30 FOR J=10 TO 1 STEP -1
40 PRINT "ZJ
50 T=TIME
60 REPEAT UNTIL TIME-T>50
70 NEXT J
80 REPEAT
90 Q=RND(29)+1

100 U~128+RND(5)
110 FOR rocket=l TO 7IREAD ROCKET*
120 PRINT TAB(O);CHR$(129);"(";TAB(Q)|

CHR*(U) J ROCKET*; TAB (36) JCHR*(129) :•')"
130 NEXT rocket
140 T=TIME
150 REPEAT UNTIL TIME-T=2
160 SPACE =RND(10)
170 SOUND 16t-RND(5)-10tRND(3)-1,RND(20)
180 FOR print=l TO SPACE
190 PRINT TAB(0);CHR*(129);"(";TAB(37):")"
200 NEXT print
210 RESTORE
220 T=TIME
230 REPEAT UNTIL TIME-T=2
240 UNTIL FALSE
250 DATA " + ", “ +++ '•
260 DATA " +++ +++ "
270 DATA " +++ +++ "
280 DATA '• <x> "

In the first program in this section, the DATA is numbers, and these
are assigned to numerical variables (the elements of the array). In
TABULATOR ROCKET RANGE, the DATA is strings (lines 250 to 280)
and these are assigned in turn to the string variable ROCKET$, and
then printed out in line 120. The next item of DATA is then assigned to
ROCKET$, as the program continues through the loop labelled
'rocket'. As you know, this program runs over and over again, but
there are only seven items of DATA, only enough to go through the
'rocket' loop once. The program needs the third word which goes with
READ and DATA. This third word is RESTORE, which you'll see as
line 210. This tells the computer to go back to the start of the list of
DATA and start READing from the first item again. Here is another
sample program, showing DATA in the form of strings, and illustrating
RESTORE in action.

10 REM READ/DATA/STRINGS
20 REM xxxxxxxxxxxxxxxok
30 REM xxxRead the DATA
40 REM oxoooooox
50 DIM B*(21)
60 FOR A^l TO 21
70 READ B$(A)
80 IF 3xINT(A/3)~A THEN RESTORE

99

90 NEXT A
100 REM xxxxxxxxxxxxxxxx
110 REM Pcirit it back
12.0 REM xxxxxxxxxxxxxxxx
130 FOR C=1 TO 21
ITO PRINT BMC)
150 NEXT C
160 DATA NET t KILL. t DIE

In this program, there are only three items of DATA, so RESTORE
must operate once the three have been read. Line 80 ensures that this
occurs every time the three are read while running through the A loop
from 1 to 21. Notice that the string DATA do not have to be enclosed
within quote marks. Despite this, it is a good idea to always include
items of string DATA within quotes, to separate them clearly from
numeric DATA.

10 REM READ/DATA/STRINGS
20 REM xxxxxxxxxxxxxxxx
30 REM xxxRead the? DATA
TO REM xxxxxxxxxxxxxxxx
T5 WET=991 KILL.=12 ♦ DIE=807
50 DIM BM21) ,7.(21)
60 FOR A-l TO 21
70 READ BMA),Z(A)
80 IF 3xlNT(A/3)-A THEN RESTORE
90 NEXT A

100 REM xxxxxxxxxxxxxxxx
110 REM Print it back
120 REM xxxxxxxxxxxxxxxx
130 FOR C==l TO 21
1T0 PRINT BMC),Z(C)
150 NEXT C
160 DATA "WET",WET,"KILL",KILL,"DIE",DIE
The value of separating string from numeric DATA is shown clearly in
the preceding program where the numeric variables are made up from
the same letters which form the strings. Even in this case, the
computer sorts it all out. You can adapt the string READ/DATA
program to read both string and numeric items by adding line 45, and
by modifying lines 50, 70, 140 and 160.

As you have seen, a READ command is used within a line to assign
values to variables from a sequence of items contained within a DATA

1OO

statement. Each item of DATA is separated from others by a comma.A
READ statement is made up of a line number, followed by the word
READ, and the variable names which are to be assigned to the
variables taken from the DATA line.

When a program comes to a READ statement, it will — as I pointed
out — move to the first DATA statement, no matter where it is in the
program. The first value of the DATA statement will be assigned to the
first variable in the READ statement. Apart from reading a DATA
statement, the computer takes no notice of it, and will treat it as a
REM statement. Move line 160 up to line 25, and run the preceding
program again. You'll see that (a) the computer ignores line 25, and (b)
still READs it successfully.

Even if the DATA is scattered all over the program, the computer will
seek it out, as the following program shows. This one is, of course,
based on the preceding ones.

10 REM READ/DATA/STRINGS
20 REM xooiKXxmxxxxx
25 DATA "HI",7
30 REM xxxRead the DATA
40 REM xxxxxxxxxxxxxxxx
50 DIM E:$(21) ,Z(21)
60 FOR A~1 TO 21
70 READ B$CA),Z(A)
80 IF 3*INT(A/3)~A THEN RESTORE
84 DATA "GOSH"
90 NEXT A
95 DATA 56, "BOE:"

100 REM xxxxxxxxxxxxxxxx
110 REM Print it back
120 REM xxxxxxxxxxxxxxxx
130 FOR O1 TO 21
140 PRINT B$(C),Z(C)
145 DATA 22
150 NEXT C

It is important to ensure that you have enough DATA items for the
number of times you tell the computer to READ. Delete line 145 in the
above program, and run it again. You will get the error message 'Out
of DATA at line 70' where the computer had read two items of numeric
DATA, then was unable to find a third because RESTORE had not yet
been evoked.

101

Remember that although it is not essential to have the DATA items
near the READ lines which are looking for them, it will probably make
your programs easier to understand if they are held in this manner. It
also makes it easier to know which lines to alter if you are working on a
program.

Mastering the Graphics
There are eight graphic modes on the BBC Microcomputer, and it can
be quite bewildering — when you first get your machine — to try and
work out how to use them.

We'll start our discussion with Mode 7, the teletext display mode, as
this is the easiest to understand. As well as this, it can be used to
produce splendid displays, despite some limitations. Your computer is
automatically in Mode 7 when you turn it on, and it is the mode which
uses the smallest amount of memory. In mode 7, the screen is 40
characters across, and 25 down. There are six basic colours (plus black
and white) available in this mode, and they are selected by preceding
the text you want printed — after the word PRINT — with a character
control. Type in 'program one', and you'll see what I mean.

10 REM MODE 7 GRAPHICS PROGRAM ONE
20 PRINT CHR$<129>J"This will print in red"

Program one shows that character 129 turns the text on that line (but
not on the following lines, even if the PRINT statement 'wraps around'
to the next line) red. Try program two, which indicates that CHR$
(130) turns text which follows it green.

10 REM MODE 7 GRAPHICS PROGRAM TWO
20 PRINT CHR$<130)J"This will print in green"

As I said, there are six colours you can select in this way. The six are
shown by program three.

10 REM MODE 7 GRAPHICS PROGRAM THREE
20 FOR colour- 1 TO 6
30 PRINT CHR$(128+colour)J"TESTING "colour'
"10 NEXT colour

102

The codes, and their colours, are:

129 - red
130 — green
131 — yellow
132 - blue
133 — magenta (purple)
134 — cyan (light blue)

This list suggests that there is a very simple way of generating
randomly coloured PRINT statements which can be very useful for
increasing the effectiveness of a program. Try program four to see this
random colour change in action.

10 REM MODE 7 GRAPHICS PROGRAM FOUR
20 REPEAT
30 PRINT 'CHR$(128+RND(6))J"Testing*♦♦"
40 TIME-0
50 REPEAT UNTIL TIME>60
60 UNTIL FALSE

The important line in this program is, of course, line 30, which
generates a random number between one and six, and adds it to 128.
Incidentally, this program also shows use of the REPEAT/UNTIL loop
for two quite different purposes. The loop beginning at line 20 and
ending at line 60 is a 'perpetual loop', as you have seen in several other
programs in this book. This sort of REPEAT/UNTIL continues until
BREAK is pressed. The use of an 'UNTIL FALSE' terminator in this
way is more elegant programming than use of GOTO 30 for line 60.

The second REPEAT/UNTIL loop is in line 50. Line 40 sets a 'clock',
which is always running while the computer is turned on, to zero. Line
50 holds the program in a REPEAT/UNTIL loop until the time had
incremented to 61. Turn to your computer now, and type, in the direct
mode, PRINT TIME. As you'll see, it has increased considerably from
the 61 it read when you last ran program four. A REPEAT/UNTIL delay
loop is a more flexible delay device than a 'dummy' FOR/NEXT loop
such as was used in some early programs in this book.

Now, let's get back to the graphics.

The numbers higher than 134 also have interesting and useful effects if
PRINTed following CHR$. Enter and run program five to see what
these are.

10 REM MODE 7 GRAPHICS PROGRAM FIVE
20 FOR colourss129 TO 151

103

30 PRINT Jcolour;CHR$(colour)J" Bbcdefgh
iJklMnopqrstuvwxyz”

40 NEXT

The first thing you'll notice is that control character 135 turns the text
back to white, and 136 makes the text, which is white, flash off and
on. The line proceded by character 141 looks very odd. If you look at it
closely, you'll see it is the top half of the relevant letters. This shows us
the way to get double-height characters. Enter the following line, in
the direct mode, to see character 141 do its work:

>PRINT CHR$<141)J"TEST"♦PRINT CHR$(141)J"TEST"

As you can see, this writes the word TEST in double-height letters.
You need to enter every line twice, following CHR$(141)'s, to get
words to print in this manner. To prove this, change the T of the
second word TEST to W and see what happens:

>PRINT CHR$(141)J"TEST"IPRINT CHR*(141)J"TWST"

As you can see, it combines the top half of the first line with the
bottom half of the second line. It is possible to combine colours, and
double height characters, to produce large coloured PRINT output. So
as not to disturb the program (program five) which you still have in
your machine, enter the following program starting at line 100, and run
it by entering GOTO 100.

100 REM DEMO SIX DOUBLE HEIGHT, COLOURED
110 REPEAT
120 PRINT CHR$(141)}CHR*<128+RNDC6))J"This is a test!
130 PRINT CHR*<141)ICHR$(128+RNDC6))J"This is a test!
140 TIME=0
150 REPEAT UNTIL TIME>60
160 UNTIL FALSE

You can see that mixed colours are allowed, and can be most
effective. Add 50 END to the program (program five) which you still
have in your computer, and RUN it again. You'll see that the output
when the control characters lie between 145 and 151 are very
interesting, producing a good selection of teletext 'chunky graphics'.
You've probably seen how effectively these can be combined to
produce pictures on Ceefax, Oracle or Prestel. You may like to create

104

your own table of these characters, so you can use them at will to
create pictures of your choice. Change line 30 to the following to see
more of the available graphics:

30 PRINT I colour I CHR$ (colour)} ’’abcdef ghi Jk
lnnopqrstuvwxyz!$%&'()0«AM|CHR$(col
our) | "CmOO?"

(Note that although the printer prints out the character as it appears on
the keyboard, the character on the screen in the teletext mode is
sometimes different. For example, the curly bracket after the quote
marks following the third appearance of the word colour in line 30
appears on the screen as ■}■.)

To see the graphic shapes more clearly, enter and run demonstration
program seven.

10 REM DEMO SEVEN GRAPHIC CODES
20 FOR A~33 TO 254
30 PRINT JA>CHR(150)CHR$(A)
40 TIME-0
50 REPEAT UNTIL TIME>60
60 NEXT

Look at the program output closely, and see if you can determine
whether or not the characters repeat, and — if they do — which
pattern underlies the repetition.

To get colours, as well as graphics, you precede the lower case letters
in the PRINT statement with the following numbers: 145, red; 146,
green; 147, yellow; 148, blue; 149, magenta; 150, cyan; or 151, white.
The following program demonstrates this:

10 REM DEMO EIGHT COLOURED GRAPHICS
20 FOR codess145 TO 151
30 PRINT 'code CHR*(code) T’a b c d e"
40 NEXT code

You can mix text with graphics in the same colour, from the same
PRINT line, so long as you are happy with the text being in upper case
letters. Program nine should make this clear:

10 REM DEMO NINE GRAPHICS, LETTERS
20 FOR code=145 TO 151
30 PRINT 'code CHR$<code);"a AbBcCdDeE"
40 NEXT code

105

If you wish to change the background colour, you need to select the
colour you want (using the code you discovered from running program
three), and follow this with CHR$(157), which tells the computer you
want the colour which preceded it to apply to the background. You
follow the CHR$(157) with another character (again chosen from those
demonstrated in program three) to select the colour of the text.

10 REM DEMO 10 COLOURED BACKGROUND
20 FOR background ~ 129 TO 135
30 FOR foreground = 129 TO 135
40 PRINT CHR$(background)$CHR$(157)J

CHR$(foreground)J"ABCDabcd"
50 NEXT foreground
60 TIME~0
70 REPEAT UNTIL TIME>100
80 NEXT background

You can see what a splendid effect this has. The delay loop (line 70) is
to give you a chance to admire one set of foregrounds on a
background before the next set appears. The foreground and
background colours can be changed at random for some quite
spectacular effects. Try program eleven. You may well be able to use a
routine like this in one of your own programs.

10 REM DEMO 11 RANDOM COLOURED
20 REM COLOURS ON COLOURS
30 M0DE7
40 PRINT" ""What is your full nane"}
50 INPUT At
60 REPEAT
70 PRINT CHRt(128+RND(7))ICHRt(157)JCHRt(128+RND<7))|At
80 TIME=0
90 REPEAT UNTIL TIME>60

100 UNTIL FALSE

As you can see from running this (which includes white as one of the
colours, to increase variety), from time to time the foreground and
background colours will be identical, so that nothing can be seen. It is
very easy to write a routine to overcome this, using a REPEAT/UNTIL
loop.

10 REM DEMO 12 RANDOM COLOURS
20 REM ON COLOURS
30 M0DE7
40 PRINT'''' "What is your full riBM©11}
50 INPUT A$
60 REPEAT

106

70 REPEAT
80 A~128+RND(7):B=128+RND(7)
90 UNTIL AOB

100 PRINT CHR$(A);CHR$(157)?CHR$(B)?A$
110 TIME^O
120 REPEAT UNTIL TIME>60
130 UNTIL FALSE

You'll notice that parts of the program, like the PRINT line (100), are
getting a little messy. Fortunately, because the BBC Micro allows
concatenation (adding together) of strings, you can easily combine all
the colour information, as well as the other required information, into a
single string.

10 REM DEMO 13 RANDOM COLOURS
20 REM WITH CONCATENATION
30 M0DE7
40 PRINT''''"What is your full narte"!
50 INPUT A$
60 REPEAT
70 REPEAT
80 A=128+RND<7):B=128+RND<7)
90 UNTIL AOB

100 B$=CHR$(A)+CHR*(157)+CHR$(B)+A$
110 PRINT B$
120 TIME=0
130 REPEAT UNTIL TIME>60
140 UNTIL FALSE
If you want to print everything in one foreground/background
combination, say yellow on red, you can combine all the required
information into one string, and then precede each PRINT statement
with this string. AS = CHR$(129) + CHR$(157) + CHR$(131) can be
used before any string to print it in yellow letters on a red background,
in the form PRINT AS; "Hello Bob".

You're sure to find particular colour combinations, such as yellow (or
white) on red, particularly effective. Whenever you discover one which
looks good on your television set (and, unfortunately, colour
televisions seem to vary widely in their response to BBC
Microcomputer colours), make a note of it so you can use it in a
program.

If you want the letters to flash, precede the sequence with CHR$(136).
The flash is turned off with CHR$(137). Change line 100 of program 13
so it reads as follows:

107

100 B$=CHR$(136)+CHR*(A)+CHR*(157)+CHR$(B)+A$

You'll see when you run this that your name will flash quite pleasantly.

If you want doubleheight characters on a new background, you can
combine all the information into a single string:

10 REM DEMO 14
20 REM MORE CONCATENATION
30 A$=CHR$(141)+CHR$(129)+CHR$<157)+CHR$(132)+”HI THERE, BOB"
40 PRINT A$
50 PRINT A$
60 RUN

You can easily decide to have, for example, randomly coloured letters,
which can be quite spectacular, as this example shows:
10 REM DEMO 14B
20 REM RANDOM LETTER COLOURS
30 A$=CHR$(141)+CHR$<129)+CHR1(157)+CHR$<129+RND(6))+"HI THERE, BOB”
40 PRINT A*
50 PRINT A$
60 RUN

Note that the colours chosen for the letters do not include red (129) to
ensure that red on red does not appear.

Typing out CHR$ (whatever) can become a little tedious. It is possible
to get around this by using VDU statements. The following program,
which uses VDU statements, produces the same effect as program
14B.

10 REM DEMO 14C
20 REM USING VDU STATEMENTS
30 VDU 141,129,157,129+RND(6)
40 PRINT "HI THERE, BOB”
50 VDU 141,129,157,129+RNDC6)
60 PRINT "HI THERE, BOB"
70 RUN

I'll now try and summarise some of the points from the preceding
discussion, leading into another version of the program 'Mastermind'.
There are many, many computer versions of the game. In most of
these (and in this version), the computer selects a four-digit number,
and the human player has to guess the number. A correct digit in a
correct position in the four-digit code scores a 'black', and a correct
digit in the wrong position scores a 'white'. Each digit in the code is
different.

As we said a little earlier, preceding a PRINT statement with a
character control code, from 129 to 135, changes the colour of the

108

PRINT output from that line. Enter the program, and then return to the
book for a discussion on it.

10 REM xx MASTERMIND xx
40 DIM C(4),G(4)
50 M0DE7
60 PRINT '
7$ VDU 129,157,131
80 PRINT "I bm thinking of b four-digit nuMber"
90 VDU 129,157,131

100 PRINT"which you have 10 goes to discover,"''
110 VDU 129,157,131
120 PRINT"A11 four digits are different'
130 VDU 129,157,131
140 PRINT"Press any key to begin,"
150 A$=GET$
160 CLStPRINT'"
170 C(1)=RND(9)
180 FOR Z=2 TO 4tC(Z)»RND(9)
190 FOR J=1 TO Z-1IIF C(J)=C(Z) THEN 170
200 NEXT:NEXT
210 FOR G=1 TO 10: PRINT CHR*(136) JCHR$(157) *,

CHR$<133)J"Enter guess nunber "JG
220 input a:ai=a:print chr$<ii):chr*(ii>:chr$(ii)
230 FOR Z=1 TO 4:G(Z)=A-10xlNT(A/10)
240 A-INT(A/l0){NEXT
250 B=0tW=0
260 FOR Z=1 TO 4tIFC(Z)OG<Z) THEN 280
270 b=b+i:g<z)=o
280 NEXT
290 FOR Z=1 TO 4IIF G(Z)=0 THEN 330
300 FOR J=1 TO 4JIF C(Z)OG(J) THEN 320
310 W=W+1
320 NEXT J
330 NEXT Z
340 PRINT Al:CHR$<132):"scored":CHR$(129){B

:" black"::IF BO1 PRINT "s":
350 PRINT CHR$(132):"and",CHR$(129)IW:

" white" MIF MOI PRINT "s"
360 IF W=1 PRINT

109

370 IF B=4 PRINT CHR$<129)|CHR$(157)I
CHR$(131)|MYou guessed it in just ” |G|H g
uess"niF G>1 PRINT ,,esn ELSE PRINT

380 IF BCM NEXT G
390 PRINT CHR$(134) T’The code was"}

CHR$<129)JC(4)$C(3)ICC 2)JC(1)
Look at line 390. This prints the words “The code was" in cyan, and
C(4);C(3);C(2);C(1) in red. To change the background colour, you
specify the colour (i.e. CHR$(129) for red) followed by CHR$(157)
which tells the computer you want that colour on that line as a
background. The CHR$(157) is followed by the control for another
colour, which determines the colour of the letters printed. Line 370
prints a red (129) background with yellow (131) words.

The constant printing of CHR$'s can take time, so a VDU statement
can be used instead. Lookat line 70. This line — VDU 129,157,131 —
takes the place of all that appears between the word PRINT and ;"You
guessed it..in line 370. We'll be looking at applications of VDU in
more detail shortly, but first we must examine the other graphics
modes.

As we said earlier, there are eight graphics modes, numbered from
zero through to seven. The lower the number of the mode, the higher
the resolution. The higher resolution modes need more memory than
do the lower resolution modes. If you have a Model A machine you
can only use modes 4, 5, 6 and 7.

Here is a summary of the modes:

Mode number text/graphics grid(across by
down) Memory needed

7 text, chunky
graphics

340 X 25 1K

6 text, two
colours

340 X 25 8K

5 text graphics
four colours

20 X 32
160X256

10K

4 text graphics
two colours

40 X 32
320 x 256

10K

3 text, two
colours

80 x 25 16K

2 text graphics
16 colours

20 x 32
160X256

20K

1 text graphics
four colours

40 X 32
320 x 256

20K

0 text graphics 80 X 32
640 X 256

20K

110

You set mode, foreground and background colours by numbers.
MODE n sets the mode to n, and also clears the screen. COLOUR n
(where n is less than 16), sets the foreground colour, and where n is
greater than 128 (actually is n + 128), sets the background colour.

There are two colours in modes 0, 3, 4 and 6. Although these are set
initially to white (1) and black (0), they can be changed. There are four
colours available in modes 1 and 5. As with modes 0, 3, 4 and 6, you
can change these colours, but initially they are white (3), yellow (2),
red (1) and black (0). Mode 2 is the most generously supplied with
colours, eight standard ones and eight which flash. Numbered from
zero to 15, the initial colour numbers are black, red, green, yellow,
blue, magenta, cyan, white, flashing black, flashing red, flashing
green, flashing yellow, flashing blue, flashing magenta, flashing cyan
and flashing white.

Let us look at how the colours are allotted with a simple program.
Enter and run this, then return to the book for a discussion on it.

10 REM MODE 6 DEMO
20 MODE 6
30 REPEAT
40 COLOUR 0
50 COLOUR 128 + 1
60 CLS
70 PRINT '""DEMONSTRATION"
80 PRINT "FOREGROUND 0, BACKGROUND 128 + 1"
90 FOR J«1 TO 2000INEXT

100 COLOUR 1
110 COLOUR 128 + 0
120 CLS
130 PRINT """""DEMONSTRATION"
140 PRINT "FOREGROUND 1, BACKGROUND 128 + 0"
150 FOR J=1 TO 2000INEXT
160 UNTIL FALSE

As I said a few paragraphs ago, there are four colours available in
modes 1 and 5. This next routine goes through all the combinations
available in mode 5, and also shows the size of the text (where there
are 20 characters across the screen).

ill

10 REM MODE 5 DEMO
20 MODE 5
30 FOR N=0 TO 3
40 FOR M=3 TO 0 STEP -1

128“

50 COLOUR N
60 COLOUR 128 + M
70 CL.S
80 PRINT ' ""DEMONSTRATION
90 PRINT ' ""FOREGROUND "J

100 PRINT ' ''"BACKGROUND "J
110 FOR J =4 TO 3000?NEXT
120 NEXT M
130 NEXT N

Already, just from running these two demonstrations, you should have
picked up a number of ideas regarding the use of the COLOUR
command. Line 70 is needed to make the entire screen clear to the
designated background colour. Take out line 70 and see what
difference this makes.

If you have a model B machine, run the following program, which puts
the computer through all its paces. This routine is based on the
demonstration for mode 5, and you need only make a few simple
changes to run it.

10 REM MODE 2 DEMO
20 MODE 2
30 FOR N~0 TO 15
40 FOR M=:15 TO 0 STEP --1
45 IF M-N THEN 120
50 COLOUR N
60 COLOUR 1 28 + M
70 CL..S* SOUND l,-15,N+Mxl0,l
80 PRINT '' '"DEMONSTRATION"
90 PRINT " '"FOREGROUND "$N

100 PRINT '' '"BACKGROUND "JMI"
110 FOR J=1 TO 2000.NEXT
120 NEXT M
130 NEXT N

As you run this program (which takes quite a white), you'll see some
colour combinations are particularly effective, while others make it
impossible to read the text, or are just unattractive, or both. Keep a
pen and paper near you when you run this, and take note of the more
effective combinations.

112

GCOL/CLG
You use the GCOL statement to set up the screen for coloured
graphics. The GCOL statement has two parameters, the first
determines the nature of the manipulation of the plotted point, and the
second determines the foreground (n less than 16) or background (n
greater than 128) colours. CLG is the graphics version of CLS: it clears
the background to the colour specified. The following routines show
some of the results of using GCOL. They are in mode 5, and may be
run on both model A and B machines.

10 REM GCOL DEMO ONE
20 MODE 5
30 FOR N:~0 TO 3
40 GCOL. 0,N
50 PLOT 11RND(500),RND(500)
60 FOR J-l TO 2000JNEXT
70 NEXT N

10 REM GCOL DEMO TWO
2.0 MODE 5
30 FOR N-0 TO 3
40 FOR M~3 TO 0 STEP -1
50 GCOL 0,N
60 GCOL. 0,M+128
70 CLG
80 PLOT 1,RND(1000),RND(1000)
90 FOR J-=l TO 2000?NEXT

100 NEXT M
110 NEXT N

GCOL determines the colour which will be used — and how it will be
placed on the screen — for all graphics operations which follow it in a
program. The first number after GCOL specifies the logical operation
which will be performed at that plotted point on the screen, as is
graphically illustrated in the following routine.

10 REM GCOL DEMO THREE
20 MODE 5
30 GCOL 0,1?GCOL 0,128+2,CLG
40 FOR A-200 TO 1000 STEP 40
50 FOR B-l TO 1000 STEP 40
60 DRAW A,b:next:NEXT

113

70 FOR N=0 TO 4
80 FOR M=0 TO 4
90 MOVE 0,0:SOUND 1,-15,20x(M+N),2

100 GCOL M,N
110 FOR A=200 TO 1000 STEP 40+M+RNDC4)
120 FOR B-l TO 1000 STEP 39+N+RNDC4)
130 DRAW A,EUNEXT!NEXT
140 NEXTtNEXT
150 SOUND1,-15,43,20

The numbers which come immediately after GCOL are 1 to 4, and the
operations they perform are 'logical OR' (1), 'logical AND' (2), 'logical
EOR' (3) or the colour can be inverted (4).

If you have a model B machine, you might like to run the following
version of the preceding routine.

10 REM GCOL DEMO THREEB
20 MODE 2
30 GCOL 0,i:GCOL 0,128+5tCLG
40 FOR A=200 TO 1000 STEP 40
50 FOR B=1 TO 1000 STEP 40
60 draw a,b:next:NEXT
70 FOR N=0 TO 15
80 FOR M=0 TO 4
90 MOVE 0,0:SOUND 1,-15,20x(M+N),2

100 GCOL M,N
110 FOR A=200 TO 1000 STEP 40+M+4*RND(4)
120 FOR B=1 TO 1000 STEP 39+N+5*RND(4)
130 draw a,b:next:NEXT
140 next:next
150 SOUND1,-15,43,20

This next program also shows GCOL in use. The first parameter (i.e. 0,
1,2 or 3) is shown in the top left hand corner, and a circle is plotted.
After the program has been running for a while, and the circles start
overlapping, you'll be able to clearly see the effect each of these
numbers has. Run this until you are sure you understand what is going
on.

10 REM GCOL CIRCLES
20 REM Based on proqran
30 REM By Jerewy Ruston
40 M0DE2

114

50 REM XXIXXIXXXXIIXXXMXXMMX
60 REPEAT
70 SOUND 1,-5,100,4
80 Q=RNDC4)-1
90 PRINTTAB(3,3)£□

100 GCOL Q,RND(7)
110 PROCcircle(RND(640)+320,

RND(512)+256,RND(300))
120 UNTIL FALSE
130 REM xxxxxxxxxxxxxxxxxxx
140 DEF PROCcircle(xcoord,ycoord,radius)
150 LOCAL angle,step
160 step=5+RND(7)
170 FOR Bngle-0 TO 360 STEP step
180 MOVE xcoord,ycoord
190 MOVE SIN<RAD(angle))*radius+xcoord,

COS(RAD < angle>>*radius+ycoor d
200 PLOT 85,SIN(RAD(angle+step))Xradius

+xcoord,COS(RAD(angle+step))x
r ad i us+yco ord

210 NEXT angle
220 ENDPROC

If you do not have a Model B machine, run the program in mode 5. it
still works, but is not as attractive.

115

PLOT
PLOT is a remarkably flexible statement in BBC BASIC, with over 40
ways to use it. The word PLOT is followed by three parameters. The
first one determines the kind of PLOTting which will take place, while
the last two give a location, either absolute (such as 0,0 being the
bottom left hand corner of the screen) or relative (so 100,100 is 100
points up and 100 points across from the last point plotted). The first
parameter dictates whether the following two will be treated
absolutely or relatively.

For the purposes of this book, the important first parameters after the
word PLOT are the numbers zero to seven, and 80 to 87.

First
Para
meter Effect:
0 This uses a PLOT statement of the form PLOT 0,x,y to

move relative to last point. The computer initialises a
graphics mode (with a line like 10 Mode 5) by moving to
the 0,0 point, the bottom left hand corner of the screen.

1 This draws a line from the present position, to the point
specified by the two co-ordinates. The line is drawn in the
current foreground colour, which is white unless another
colour has been specified.

2 This draws a line as does 1, but in the logical inverse colour
(with the logical inverse of 0 in a two-colour mode being 1,
and with the following logical inverses in a four colour
mode: 0 (3), 1 (2), 2 (1) and 3 (0)).

3 This performs like 1 and 2, but draws the line in the
background colour.

4 This is a very useful plot command, which moves the
plotting point (but without actually plotting anything) to
the absolute position specified. PLOT 4,0,0 will move the
PLOT position to the bottom left hand corner. Because
this is so useful, the word PLOT and the first parameter
may be replaced by MOVE so to move to the bottom left
hand corner, you need just to enter MOVE 0,0.

5 This is another very useful command, which draws a line
from the present plotting position to the absolute position
specified (as opposed to PLOT 3 which draws the line
counting from the present PLOT position). PLOT 5,x,y can
be replaced with DRAW x,y.

6 This performs as does PLOT 5, but plots the line in the
logical inverse colour (see the explanation of PLOT 2 for
information on logical inverse colours).

116

7 This is a companion to PLOTs 5 and 6, drawing a line to an
absolute point, but in the current background colour.

PLOTs 4, 5 and 7 can be seen at work in this little routine, which
appears to make a line flash off and on, but is really plotting it
alternatively in the foreground and background colours.

10 REM Using PLOT 5 and 7
20 REM "Electric Spark"
30 MODE 5
40 REPEAT
50 X-RND(1280)-1
60 Y~RND(1024)-l
70 PLOT 4,0,0
80 PLOT 5,X,Y
90 SOUND 15,-15,RND(4),1

100 PLOT 4,0,0
110 PLOT 7,X,Y
120 UNTIL FALSE

Line 30 sets the mode to 5, and lines 40 and 120 are the master
REPEAT/UNTIL loop which keeps things running forever. Lines 50
and 60 choose a random co-ordinate for the end-point of the line. Line
70 moves the plotting position to 0,0 and from there line 80 plots a line
to the X and Y co-ordinates chosen in lines 50 and 60. Line 90 makes
an appropriate noise. This line does nothing to help the demonstration
except add appropriate (?) sound effects. Line 100 moves the plot
position back to 0,0 and then line 110 plots another line which is
identical to the one plotted by line 80, except that it is plotted in the
background colour, so the line vanishes.

This demonstration could look very effective in colour. See if you can
apply what you learned in the section on GCOL to alter this routine
slightly so that instead of plotting in white on a black background, it
plots in yellow on a red background. When you have tried this (and
only then), examine the next listing which shows how I did it. The lines
between 30 and 40 are the ones I added.

10 REM Using PLOT 5 and
20 REM "Electric Spark"
30 MODE 5
32 GCOL 0,2
33 GCOL 0,128+1
34 CLG
40 REPEAT

117

RND(4)

so X-RND (1280)--1
60 Y"~RND(1024)-1
70 PLOT 4,0,0
80 PLOT 5,X,Y
90 SOUND 15,-15,

100 PLOT 4,0,0
110 PLOT 7,X,Y
120 UNTIL FALSE

Line 32 determines that the foreground colour will be yellow, line 33
that the background will be red, and line 34 clears to the graphics
background.

PLOT numbers 8<S to 87 behave tike number @ to 7, except that they
plot and fill a triangle, using the last two points visited when filling
triangles with colour.

The PLOT commands are very flexible, as the following programs
demonstrate.

10 REM PLOT deMonstration
20 REM Based on "Ice Cave"
30 REM by Nornan AIm
40 M0DE4
50 FOR N-l TO 2
60 K~345+RND(11)
70 X-RND(1240)»Y~RND(1024)
80 FOR R=RND<70)+100 TO 1000 STEP RND(20)+12
90 MOVE R,K

100 DRAW X,R
110 DRAW (X-R),Y
120 DRAW R,K
130 T-TIME*REPEAT UNTIL TIME-TM0
140 NEXT R
150 T-TIMEIREPEAT UNTIL TIME-T>100
160 NEXT N
170 RUN

10 REM xlce Cave 2*
20 REM Based ori ATOM program
30 REM by Nornari AIm
40 MODES
50 REPEAT
60 CLG

118

70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

10
15
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

FOR T=1 TO 2
A=RND(3)
GCOL Of A
X”RND(1280)-l
Y=RND< 1024)--1
FOR R=600 TO 1300 STEP 15+RND(10)
MOVE R>600
DRAW X,R
DRAW (X-R)fY
DRAW 600>(Y-R)
DRAW Rf600
NEXT R
NEXT T
T=TIME
REPEAT UNTIL TIME-T>60
UNTIL FALSE

REM xlce Cave 2x
REM Adapted for Mode 2
REM Based on ATOM program
REM by Norman Alm
M0DE2
REPEAT
CLG
FOR T-l TO 2
A=RND(7)
GCOL 0,A
X=RND(1280)-l
Y=RND(1024)-l
FOR R=600 TO 1300 STEP 15+RNDC10)
MOVE R,600
DRAW X»R
DRAW (X-R)fY
DRAW 600»(Y-R)
DRAW Rt600
NEXT R
NEXT T
T=TIME
REPEAT UNTIL TIME-T>60
UNTIL FALSE

119

10
20
30
40
50
60
70
80
90

100

10
20
30
40
50
60
70
80
90

10 0
110
120
130
140

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

REM ZEBRA TRIANGLES
REM RUN IN MODE 2 ON MODEL B
MODES
REPEAT
GCOL RND(7),0
PLOT 85 , RND (1280) -1, RND (1024)--1
T-TIME
R E P E A T IJ N TIL TIM E - T > 2 0
IE RND(1)<«01 RUN
UNTIL FALSE

REM ROTATING SQUARES
REM BY JEREMY RUSTON
REPEAT
MODE1
R«RND(7)+3
FOR X=0 TO 999 STEF' R
GCOL RND(5)--!,((X/R) MOD 3)+1
MOVE X,0
DRAW 0,100 0 -X
DRAW 1000-X,1000
DRAW 10 0 0 ,X
DRAW X,0
NEXT X
UNTIL FALSE

REM SHRINKER
REPEAT
MODES
R-RND(17)+4
FOR X==0 TO 60 0 STEP R
MOVE X,0
DRAW 0,10 00 -X
DRAW 1000 -X, 1000-X
DRAW 1000--X,X
DRAW X,0
SOUND 17,-10-RND(5) ,256-X/3,l
NEXT X
T-TIME
REPEAT UNTIL. TIME-TX10 0
UNTIL FALSE

120

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
20 0
210
220
230
240
250
260
270
280
290
30 0
310
320
330

10
20
30
40
50
60
70

REM MOIRE-LACE
REM By Jerewy Ruston
REPEAT
TIME=0
M0DE4
PROCchopper
X-RND (1 0 0 0) -1
Y™RND(1000)-l
FOR T~0 TO 999 STEP 4
IF TIME>500 THEN PROCchopper
MOVE T,0
PLOT 6,X,Y
PLOT 6,T,999
MOVE 0fT
PLOT 6,X,Y
PLOT 6,999,T
SOUND 1, -RND (7) 230 +RND (25) , 1
NEXT T
TIME-0
REPEAT UNTIL TIME>200
UNTIL FALSE
D E F P R O C chopper
SOUND 1,-15,RND(30),10
SOUND 2,-15,RND(30)+30,10
SOUND 31~15,RND(3 0)+60,10
LOCAL A,B
A "••RND(8)-1
REPEAT
B“RND(8)-1
UNTIL. BOA
VDU 19,1,A,0,0,0,19,0,B,0,0,0
TIME-0
ENDPROC

REM SINE CURVE
REM NOTE HOW FOREGROUND
REM AND BACKGROUND COLOURS
REM ARE DEFINED USING VDU
REM SEE FOLLOWING SECTION ON
REM USE OF VDU
MODE 4

121

80
90

100

110
120
130
140
150
160
170
180
190
20 0

10
20
30
40
50
60
7 0
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

INPUT1''"Background number ",A
INPUT''For eground number " , B
IF A~B OR A<0 OR A>15

OR B<0 OF? B>15 THEN 70
VDU 19,1,B,0,0,0
VDU 19,0,A,0,0,0
CL.G
FOR X==0 TO PI*2,53 STEP 0,01
MOVE 160*X,SIN(X)*460+412
DRAW 160*X,SIN(X)*460+512
SOUND 17,-15,SIN(X)*20+100,3
SOUND 18,-15,SIN(X)*2 0 +101,3
SOUND 19,-7,255-SIN(X)*20+101,3
NEXT X

REM xxTunnel Tuner**
REM RUN IN MODE 2 ON MODEL B
MODE?.
Z~2
A=RND(300)
REPEAT
IF RND(l)>0,8 Z=RND(4)
MOVE0,0
DRAW Z*A,A
SOUND 17,-15,A,3
PROCchange
DRAW Z*A,Z*A
SOUND 18,-15,A,3
PROCchange
DRAW A,Z*A
SOUND 19,-15,A,3
PROCchange
DRAW A,A
PROCchange
GCOL. 0,RND(7)--l
IF RNDC9X3 A=RND(20 0)
UNTIL FALSE
DEF” PROCchange
A-A+RND(9)“RND<9)
ENDPROC

122

10
20
30
40
50
60
70
80
90

100
110
120
130
140

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

10
20
30
40
50
60
70
80
90

REM SINE RIBBON
MODE4
VDU 19,0,0,0,0,0
VDU 19,0,4,0,0,0
0100
REPEAT
MOVE 010 0,0
FOR A-l TO 60
B=A*PI/20
DRAW A*20+C,SINCEO *310+320
SOUND 17,-15,255-A,3
NEXT A
C“C+3
UNTILFAL.SE

REM Orbital Sketcher
MODE 4
REPEAT
VDU19,0,0,0,0,0,19,0,RND(6),0,0,0
M=RND(400)
N-RNDC400)
MOVE 600+M,500
FOR A-l TO 205 STEP 5
E:-PI*A/10 0
C-:M*COS(B)+60 0
D-:N*SINCB)+500
DRAW C,D
NEXT
IF RNDC10)-5 CLG
IF RND(10)>4 THEN 50
UNTIL FALSE

REM ROLLER COASTER
M0DE4
X-l
VDU 19,1,0,0,0,0
C-100
REPEAT
T-RNDC2)
Q-120
P=368

123

UNTILFAL.SE

10 0
110
120
130
140
150
160
170
180
190
20 0
210
220
230
240

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

10
15
20
30

VDU 19,0,X,0,0,0
MOVE C-100,0
FOR A=1 TO 60
B=AxPI/20
MOVE Q,P
Q:s=Ax20+C
P«SIN(B)x310+320
IF T-l PLOT 7,Ax20+C-50,SIN(B)x310+320
DRAW Ax20+C,SIN(B)*310+320
SOUND 18,-A,255xSIN(B),10
SOUND 17,-A,250xSIN(B),10
NEXT
0=0+2
X~RND(7)
UNTIL FALSE

REM COSMIC TABLE MAT
REM ADAPTED FROM 'Spiraliser'
REM By Jiw Welsh and Paul FlolMes
REM RUN IN MODE 5 ON MODEL A
MODE 2
MOVE 600,500
REPEAT
FOR N- 1 TO 50 0 STEP RND(5)/RND(5)
A==INT (200/200XN)
GCOL 0,A MOD 8
DRAW 600-AxCOS(N/6xPI),500+AxSIN(N/6xPI)
NEXT N
Q==RND(4) -1
FOR N==50 0 TO 1 STEP -RND(5)/RND(5)

A~INT (200/200XN)
GCOL Q,A MOD 8
DRAW 600-AxCOS(N/6xPI),500+AxSIN(N/6xPI)
NEXT N
IF RND(5)==2. CLGtMOVE 60 0,500
UNTIL FALSE

REM COSMIC TABLE MAT
REM MARK 11 (More adventurous)
REM ADAPTED FROM 'Spiraliser'
REM By JiM Walsh and Paul HolMes

124

40
50
70
72
75
80
90

100
110
120
130
140
150
160
170
180
190
20 0

10
15
20
30
40
50
70
72
75
80
90
95
96

100
110
120
130
140
150
155
156

REM RUN IN MODE 5 ON MODEL A
MODE 2
REPEAT
G-8+RND (3) -RND (3)
MOVE 600,500
FOR N~ 1 TO 540 STEP RND<5)+2
A=INT (200/200»N)
GCOL 0,A MOD G
DRAW 60 0--AxCOS (N/6*PI),500+AxSIN(N/6*PI)
NEXT N
Q-RND(4)-1
FOR N=540 TO 1 STEP -RND(3)*2

A-INT (20 0/'20 0XN)
GCOL. O,A MOD G
DRAW 600~AxCOS(N/6xPI),500+AxSIN(N/6xPI)
NEXT N
CLG
UNTIL FALSE

REM COSMIC TABLE MAT
REM MARK 111 (with sound!)
REM ADAPTED FROM 'Spiraliser'
REM By Jim Walsh arid Paul Holwes
REM RUN IN MODE 5 ON MODEL A
MODE 2
REPEAT
G=8+RND(3)~RND(3)
MOVE 600,500
FOR N- 1 TO 540 STEP RND(5)+2
A-INT (200/200XN)
SOUND 18,-15,N/2,10
SOUND 17,-7,1000 MOD (A+12/N),10
GCOL 0,A MOD G
DRAW 600-A»COS(N/6XPI),500+A*SIN(N/6XPI)
NEXT N
Q-RND(4)-1
FOR N-540 TO 1 STEP -RND(3)*2
A-INT (200/200XN)

SOUND 18,-15,1000 MOD (A+5/N),10
SOUND 17,-15,N/2,10

125

160 GCOL Q,A MOD G
170 DRAW 60 0~A*COS (N/6*F’I) ,500+A*SIN(N/6xF'I)
180 NEXT N
190 CI...G
2.0 0 UNTIL FALSE

VDU drivers
The VDU driver is a piece of software through which all characters that
are going to be printed are sent. The characters are sent as codes
between 0 and 255. The effects of the codes are different, depending
on their values. All codes of 32 or greater are printed on the screen,
and all codes less than 32 are acted upon in different ways, doing
things like moving the cursor around. In addition, code 127 is the same
as the delete key, and so fits in the latter category.

The exact meanings of the codes 0 to 31 are described below:

(Note that using this table you can see what control key to press to
gain the same result. For example, code 20 can be generated by using
VDU 20, or by pressing control-T, or even by PRINT CHR$(20).)

0------ @
1 -A
2 ------ E:
3 ------ C
4 ------ D
5 ------ E
6 ------ F
7 ------ G
8 ------ H
9 ------ 1

10 ------J
11 ------ K
12 ------L
13 ------ M
14 ------ N
15 ------ 0
16 ------P
17-.......Q
18------ R

126

19----- S
20-......T
21 ----- U
22V
23—... W
24X
25Y

28-...A
29........::i
30-.. -A
31-----

I have only described in detail those codes that are useful and not
explained fully in the User Guide.

Code Use

2 Used to stop character being sent to the printer.

3 Starts sending characters to the printer. Thus, to list a program
to the printer, you use control-B, then type 'LIST', then press
'return'. When the listing is complete, you just press control-c to
turn off the printer, and you're done.

4 Turns off the effect of code 5. See code 5.

5 Joins the text and graphics cursors. This means that text is
printed at the last graphics point visited, and that the graphics
cursor can be moved about with codes 8 to 11. This program
shows you how it works.

10 MODE’. 4
20 VDU 5
30 FOR T-l TO 40
40 MOVE’. RNDC1280) ,RND(1024)
50 PRINT "BBC Computer 32K"
60 NEXT T
70 VDU 4

The User Guide shows you how to use the VDU 5 feature to
make an accent on a letter — this is an important use of the
feature. One disadvantage with the VDU 5 mode is that text is
printed very slowly, and scrolling does not normally take place.
Another useful way of using VDU 5 is in the labelling of axes in

127

graph drawing. The biorhythm program in the 'welcome'
program collection illustrates this use. While in VDU 5 mode,
text printing only takes place in the current graphics window.
Windows are explained in the discussion of codes 24 and 28.

7 This code just causes a short 'bleep' to be added to the sound
queue. This program shows one use of it.

10 FOR T=1 TO 10
20 VDU 7
30 NEXT T

8-11 These codes move the cursor left, right, down and up
respectively. For example, this section of code moves the cursor
left, to correct the error in line 10:

10 A$ = “E:BC Computer 32J”
20 PRINT At>;CHR$(8) r’KH

Assuming you are conversant with the effect of *FX4, 1 on the
cursor control keys, you may have noticed that the codes
created by them in this state are 128 greater than the cursor
movement codes. Thus this program allows you to type on the
screen, shifting the cursor around with the cursor control keys.

10 XFX M
20 REPEAT
30 A-GET
^0 IF A>127 A-A-128
50 VDU A
60 UNTIL FALSE

13 Code generated by pressing 'return'. Returns the cursor to the
start of the current line. BASIC usually puts a cursor down in
after this character.

14 Turns page mode on. You will often use this mode to list
programs too long to fit on the screen, so it can be done in
sections. When page mode is active, the computer waits for you
to press one of the two shift keys before printing each new page,
to give you time to assimilate the text being printed. This
program shows VDU 14 by printing 100 random numbers. The
trouble is that they scroll off the screen too fast for you to read
them. The second time, however, page mode is on, which gives
you ample time to read the numbers.

10 FOR T==0 TO 100
20 PRINT RND

128

30 NEXT T
40 PRINT “PRESS ANY KEY ♦ ♦♦“
50 DUMMY-GET
60 WU 14
70 FOR T-0 TO 100
80 PRINT RND
90 NEXT T

100 VDU 15

19 VDU 19.... enables you to change the colour of an area or spot
of colour of the screen, without having to redraw the object.
To use this command effectively, you have to think about colour
graphics in a different way. Rather than consider blobs of colour,
think of the screen being divided into a number of squares,
where each square, or pixel, can hold a number.This number is
restricted to magnitude by the graphics mode you are using:
Mode 0 — 0 to 1
Mode 1 — 0 to 3
Mode 2 — 0 to 15
Mode 3 — 0 to 1
Mode 4 — 0 to 1
Mode 5 — 0 to 3
Mode 6 — 0 to 1

The machine is set up in such a way that each number
corresponds to a specific colour. In modes 0,3,4 and 6, a pixel
holding 0 will appear black and one holding 1 will appear white.
In modes 5 and 1 the relationships are:

0 — black
1 — red
2 — yellow
3 — white

In mode 2, the relationships are:
0 — black
1 — red
2 — green
3 — yellow
4 — blue
5 — magenta (purple)
6 — cyan (light blue)
7 — white
8 — flashing white/black
9 — flashing red/cyan

10 — flashing green/magenta
11 — flashing yellow/blue
12 — flashing blue/yellow

129

13 — flashing magenta/green
14 — flashing cyan/red
15 — flashing white/black

The intriguing possibilities soon become apparent once you realise that
you can change these relationships by executing a command of the
form VDU 19, colour_ number, colour, 0,0,0 where 'colour__number'
is a number in the range outlined in the first table. Colour is a variable
in the range 0 to 15. After this statement has been executed, any pixels
of holding the number 'colour_ number' will assume the colour given
by 'colour' according to the second table of this section.

There are many applications for this command, if you first set the
pixels of a graphics screen to appear black, no matter what number
they hold, and you then draw a complex shape or pattern before
restoring the normal relationships with VDU 20, it will appear as if the
drawing was done instantaneously.

For example, this program draws a circle with the screen turned off,
and then restores all the normal colours very quickly. The effect can be
quite dramatic:

10 MODES
20 FOR colour~l TO 3
30 VDU 19,colour,0,0,0,0
40 NEXT colour
50 MOVE 640,512+500
60 FOR angle-O TO 330 STEP 30
70 SOUND 1,-7,angle/2,1
80 GCOL 0,1
90 MOVE 640,512

100 PLOT 85,SIN(RAD(angle+10)>*500+640,
COS(RAD(angle+10)>*500+512

110 GCOL 0,2
120 MOVE 640,512
130 PLOT 85,SIN(RAD(angle+20>>*500+640,

COS(RAD(angle+20> >*50 0+512
140 GCOL 0,3
150 MOVE 640,512
160 PLOT 85,SIN(RAD(arigle+30) >*500+640,

COS(RAD(angle+30)>*500+512
170 NEXT angle
180 VDU 20

130

As a logical step from this example, if you draw many similar figures,
all set to black, and then in rotation set each to a specific colour and
then back to black again, the illusion of movement is created. This
example should make the technique clear:

10 REM By Jerewy Ruston
20 MODES
30 FOR X^O TO 1279 STEP 20
40 MOVE X,0
50 GCOL. 0,((X DIV 20) MOD 3) + l
60 DRAW X,1023
70 NEXT X
80 REPEAT
90 FOR colour-1 TO 3

100 SOUND 18,-15,75xcolour,10
110 VDU 19,colour,4,0,0,0
120 Q-RND(25)
130 TIME-0
140 REPEAT UNTIL TIME-Q
150 VDU 19,colour,0,0,0,0
160 NE.XT colour
170 UNTIL FALSE

The program works by drawing a series of vertical lines in each of the
three colours in turn. Then each colour is selectively turned to blue —
line 110. A time consuming loop, lines 130 to 140 is set up before the
colour is reset to black. This technique works well in mode 2, where
you can use 15 colours. Without this command it would be impossible
to have any colours other than black and white in modes 0,4,6, and 3.
Thus if you like the idea of purple text on a yellow background,
execute this: VDU 19,0,3,0,0,0,19,1,5,0,0,0. Make the five be 23, and
try this in mode 6, and see what happens.

24 This code enables you to restrict all graphics commands to
operate in a rectangular section of the screen. This section
usually consists of the whole screen. The rectangle is stated in
terms of the coordinates of its bottom left hand corner and its
top right corner. The four numbers have to be separated with
semi-colons, and not commas, as you might expect. This
program draws two sets of random lines — one with no screen
window in effect, and one with a graphics window. The program
expects a key press after the first session, to tell it to start the
next lot of lines.

131

io mode: q
20 FOR T~1 TO 50
30 MOVE RND(1280),RND(1024)
40 DRAW RND(1280),RND(1024)
50 NEXT T
60 A:~GET
70 MODE 4
80 VDU 24,20012001700J700J
90 FOR T~1 TO 500

100 MOVE: RND(1280),RND(1024)
110 DRAW RND(1280),RND(1024)
120 NEXT T

28 This code is like the previous one, except that it defines a
window within which text is restricted. The coordinates of the
window are given in the same way as above, i.e. bottom left and
then top right. Remember that the origin for text is the top left
hand corner of the screen. Commas are used to separate the
data. This program fills the screen with random letters and then
defines a text window in the middle of the screen. The program
ends without clearing the screen. When it has finished, type
CLS, then press 'return'. Try listing the program to see what
happens. Do not make the coordinates given in the command
too large for the current screen mode.

10 MODE 7
20 FOR T~0 TO 799
30 VDU RND(26)+64
40 NEXT T
50 A-GET
60 VDU 28,5,6,34,3

26 Returns all the graphics and text windows to normal. Control Z is
normally more convenient.

31 Used to move the cursor to the position X,Y. Used in this format:
VDU 31,X,Y.

23 Redefines text characters. Use this program to redefine the
character set by the variable CHAR. The pattern for the
character should be set up in A$(). P should be set to TRUE for
just printing the correct VDU command to redefine the
character, and FALSE to actually do the redefinition. An
example is given in the text of the program. Use 'MODE 5,
PRINT CHR$(255)' to examine the character you defined,
presuming it is character 255.

132

10 REM Character redefinition
20 REM Copyright (C) Jereny Ruston
30 F’-FALSE
40 DIM A$<8)
50 AMI)--"* ♦♦♦<♦♦ ♦"
60 AM2)="xxxxxxx*"
70 AM3)~"x**.♦*x*"
80
90 AI(5)=l,x,x,x,Jt,"

100 AM6)~"x*xxx*x*"
110 AM7)--"«♦ ♦♦♦♦*♦ "
120 A$(8)="xxxxxxx*"
130 CHAR-230
140 IF P THEN PRINT "VDU 23," J CHAR I

ELSE VDU 23,CHAR
150 FOR ROW-O TO 7
160 TEMP==0
170 FOR COL=0 TO 7
180 IF MIDMAMROW+1) ,COL.+ 1,1) = "x"

THEN TEMP~TEMP+2A(7-C0L)
190 NEXT COL.
20 0 IF P THEN PRINT J","J TEMP J

ELSE VDU TEMP
210 NEXT ROW
220 PRINT
230 END

Finally, here are two more programs which use a VDU statement for
rather unusual results. Once you've run them, and seen what they do,
try and work out how they achieve this. Notice that the second
program must be exited via ESCAPE, then by typing in MODE 7, then
pressing RETURN.

10 REM SIDEWAYS SCROLL
20 REM BY JEREMY RUSTON
30 REM MODEL B ONLY
40 MODE1
50 FOR X=0 TO 999 STEP 20
60 GCOL 0,((X/20) MOD 3)+l
70 MOVE. X,0
80 DRAW 0,1000-X
90 DRAW 1000--X,1000

133

100
110
120
130
140
150
160
170
180
190
200

10
12
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

DRAW 1000,X
DRAW X,0
NEXT X
REPEAT
FOR T-0 TO 79
VDU 23,0,13,T,0|0;0?
NEXT T
FOR T~79 TO 0 STEP "1
VDU 23,0,13,T,0|0*,0 J
NEXT T
UNTIL FALSE

REM CORRUPTION
REM ENTER MODE 7 AFTER ESCAPE
REM BY JEREMY RUSTON
REM MODEL B ONLY
MODE1
FOR X-0 TO 999 STEP 200
GCOL 0,((X/20) MOD 3)+l
MOVE X,0
DRAW 0,1000-X
DRAW 1000~X,1000
DRAW 1000 ,X
DRAW X,0
NEXT X
REPEAT
FOR T«0 TO 79
VDU 23,0,12,T,0 J 0 J 0 J
NEXT T
FOR T«79 TO 0 STEP -1
VDU 23,0,12,T,0 £ 0 £ 0?
NEXT T
UNTIL FALSE

134

>RUN
I'll now work, out for you the

190 count=cour»t+Q
200 PRINT W,Q
210 NEXTloop
220 PRINT ZCHR$(Z);TAB<8);"The sum is "Icount

arithmetic progression from tl
information you give me
Enter the first term 66
And now the common difference
How many terms? 12
Arithmetic progression
mz M/ Mf M/ ^F W Mf MZ Mf ^F ^iF ^F Mf V/ Mf^R ^R zR ^R m jR ^R jR ^R ^R ^R ^R ^R /R zR ^R ^R

Term number Value
1 66
2 69
3 72
4 75
5 78
6 81
7 84
8 87
9 90

10 93
11 96
12 99

The sum is 990
As you can see, the program also works out the sum of the terms.

I'll now work, out for you the
arithmetic progression from the
information you give me
Enter the first term *0034
And now the common difference *00012
How many terms? 13
Arithmetic progression
MZ MtT 'AT Vf^R /R zR ^R ^R zR ^R ^R ^R ^R zR ^R zR ^R ^R m zR

Term number
1
2
3

Value
3*4E-3

3.52E-3
3*64E-3

136

4 3.76E-3
5 3.88E-3
6 4E-3
7 4.12E-3
8 4.24E-3
9 4.36E-3

10 4.48E-3
11 4.6E-3
12 4.72E-3
13 4.84E-3

The sum is 5.:
The next program in this section determines the moment of inertia,
polar moment of inertia and the area connected within a circular
section. All you have to do is enter the radius.

10 REM **Circular sections**
20 M0DE7tZ=RND(6)+128
30 PRINT " 'CHR$<Z)I"This program will work out the moment"
40 PRINT'CHR$(Z)»"of inertia» polar Moment of interia
50 PRINT'CHR$(Z)I"and the area connected within"
60 PRINT'CHR$(Z)|TAB(5);“a circular section"
70 PRINT" "CHR$(Z> J "Please enter the radius"
80 INPUT radius
90 X-2*radiusJM=PI

100 PRINT'CHR$(Z)I"The Moment of inertia is "J(M*(XA4)>/64
110 PRINT'CHRS(Z)|“The polar moment of interia is"'

CHR$(Z),2*<M*<XA4))/64
120 PRINT'CHR$(Z)J"The area of section is “♦<M*<X*X))/4

This prograM will work out the MOMent
of inertia, polar MoveMent of inertia,
and the area connected within

a circular section
Please enter the radius
?35
The Moment of inertia is 1178588.12
The polar MOMent of interia is

2357176.24
The area of section is 3848.451
This prograM will work out the MOMent
of inertia, polar novenent of inertia,
and the area connected within

a circular section
Please enter the radius
?1

137

The nonent of inertia is 0*785398163
The polar wonent of interia is

1*57079633
The area of section is 3*1^159265

Prime numbers are very easy to determine.

10 REM +Prine nunbers+
20 M0DE7JZ=128+RND(6)
30 PRINT ''''CHR$(Z)J"Enter the value of the naxinun"
40 PRINT 'CHR$(Z)J"prine number you want"
50 INPUT AZ IF A<1 THEN 50
60 DIM PRIME(A):KL=A
70 for j=itoa:prime(J)=j:next
80 IF A<4 THEN PROCprint_out♦END
90 PRIME(4)=5

100 KL=4lIZ=5
110 IZ=IZ+2:iF IZ>A THEN PROCprint_out♦END
120 J0=3
130 EX=IZ/PRIME(JO)
140 IF EX=INT(EX) THEN 110
150 IF EX<PRIME(JO+1) THEN 180
160 JO=JO+1
170 GOTO 130
180 KL=KL +11PRIME(KL)=IZJ GOTO110
190 REM*»)kxxx*x*x*x*xx**xx*x
200 DEF PROCprint_out
210 CLS
220 PRINT '''CHR$(Z)I"The prine numbers up to "JA?" arel"
230 PRINT 'CHR$<Z)J TAB<17)I"Prine ♦ Prine"
240 FOR count=l TO KL J PRINT CHR$ (Z), count, PRIME (count)*♦ NEXT
250 ENDPROC

Enter the value of the Maxinun
priwe number you want
?87
The priMe nuMbers up to 87 are*

PriMe * Prine
1
2
3
4
5
6
7
8
9

10
11

1

3
5
7

11
13
17
19
23
29

138

12 31
13 37
14 41
15 43
16 47
17 53
18 59
19 61
20 67
21 71
22 73
23 79
24 83

The mathematical ability of the computer can also, of course, be
turned to produce other kinds of information, such as the day of the
week a specified date falls on.

10 REM *Dsy of the week*
20 At = ”*♦MONTUEWEDTHUFRISATSUN”
30 INPUT ’’Day? "D
40 IF D<1 OR D>31 THEN 30
50 INPUT ’’Month? (as 7) ”M"
60 IF MCI OR M>12 THEN 50
70 INPUT ’’Year? (as 1983) ”Y
80 Q=Y-(M<3)
90 K=Q/100

100 T=M+12*(M<3)
110 R~INT(13*(T+1)/5)+INT(5*Q/4)-INT(K)+INT(K/4)+D+5
120 R=R-(7*INT(R/7))+l
130 print d;”/”;m;"/,’;y-19oo;” - •• ;mid$(a$,r*3,3>

Day? 25
Month? (as 7) 12
Year? (as 1983) 1984

25/12/84 - TUE

Day? 1
Month? (as 7) 1
Year? (as 1983) 1999

1/1/99 - TUE

The final program in this section uses the computer to simulate the life
cycles of two species, one of which preys upon the other, and to graph
their relative populations. The relationship between the two species is
controlled by a differential equation. You enter the starting
populations, as numbers between one and nine. Fractions are
acceptable, and it is fascinating to enter a very low population for one

139

of the animals, and a high one for the other, and watch the two evolve.
When the program has run through a specificed number of
generations, it will stop and display a question mark on the screen.
This is so you can enter another starting population for the first
species. Press RETURN and a second question mark will apear for the
starting level of the second species. The development of this
relationship will then be graphed, on top of the existing graph, so you
can build up a number of graphs showing the effects of different
starting populations for the predator and its prey.

10 REM xxSPECIESxx
20 M0DE7
30 INPUT"''"How Many of species one",X
40 INPUT"'"And how Many of species t,wo",Y
50 MODES
60 GCOL. 0,2
70 REPEAT
80 MOVE 50x(X+5),50x(12-Y)
90 FOR Z=1 TO 12

100 FOR T=1 TO 7 STEP 0,25
110 PRINT TABC1,1)JINT(X*l0000)J"
120 PRINT TAEU 1,2) JINT(Yx‘10000) ? "
130 X~X+(4xX~2xXxY)x0♦01
140 Y=Y+(X*Y~3xY)*0♦01
150 PLOT 5,50x(X+5),50x(12~Y)
160 NEXTTtNEXTZ
170 INPUT X
180 INPUT Y
190 PRINT TAEi(0,3)$" " ?TAE:(0,4) J "
200 UNTIL FALSE

140

Functions
The BBC Microcomputer's dialect of BASIC, in common with other
BASICS, contains a number of preprogrammed functions which you
can use in a program, or in the direct mode. As well as the
programmed functions, you can create your own, with the DEF FN
(DeFine FunctioN) command. In this article, we will look at the
functions which come with the BASIC, as well as discussing the use of
DEF FN. The discussion includes a program which uses a defined
function to draw a picture of a bat! General functions:
ABS — This function, ABSolute, gives the value of X, ignoring the

sign, so that if X was — 10, ABS(X) would be 10. Similarly, if
X was 10, ABS(X) is still 10.

INT — The INT functions gives the whole number, or INTeger
part of a number, giving the largest number which is not
greater than X. If X was 2.42, INT(X) would be 2.

RND — This is used to generate a RaNDom number. If X was 20,
RND(X) could be 13, 7, 4, 20, or any whole number between
one and 20. RND(1) gives a random number between zero
and one.

SGN — This function returns the SiGN of the variable in brackets,
the SiGN of the argument as this variable is known. If X
equals 20, that is, X is a positive number, SGN(X) = 1.
SGN(-20) = -1. SGN(0) = 0.

TAB — As pointed out earlier in the book, this is the TABulating
function, which moves the PRINT position across the line the
number of spaces indicated by the argument of the function.
Thus, PRINT TAB(7);"£" will print the £ at the seventh
position across from the left hand edge, while PRINT
TAB(14);"£" will print it 14 spaces across. The direction
down the screen can also be specified, by adding a second
argument after a comma within the brackets. Thus, PRINT
TAB(4,9);"£" will print a pound sign four spaces across, and
nine down.

EXP — This function gives the value of e raised to the power of
the argument, so PRINT EXP(5) will give 148.413159.

LOG — This calculates the common logarithm of a number to base
10, so PRINT LOG(X) where X is five will yield 0.698970004,
whereas LN (X) yields the natural logarithm to base e, so
PRINT LN(5) gives 1.60943791.

SQR — This function yields the SQuare Root of a number, so
when X is five, PRINT SQR(X) gives 2.23606798

Trigonometrical functions:
SIN — This gives the sine of an angle in radians. SIN(5) yields

-0.958924274.

141

COS — Yields the cosine of an angle in radians. PRINT COS(X)
where X equals five gives 0.283662185.

TAN — Produces the tangent of angle X in radians, so PRINT
TAN(X) where X equals five produces 1.37340077.

It is likely that you won't be used to measuring angles in radians. PI
radians equals 180 degrees. Fortunately, the BBC Microcomputer
has another trigonometrical function, called RAD which converts
from degrees to radians for you. The argument of the function
must be in radians. The DEG (DEGree) function works the other
way, converting angles expressed in radians into degrees.

10 REM RADIANS TO DEGREES
20 REPEAT
30 INPUT "ANGLE IN RADIANS",X
40 PRINT JX" RADIANS IS "DEG(X)" DEGREES"
50 UNTIL FALSE

Defining functions
This feature allows you to DEFIne functions within a program, which
you can then call whenever you need to while running the program.
DEF FN can save space as well as time, as complex calculations can be
defined with a short name, and called up at will by use of this name.

There are four things in the statement which defines the function:
• The word DEF
• The name of the function, which consists of the letters FN,

followed by the name
• The argument of the function which follows the name, in

brackets
• The formula, using the argument, for working out the function.

This sounds a lot more complicated than it is in practice. Look at this
program.

10 REM DEFINE A FUNCTION
20 DEF FNA(Z)~Z*Z
30 REPEAT
^0 INPUT Z
50 PRINT FNA(Z>
60 UNTIL FALSE

142

Line 20 defines a function A, with the argument Z as being Z squared.
Then, whenever the program comes across FNA(Z), it will square the
value assigned to the variable Z. You can see this in the
demonstration.

The next program defines a function such that the argument (which
you enter in line 40) is multiplied by 2.178 and divided by the square
root of the integer of itself. This function, as a moment's thought will
show, will default if the argument is less than zero.

10 REM DEFINE A FUNCTION
20 REPEAT
30 DEF FNA(Z)-2»178xZ/SQR(INT(Z))
40 INPUT Z
50 PRINT FNA(Z)
60 UNTIL FALSE

Look to the next program — BAT — in which a function is defined in
line 60. The function bat(B) gets the square root of the difference
between the squares of two variables, and in the routine 120 to 210,
uses the value H (see line 130) to determine the printing positions of
the dots which will draw up the bat. PROC delay (a procedure), defined
from line 270, is there simply to slow things down, and produce
some bat-like sounds.

10 REM "BAT"
20 REM SHOWING DEF FN
30 M0DE7
35 REM LINE 40 TURNS OFF
36 REM THE CURSOR
40 VDU23J8202J0»0»0
so l~o:p=ii:q=17
60 DEF FNbat(B)=SQR(LXL-B*B)
70 PRINT CHR$(12)CHR$(30)
80 PRINT TAB(Q,P)J"O"
90 REPEAT

100 PRINT TAB(16,9)$"! ! "
110 L=L+1
120 FOR B=0 TO L
130 H«FNbat(B)
140 PRINT TAB(Q+H,P+B)$"♦"
150 PROCdelay
160 PRINT TAB(Q-H,P+B)$"♦"
170 PROCdelay

143

180 PRINT TAB(Q-H,P-B)I"*"
190 PROCdelay
20 0 PRINT TAB(Q+H,P-B) J’* * "
210 NEXTB
220 PROCdelay
230 UNTIL L=ll
240 REPEAT
250 PROCdelay
260 UNTIL FALSE
270 DEF PROCdelay
280 UPTIME
290 SOUND 1,-15,RND(6)+249,3
300 REPEAT
310 UNTIL TIME-W>15
320 ENDPROC

LOCAL VARIABLES
It is important to ensure that all variables used within functions for
temporary results, or passing the function's value to the calling
statement are defined as 'local'. This ensures that any variables that
you've used inside the function that are also used outside the function
definition will be treated as different entities. Thus you can use
variables such as X and Y in a function for their logical coordinate
purposes, without them interfering with a possible X and Y elsewhere
in the program.
Jeremy Ruston, author of THE BBC MICRO REVEALED, points out
that it is good practice to make the first line after the function
definition a blank LOCAL statement. Then, when the function has
been written, you can fill in the required variables into the LOCAL
statement. This serves as a useful memory aid to prevent the
inadvertent omission of the LOCAL statement.
We'll be discussing the use of LOCAL variables again in a few pages
times in the section on procedures.

There is a variation to the kind of user defined function we've just
discussed. Often the value you wish the function to take on cannot be
calculated in a single line, maybe because a loop is required. In this
case, you can use functions which are multi-line. The spirograph
program, which follows uses a multi-line function.

144

10 REM ixxxxixiiiiiiixiiixx
20 ON ERROR GOTO 20
30 REPEAT
40 MODE 4
50 VDU 29,64015121
60 A=RND(200)+250
70 B=A~RND (A--50)
80 C=A~RND(A-10>
90 PROCSPIRO(A,B,C)

100 TIME=0
110 REPEAT UNTIL TIME>300
120 UNTIL FALSE.
130 END
140 REM xxxxxxxxxxxxxxxxxxxx
150 DEF PROCSPIROCA,B,D)
160 E=D
170 F=(A-B)
180 G=0
190 H=PI*0»02
200 K=A/B
210 N=B/FNHCF(A,B)
220 L.=10 0*N
230 MOVE F+E,0
240 FOR 1=1 TO L
250 G=G+H
260 P=G*K
270 X=F*COS(G)+E*COS(P)
280 Y=FxSIN(G)~ExSIN(P)
290 DRAU X,Y
300 NEXT I
310 ENDPROC
320 REM xxxxxxxxxxxxxxxxxxxx
330 DEF FNI-1CF(I,J)
340 LOCAL M
350 REPEAT
360 M=I MOD J
370 I=J
380 J=M
390 UNTIL M=0
400=1
410 REM xxxxxxxxxxxxxxxxxxxx

145

The differences between this function at line 330 and the normal
functions we looked at include:
1. It has taken two arguments, rather than a single argument.
2. There are extra statements between the final equals sign (line 400)
and the end of the function heading.

Instead of using something like the ENDPROC statement, functions
are terminated with a single equals sign assignment, line 400. Then,
when the function is called, in line 210 of the procedure, it finds the
highest common factor of the two numbers and returns that facts via
the variable T.

Try to make all routines which return a result into a fraction, and make
the functions fairly short. It is possible to use functions which do not
take any arguments. However, if you ever write a function which gives
a null, or irrelevant result, used purely as a dummy, you should be
writing a procedure. This leads us neatly into a discussion of
procedures.

Procedures
In essence, procedures are subroutines which you call by name, rather
than by line number. They have the advantage that you can use local
variables within them, and they can be located far more quickly by the
computer than can subroutines. The computer knows where the
procedure is, so it does not have to search through a whole program,
line number by line number, looking for the start of a subroutine.

To call a procedure from within a program, you just include the line
PROCname_ of__procedure. Somewhere else in the program you
must define the procedure, which you do by having an opening line
DEF PROCname_ of_ procedure. After doing whatever you want
done within the procedure, you end the definition section with a line
reading ENDPROC. The following simple example should help make it
clear.
10 REM USING PROCEDURES
20 REPEAT
30 PROCp r irrt_nane
^0 PROCcount
50 PROCdelay
60 PROCcount
70 PROCdelay

146

80 PROCdelay
90 UNTIL FALSE

100 REMxxxxxxxxxx
110 DEF PROCdelay
120 TIME=0
130 REPEAT UNTIL TIME> 100
140 ENDPROC
150 REMXXXXXXXXX
160 DEF PROCprint„narte
170 PRINT """My none is
180 ENDPROC
190 REMxxxxxxxxxxx
200 DEF PROCcount
210 FOR J- 1 TO 10
220 PRINT J
230 NEXT J
240 SOUND 1,-15,100,2
250 ENDPROC

As you can see, procedures are very much like functions, but are
somewhat easier to use in many cases, and can be far more complex
than functions.

In the sample program just given, the 'real' program — which is
executed repeatedly while the program is running — lies within the
master REPEAT/UNTIL loop (lines 20 to 90). The computer goes
through this loop, calling up the procedures as it comes to them:
PROCprint_ name (note that the underline symbol can be used to link
words in a procedure name), PROCcount, PROCdelay, PROCcount,
PROCdelay, PROCdelay. It does not matter in which order the
procedures are defined.

The statements between the DEF PROCname and ENDPROC are
executed every time the computer comes across the line PROCname.
One great advantage of procedures is that it leaves the 'real program'
relatively short and each procedure can be written and debugged
individually.

Here's the spirograph program again. Run it a few more times, then
return to the book for a discussion on the use of the procedure
PROCSPIRO(A,B,D).
10 REM ooxooooooxo
20 ON ERROR GOTO 20
30 REPEAT
40 MODE 4

147

50 VDU 29,6-10:512?
60 A=RND(200)+250
70 B=A-RND(A-50)
80 C=A-RND(A-l0)
90 PROCSPIROCA,B,C>

10 0 TIME=0
110 REPEAT UNTIL TIME>300
120 UNTIL FALSE:
130 END
140 REM xxxxxxxxxxxxxxxxxxxx
150 DEF PROCSPIROCA,B,D)
160 E=D
170 F=(A~B)
180 G=0
190 H=PI*0«02
200 K=A/B
210 N=B/FNHCF(A,B)
220 L-lOOxN
230 MOVE F+E,0
240 FOR 1=1 TO L.
250 G=G+H
260 P=GXK
270 X=FxCOS(G)+ExCOS(P)
280 Y=FxSIN(G)-ExSIN(P)
290 DRAW X,Y
300 NEXT I
310 ENDPROC
320 REM xxxxxxxxxxxxxxxxxxxx
330 DEF FNHCF(IfJ)
340 LOCAL M
350 REPEAT
360 M=I MOD J
370 I=J
380 J=M
390 UNTIL M=0
400=1
410 REM xxxxxxxxxxxxxxxxxxxx

PROCSPIRO as you know, draws a spirograph pattern. For the
moment don't worry about the (A,B,D) at the end of line 150. The
main point to learn from it at the moment is that the procedure
definition takes up much of the program. When you run it, an endless

148

variety of spirograph type patterns are displayed. If you get bored with
any one pattern, just press ESCAPE to get a new one.

Now, about the (A,B,D). The procedure in this program needs three
pieces of information: the radius of the outer circle of the spirograph;
the radius of the inner circle; and the distance from the centre, of the
inner circle of the pen. It would of course have been possible to set
three variables to the values of these constrants before executing
PROCSPIRO. However, the BBC Microcomputer has a simple
mechanism for passing variable values to procedures. When you write
a procedure, you choose the variables that will be passed to it, be they
string variables or numeric variables. You place the names of these
variables in brackets at the end of the procedure heading as in line 150.
When the procedure is called, the values contained in the brackets of
the call will be copies into the variables you specified in the procedure
heading. If you have a variable with the same name as one of the
variables in the procedure heading, the variable outside the procedure
and the variable within the procedure heading are treated as seprate
variables. Changes in the value of the variables within the procedure
do not affect the same variable outside the procedure. However, there
are more variables used in this procedure than the two mentioned in
the procedure heading. It would be good if they too were LOCAL to
the procedure. All you do as we said earlier, is specify that certain
variables be LOCAL.

In the spirograph program, a suitable line would be '155 LOCAL
E,F,G,H,K,N,L,G,P,X,Y,I'. The variable names following the LOCAL
statement are all those that appear on the left hand side of the
assignment statements in the procedure.

149

Twenty One
In this program, you and the BBC Microcomputer take it in turns to
throw a six-sided dice as many times as you like, trying to get a total of
21, or close to 21, without exceeding 21 ('busting'}. This is a dice
version of Blackjack, and the computer plays very well. You go first in
every game, entering "1" to roll the dice again, or "2" to stand, that is,
to stay with the total you have accumulated. There are five rounds to a
game and the winner, of course, is the player who wins the most out
of the five rounds.

Line 20 sets the mode, and line 30 sends action to a procedure called
'initialise'. This short procedure (lines 70 to 100) sets the two variables
which hold the scores — SI and SM — to zero. From there, line 40
sends the computer's attention to the procedure called game_ count.
The 'game_ count' procedure (lines 110 to 150) set up a loop which
calls the procedure 'game' five times. As you've probably noticed
earlier in this book, the BBC Microcomputer supports loop names
which are whole words (in this case the word, as you can see, is
'count'). The procedure, 'game', which is called from within the
procedure game_ count, runs from lines 160 to 330.

10 REM TWENTY ONE
20 MODE 7
30 PROCinitialise
40 PROCgane.count
50 PROCfinale
60 END
70 DEF PROCinitialise
80 SI=0
90 SM=0

100 ENDPROC
110 DEF PROCQBMe_count
120 FOR count®1 TO 5
130 PROCgane
140 NEXT count
150 ENDPROC
160 DEF PROCgane
170 e=o:f=o
180 PROCupdate
190 T=TIME«REPEAT UNTIL TIME-T>50
200 IF E>0 PRINTCHRX129) , r’TOTAL "|E
210 IF E=0 PRINTCHRt(131)»”1 TO ROLL,

2 TO STAND""

150

220 A=GET
230 IFA=49 E=E+RND(6)J GOTO190
240 IF E>21 PRINT CHR$(129)J"YOU'VE

BUSTED! ! " J PROCend_of_93«e:ENDPROC
250 PRINT'CHR$(133)J"OK, YOU STAND ON "JE"
260 G=RND(6)
270 F=F+G
280 T=TIMEtREPEAT UNTIL TIME-T>150
290 PRINT CHR$(128+G)J"I rolled a "J

GJ", so total is "JF
300 IF F=E PROCerid_of_98MeJ ENDPROC
310 IF F>18 OR F>E PROCend.of_gaMeJ

ENDPROC
320 IF F<17 OR F<E AND E<22 THEN 260
330 ENDPROC
340 DEF PROCend_of_9a«e
350 IF E=F AND EC22 PRINT'CHR*(129)J

"DEAD HEAT"JSI=SI+1:SM=SM+1
360 IF EOF AND (F>E AND F<22) OR E>21

PRINT'CHRt(129)J"I WIN"J SI=SI+1
370 IF EOF AND F>21 OR(E>F AND E<22)

PRINT'CHR$(133)J“YOU WIN"JSM=SM+1
380 ENDPROC
390 DEF PROCfinale
400 PRINT "CHR$(130) J "FINAL SCORES J"
410 PRINT'CHR$<129)J"YOU♦ "JSM,"MEJ "JSI"'
420 T=TIMEJREPEAT UNTIL TIME-T>150
430 IF SI>SM PRINT"I "J
440 IF SM>SI PRINT"YOU "J
450 IFSI=SM PRINT"WE BOTH "J
460 PRINT CHR$<129)J"WIN!"
470 ENDPROC
480 DEF PROCupdate
490 PRINT'CHRt(132)J"££££££££££££££££££

£££££££££££££££££££££"'
500 T=TIMEJREPEAT UNTIL TIME-T>150
510 PRINT'CHR>(130)J"ROUND "Jcount
520 PRINT'CHRS(134)J"YOU "JSM,"ME "JSI"
530 ENDPROC

151

The variables E and F store the human and computer scores
respectively within a particular round of the game. The procedure
'update' (lines 480 to 530) is called to draw a coloured line across the
screen, and report how the two protaganists are going. Line 190 is a
delay loop, setting the variable T to the value held by the computer's
internal clock, and then passing through a REPEAT/UNTIL loop until
half a second (TIME increments by one every hundredth of a second)
has passed. Line 220 waits for the player's input, and line 230 rolls the
dice, and adds its value to the score (line 200) if the player has decided
to keep rolling.

If not, the computer checks (line 240) to see if the player has exceeded
21 (and, if so, goes to the 'end_ of_ game' procedure). If the player
has not busted, the computer acknowledges the total the human has
decided to stick with (line 250) and proceeds to roll the dice itself. A
short delay (line 280) comes before the computer announces the value
it has rolled, and its total. Lines 300 to 320 check the computer's score,
and compare it with the player's score, and from this comparison
decides whether or not to roll again.

The procedure 'end_ of_ game' (lines 340 to 380) look at the two final
totals, and decides which player has won. After five rounds have been
played (counted, you'll recall, by the loop in the 'game_ count'
procedure), action goes to the 'finale' procedure (lines 390 to 470) to
find the winner of the five games.

SEVEN-UP
Our next program — SEVEN-UP — shows the use of procedures quite
clearly. The game is played within the master REPEAT/UNTIL loop
from lines 60 to 110.

SEVEN-UP is somewhat like checkers or draughts, except that it is
played on a 7 X 7 board, hence the name. The pieces move as
draughts pieces — diagonally one square, jumping over an opponent
for capture into an empty square beyond the opponent. The main
differences from draughts, apart from the size of the board, are that
pieces may move forward and backward at will, there are no kings
(every piece can move as it is a king) and there are no multiple jumps.

The computer is the X's moving down the screen, as you can see from
the sample run, and you are the O's. You move by entering the
number of the square from which you are moving — entering the

152

number along the left-hand edge first, then the number across the top,
then pressing RETURN; and the two number which refer to the square
to which you are moving.

The computer keeps track of the score, tells you the move it makes,
and terminates the game as soon as one player manages to capture
five of the opponent's pieces.

The way procedures have been used in this program shows how well
they work for a long program. Each procedure was written and
debugged separately. In fact, the master REPEAT/UNTIL loop was
worked out before any of the procedures were more than a name.

10 REM Seven-Up
20 REM showing use of procedures
30 REM (C) Hartnell, 1982
40 M0DE7
50 PROCinitialise
60 REPEAT
70 PROCcowputer_«ove
80 PROCprint._board
90 PROChuMan_Move

100 PROCpr i nt...board
110 UNTIL FALSE
120 REMxxxxxxxxxxx
130 DEF PR0ChuMan„MOve
140 PRINT'CHRt(128+RND<5))J"Fron"IJINPUT M
150 PRINT CHR$(11)JCHR$(128+RNDC5))?" "?Mr* to"I
160 INPUT Nt PRINT CHRXll)?"
170 H(N):=79
180 IF ABS(M-N)=22 OR ABS(M-N)=18 H(<M+N)/2)=46t

ME=ME+1
190 H(M)=46
200 ENDPROC
210 REMxxxxxxxxxxx
220 DEF PROCconputer..Move
230 A=76
240 IF H (A) •='.>88 THEN 310
250 B= 1
260 IF A<28 AND B<3 THEN 300
270 IF A>60 AND B>2 THEN 310
280 Q=2*Z(B)
290 IF H(A+Z(B))=79 AND H(A+Q)=46 THEN 330
300 IF B<4 B=B+i:COTO260

153

310 IF AM 2 A=A-1tGOT0240
320 GOTO 350
330 H(A+Z(B))=461H(A)=46♦H(A+Q)=88♦Y=A+Q
340 X=A:iT=IT+i:GOTO 460
350 Y=0
360 Y=Y+1
370 K=RND(66)+11
380 IF H(K)<>88 AND YC100 THEN 360
390 IF H(K)<>88 THEN 470
400 T=1
410 IF H(K+Z(T))=46 THEN 450
420 IF T<4 T=T+i:GOTO410
430 IF Y<70 THEN 350
440 GOTO 470
450 H(K+Z(T)>=88:H(K)=46:X=K:Y=K+Z(T)
460 ENDPROC
470 PRINT'""I concede,♦♦"
480 END
490 REMxxxxxxxxxxxxx
500 DEFPROCprint„board
510 PRINTTAB(0»4):CHR$(128+RNDC5))J

"scores: you-":me:" Me-":IT
520 PRINTCHRt<130)*,TAB(11):"1234567"
530 PRINTCHR$(131):TAB(7)J"xxxxxxxxxxxxxxx"
540 FOR J=70 TO 10 STEP -10
550 SOUND RND(3)f-15,RND(250),RND(3)
560 A=H(J+l):B=H(J+2):C=H(J+3):D=H(J+4)
570 E=H(J+5):F=H(J+6):G=H(J+7)
580 PRINTCHR$(130):TAB(7)»J/10:CHR$(129)

"x":CHR$(128+RND(5)):CHR$(A)JCHRt(B)
:c hr$(c):chr$< d):c,hr$ < e >;chr$(f >:

CHR$(G):CHR$(129)J"x":CHR$(130):J/10
590 NEXT J
600 PRINTCHRfc(131):TAB(7):"xxxxxxxxxxxxxxx"
610 PRINTCHR*(130)J TAB(11):"1234567"
620 PRINTTAB(0 >18):CHR$(128+RND(5)):

"I Moved froM "W to ":Y
630 IF IT=5 OR ME=5 THEN 650
640 ENDPROC
650 IF IT=5 PRINT "I win"
660 IF ME=5 PRINT "You win"
670 END

154

680 REM****x*«x**xx
690 DEF PROCirdtialise
700 DIM H(87),ZC4)
710 VDU23*,8202;0;0;0
720 IT-0
730 ME-0
740 FOR A=1 TO 87
750 IF A>77 OR A=-70 OR A«=60 OR A=68

OR A=69 OR A-50 OR A==59 OR A=58 OR
A--40 OR A--49 OR A==48 THEN 80 0

760 IF A=30 OR A=38 OR A==39 OR A=20
OR A=28 OR A-29 OR A=18 OR A=19
OR A<11 THEN 800

770 H (A) ::=ASC (" ♦ ")
780 IF A-72 OR A~74 OR A==76 OR A==61

OR A=63 OR A-65 OR A==67 THEN H(AJ^ASCCX")
790 IF A=21 OR A==23 OR A=25 OR A=27

OR A=12 OR A-14 OF? A-16 THEN H(A)=ASC("O")
800 NEXT A
810 FOR T==1TO4:READ ZCTHNEXT
820 PRINT'""
830 ENDPROC
840 DATA -11,-9,11,9

SCORES! You-0 Me-0
1234567

XXXXXXSKXXXXXXJKX

6*X ♦ ♦ 4 X♦X*o
*□ x ♦ X ♦ ♦ ♦ ♦ ♦ x 5
^X 4 4 4 4 4 4 4

3x 4 4 4 4 4 4 4 XC3

2*0*0♦0*0*2
l*40*0*0*xl

W W W W W W W W W W W Mf w /R jR /R /R »*R jtu zR /R /R jR zR

1234567
I Moved Iron 63 to 52
Ffom?25

25 to?36

155

SCORES? You-0 Me-0
1234567

ZR JAR ZR JXX ZR ZR ZR ZR ZR ZR JtX ZR J^X

7x.X.X.X.x7
6XX.♦»X.X*6
5x.X.♦♦..x5
4*.......*4
3X.....0.X3
2x0♦0♦♦♦0x2
1 x ♦ 0 f 0 ♦ 0 ♦ x 1

W/ KLf %•> \t^ 54/
^R ^R ^R ZR ^R ZR ^R ^R ZR /lx ^R flx ^R ^x ^R

1234567
I Moved froM 63 to 52

SCORES: You-0 Me-0
1234567

\4> MZ MZ Mb** VZ MZ MZ MZ^R ^x ^R ZR ZR m flx ZR ^R ^R ^R ^R ^R ^R ^R

7x.X.X.X.*7
6*X. .♦. .X*6
Sx.X.X.♦.*5
4x..,..♦.x4
3x.♦♦♦.O.x3
2x0.0...0x2
lx.0.0.0.xl

MZ MZ MZ MZ MZ MZ MZ MZ MZ MZm /R ZR ZR ZR ^R ^x ^x ^R ^R ^R ^R ^R ^R ^R

1234567
I Moved froM 65 to 54
FroM?36

36 to?45

156

SCORES: You-0 Me-0
1234567

\iz W W W XI/ XV M/ XV XV XV XV XV XV XV XV /ft ^R ^R JR JR ^R ^x JR ^R A JR M JR

7x.X»X*X«x7
6*X ♦♦♦♦«Xx6
5x*X ♦ X ♦ ♦ ♦ x5
4x.♦♦»O».X4
3x................x3
2x0.0...0x2
lx.O.O.O.xl

XV MZ xv XV XV MZ XV M/ V/ JR JR nx JR JR m JR m ^R flx ^R ^R ^R

1234567
I Moved froM 65 to 54

SCORES: You-0 Me-1
1234567

co eg/ co co tu mj ct> M/ KL> M/ \u MZ \1Z *-*-* \1Z
A A A JF. ff. A A JF. X * X ?F. A *

7x.X.X.X.x7
6xX♦♦♦♦.X*6
5x.X ♦ ♦ ♦ ♦ ♦ xjj
4x.......x4
3x»♦♦♦»X«*3
2x0.0.♦.0*2
lx.O.O.O.xl

xv V W XV W XV xv W W xv W W W Mf ^R /R JR JR ^R Jtx JR ^R ^R ^R ^R ^R ^R

1234567
I Moved Trow 54 to 36

Well be looking again at writing games programs shortly, but before
that there are two important topics to discuss, how to make the most
of the user-definable function keys, and file handling.

157

User-definable Function
Keys
When you are developing a program, you may have phrases or
expressions which crop up many times. For example, the sequence
'TIME = 0:REPEAT UNTIL TIME=10' appears many times in my
programs, to give a one tenth of a second delay. Your computer gives
you a way of calling up these often-used expressions, at the touch of a
key, by defining them to perform a specific function.

You can define any of the ten red keys at the top of the keyboard.
Some, or all, of the keys can be programmed, but the total number of
letters being stored under the keys must not be greater than 255.

The keys are, of course, numbered from 0 to 9. To define a key, enter
something like: *KEY 4 “HELLO", where the text inside the quote
marks is the text you want to have stored under the key. My first
example is programmed: *KEY 2"TIME = 0:REPEAT UNTIL
TIME =10". This sample program shows some more possible key
definitions:

10 REM xx User definable key derio xx
20 XKEY 0 "FOR T:=32 TO 126.VDU TiNEXT T|M"
30 XKEY 1 "0LD|MRUN|M"
40 XKEY 2 "MODE 5|M VDU 19,3,4,0,0,0|M"
50 XKEY 3 "MODE 7|M LIST|M"
60 XKEY 4 " | I |A"
70 XKEY 5 "1!IB"
80 XKEY 6 "I!|C"
90 XKEY 7 "|!|D"

100 XKEY 8 "|!IE"
110 XKEY 9 ii 1 i | p ii
120 XKEY 10 "OLD|M RUN|M"

To use this program, run it, then press any of the red keys, and note
the result. The functions of some of them may not be immediately
obvious. The VDU command, in this case, prints out the character
with the ASCII code 'T'. The net effect is to print out all the characters
with codes between 32 and 126, which is the entire ASCII set. At the
end of the line there is curious line character, followed by an M. The
line is obtained with 'shift reverse slash'. In mode 7, it appears as a
'double bar', like an equals sign on its end. The line means that the next
character is a 'control character'. Control characters are explained
more fully in the VDU drivers chapter. They are the characters

158

generated when you use the control key with the other keys. You may
have used control-G, or control-0 and N to turn page mode on and off.
In fact, the 'return' key generates the same code as pressing
control-M, as you can easily verify by entering control-M a few times.
So the effect of the two end characters is to generate a single control
character, control-M, or 'return'. This means that when you press the
key, you do not need to press 'return' afterwards, to start the printing.

More often than not, you will find no use for any of the other control
characters in the function keys, but control-M can often be used to
great effect. You should be able to see that the next line, line 30,
defines a key which types OLD and then RUN, without any
interference from you. This is the sort of key which can be very useful,
if you are prone to accidently press 'BREAK'.

The next key places you in mode 5, and makes colour 3 appear as blue,
rather than white by using the VDU 19... command.

The key in line 50 is also very useful. Whenever pressed, it takes you
back into mode 7, and automatically lists the program.

For the moment, I'll miss out keys 4 to 9.

You are probably a little puzzled at the *KEY10 statement in line 120.
This statement is redefining the 'BREAK' key. Whenever the BREAK
key is pressed after the execution of this line, the computer will be
OLDed and RUNed. If you press the BREAK key twice in succession
you will cancel the information under the BREAK key, and all the
others.

To return to keys 4 to 9. You may have read the section about teletext
graphics by now, and so you should be conversant with the idea of the
codes from 128 onwards giving colour in mode 7. The bar, followed by
the exclamation mark allow you to put these codes into the function
keys. The bar with the exclamation mark adds 128 to the next control
code so given that 'bar'A" gives code 1, the effect of line 60 is to
define a key which hold the code 129, or the code for red
alphanumerics. Thus, just press this key, and anything else you type
on the same line will appear red. In the same way, line 110 gives code
of 128 + 6, which is 134, the code for light blue. By increasing the
letters, you can use the graphics codes as well. It is also possible to
mix normal text and the colour control codes in a single key. If you use
the colour control codes outside quote marks in your programs, the
computer will turn them into words like 'EOR', so beware. The codes
will also do funny things to printers, so use them with care.

There are many uses for function keys. Often a program will ask a
question which is usually answered in the same way — like 'Enter your
name' — so it is wise to store the answer under a function key, and
then most of the time you only need press the key, instead of typing

159

out the whole name. Apart from 'standard responses', you will
probably find they are most useful when you are writing programs.

File handling
File handling is reading and writing information to and from some
medium, such as cassettes. This discussion assumes you are using
cassettes. First of all, enter this program, then I'll discuss it, then we'll
run it.

10 REM XX FILE HANDLING xx
20 XTAPE3
30 FILE®OPENOUT<“EXAMPLE")
40 PRINT♦FILE,"This is b series of

exBMPle pieces"
50 PRINT♦FILE,“Now is the tiMe for

all good men to cone to the aid
of the party."

60 PRINTtFILE,"The quick brown rat
juMped over the tiny elephant"

70 CLOSE#0
80 PRINT "Now rewind the tape, and

press 'play7, then the space bar"
90 D-GET

100 PRINT "OK"
110 FILE=OPENIN("EXAMPLE")
120 INPUT*FT.LE,A*,E:$,C$
130 CLOSEtFILE
140 PRINT A*7Ei$7C$
150 END
Line 20 — Lowers the speed at which information is set to the cassette
recorder. You can use normal speed transfers if you replace this line
with *TAPE. I use slow tape access for file handling small quantities of
data, for reliability in data recall. Line 30 — Tells the computer that you
want to send some information to a file called "EXAMPLE". The word
in quotes is called the file name, and is equivalent to the name you give
programs when you save them on cassette. You could use something
like A$ instead, if the name of the file had not been decided at the time
of writing the program. This word will appear on the screen when you

160

do a *CAT of the things of the tape you used for data storage. Having
opened the file, and remembered its name, the computer assigns a
unique number to it, called its channel number. This number has been
copied into the variable TILE7 in this example. The channel number is
used for all future transactions between the computer and the file. That
is the file name is not used again. When this line is executed, a
message telling you to press PLAY and RECORD will be output by the
computer.

The use of the name 'FILE' is completely arbitrary — it usually makes
more sense to make the channel number variable the same as the file
name, to prevent confusion when you are dealing with a large number
of files.

Line 40 — this outputs to the file with the channel number 'FILE' the
text in quotes.
Line 50 — Outputs more text in the same way.
Line 60 — and a little bit more.
Line 70 — Tells the computer that you have finished with all your file
handling for the moment, and so it closes all the files. You can close
specific files by quoting the channel number, as in line 130. The
process of closing a file is akin to tying up a parcel. The OPENOUT
statement makes the box ready for the parcel, the PRINT hash
statements put things in the box and the CLOSE statement ties up the
parcel, and sends it off.

Line 110 — Opens the same file in the same way as in line 30, except
that it tells the computer that you are going to INput information from
the file, and not OUTput information to it. The channel number is used
in exactly the same way as before.

Line 120 — Inputs, from the file with channel number 'FILE', three
string variables, A$, B$ and C$. These three strings will hold the data
output to the file above.
Line 130 — Closes the file, as in line 70. A closed file — when it has
been used for input — is obviously not sealed, but it still tells the
computer that it can stop worrying about the file.
Line 140 — Outputs to the user all the information which was read from
the file.

The first thing you'll see when you run the program is a message telling
you to start your recorder. After a pause, while the information is sent
to the recorder, a message telling you to rewind the cassette and to
press the space bar is printed. When you do this, there will be another
short pause while the information is read in from the cassette recorder,
then the information will be printed out.

There are several useful alterations you can make to this program. The
first is to make the data stored in numeric, rather than string form. To
do this,change lines 40 to 60 to something like 'PRINT FILE, 3.14159'.

161

Now the data will be written as numeric information. The second part
of the program is still expecting string information, so you'll need to
alter lines 120 and 140 to use the numeric variables A, B and C.

To show the commands described in action, here is a simple stock
control program. I have assumed that the user is the owner of a small
pet shop, and the program keeps track of the amount of parrot food(l)
in stock at anyone time. It is also capable of telling when to re-order.

10 REM XXXXXXXXXXXXXXXXXXXXXXXXXXX
20 REM *xx Parrot shop program xxx
30 REM Copyright (C) Jereny Ruston
40 REM xxxxxxxxxxxxxxxxxxxxxxxxxxx
50 ON ERROR IF ERRO17 THEN REPORT J PRINT " st line
60 XTAPE3
70 UN=0
80 REPEAT

ERLJEND

90 MODE 7
100 PRINT "CHR$(129)J"Select one of the following t
110 PRINT ''CHR$(132);"1*Enter new stock"
120 PRINT zCHR$(132)J"2♦Deduct stock"
130 PRINT 'CHR$(132)I"3♦Re-order"
140 PRINT
150 PRINT
160 PRINT
170 PRINT
180 PRINT
190 REPEAT

'CHR$<132)|"4♦Save to cassette"
ZCHR$(132)|"5*Load fron cassette"
zCHR$(132)J"6♦Print stock"
ZCHR$(132)J"7*Conputer dating"
"CHR$(131);"----- > "♦

200 A$-GET$
210 UNTIL A$>="1" AND A$<="7"
220 CLS
230 IF A$="l" THEN PROCNEW.STOCK
240 IF A$="2" THEN PROCDEDUCT
250 IF A$="3" THEN PROCRE.ORDER
260 IF A$="4" THEN PROCSAUE
270 IF A$="5" THEN PROCLOAD
280 IF A$-"6" THEN PROCPRINT
290 IF A$="7" THEN PROCDATING
300 UNTIL FALSE
310 DEF PROCNEW.STOCK
320 PRINT ''CHR$(131)|"The present stock level is "I

UN'CHR$(131)J"units of feed*"
330 PRINT zCHR$<131)I"What should it be ?"*,
340 INPUT ""UN$
350 UNS=VAL(UN$)
360 ENDPROC
370 DEF PROCDEDUCT
380 PRINT zZCHR$<131) T'The present stock level

is "|UNzCHR$<131)5"units of feed*"
390 PRINT 'CHR$(131)J"Enter the deduction "J
400 INPUT ""UN$
410 UN=UN-VAL(UN$)
420 ENDPROC
430 DEF PROCRE.ORDER
440 IF UN>100 THEN PRINT ''CHR$<131)>"No need

to re-order*" ELSE PRINT z'CHR$(131)J"Re-order now"
450 D=GET
460 ENDPROC
470 DEF PROCSAUE

162

480 A=OPENOUT("FILE")
490 PRINT#A,UN
500 CLOSEiA
510 ENDPROC
520 DEF PROCLOAD
530 PRINT "Play tape"
540 A=OPENIN("FILE")
550 INPUT*A,UN
560 CLOSEtA
570 ENDPROC
580 DEF PROCPRINT
590 PRINT "CHR$(131) T'The present stock level

is "}UNZCHR$(131)J"units of feed."
600 A=GET
610 ENDPROC
620 DEF PROCDATING
630 PRINT '''''CHR$(134)J"Cone off it..."
640 A=GET
650 ENDPROC

The program operates as follows:

Line Comments...

50 Sets the error handler to such a way that if 'ESCAPE' is pressed,
the program returns to the main menu
60 Selects the low cassette speed
70 Starts the stock level at zero
80 Starts the main program REPEAT loop
90 Places the machine in mode 7

100 Starts printing the menu
190 Starts the REPEAT loop which continues until a valid response is
found
200 Gets a character from the user
210 Continues the loop until a valid response is entered
220 Clears the screen, ready for each of the routines
230 Starts the calling section
300 Returns to the menu after the routine has executed
310 PROCNEW_STOCK
320 Prints the current stock level...
330 then requests the new level
340 Gets the new value
350 Resets the stock level variable
370 PROCEDEDUCT
380 Prints the present stock level
390 Requests the deduction
400 Gets the deduction
410 Updates the stock level variable
430 PROCRE__ORDER
440 Decides whether re-ordering is needed, and prints an appropriate
message
450 Gets a key press before...
460 returning

163

470 PROCSAVE..
480 OPENS the file for output
490 Outputs the present stock level
500 Closes the file
520 PROCLOAD
530 Asks the user to press play
540 Opens the file for input
550 Gets the stock value from tape
560 Closes the file
580 PROCPRINT
590 Prints the present stock level
600 Gets a keypress
610 Ends.

This program is somewhat trivial, but it shews important features of
business software, including the menu, and is virtually crashproof.

Note that, in file handling, unlike DATA statements, you cannot load a
numeric value from tape into a string variable.

DRAUGHTS AND OTHER
GAMES
No matter why you bought your BBC Microcomputer, it is likely that
you spend at least some time playing games with it. Writing,
developing and adapting games programs is probably the least painful
way which exists to improve programming skills. The first game we
will look at in this section is draughts. One of the reasons for including
it is so that I can explain a method of numbering boards for board
games which make it easy for a computer to manipulate. A similar
board-numbering system can be used as the core of a chess program,
noughts and crosses, Nine Mens' Morris or whatever.

Books on how to play draughts make use of a numbering convention
shown in the illustration. The white squares are counted off from one
to 32. But this numbering method creates a problem when we try to
define a move in terms of the mathematical relationship between two
diagonally adjacent squares. The difference between the squares can
be three, or it can be four in one direction; and in the other direction,
the difference in the number on the square, in terms of a diagonal
move, can be five or four. This creates problems for a computer. As
well, there are no 'spare' numbers to indicate where the board ends.

164

In the 1960s, A L Samuels wrote an article for Scientific American (see
Strachey, Christopher, "Systems Analysis and Programming," in
'Readings from Scientific American', W H Freeman and Co., San
Francisco, 1971) in which he devised a clever numbering system in
which the difference between the diagonally adjacent squares is
always four and five (or minus four and minus five). His system also
allowed for numbers to be given to squares which were 'off the board'.

I've changed his numbering system a little to make it more convenient
for a computer. In my system, the diffference between squares is
always six or seven (or minus six and minus seven). My system, very
simply, sets up an array and allots certain elements of the array to
squares on the board. All other squares are understood by the
computer to be off the board. The computer assigns a value of 99 to
any square which is off the board, zero to any empty square, one to a
computer's ordinary piece (two to a computer king) and minus one to
a player's ordinary piece (with minus two for a player's king). This may
sound a little complex, but it should become clear shortly.

165

Here is my numbered board. You can see that if you move from the
top left hand corner (69) to the square diagonally below it (63), the
difference between the two squares is minus six. Now, choose any
other square on the board from which you can move down and to the
left, and you'll see there is a difference of minus six between the
square you started on and the square on which you finished. This sort
of predictable result is relatively easy for a computer to handle.

Move in the other direction, that is downwards and to the right, and
you'll see the difference between the two squares is minus seven. In
the first version of draughts in this book — KIDDIE CHECKERS —
you'll need this numbered board as a reference, to know how to enter
your moves. The first version of the game has no strategy to speak of
(except to make a capture when it can, and if no capture is available,
make a legal move), but it is still quite a fascinating program to run.
There are no multiple jumps, although there are kings. Kings are made
automatically.

166

To briefly explain the program, I'll go through the main sections of it.
The subroutine starting at line 780 sets up the starting conditions for
the game, alloting values of 99, 0,1 and 2 for the elements of the array
A. The board is printed from the subroutine starting at line 500. Lines
510 to 570 change the number 0, 1,2 and so on into the codes of the
characters which will be used to print the board on the screen. Zero,
for example, is changed to 32, the ASCII code for a space. Lines 600 to
690 print out the board, using a neat routine developed by Toni Baker.

The loop from lines 50 to 70 checks to see if any player's pieces should
be crowned. The routine from there to line 170 checks to see if a
capture can be made, and if it can, effects the capture with lines 200 to
220. If not, the routine from line 250 to line 350 chooses squares at
random, and, if one of its own pieces is on that square, the computer
checks to see if it can make a move. If it can, it does. If it has not got
one of its pieces, or there is no possible move, and the computer has
chosen less that 1000 random numbers, it goes back to look again. If,
in 1000 random selections, the computer has not found a move it can
make, it concedes defeat (line 360).

167

After printing the board again (with the subroutine called from line
400) the computer accepts the player's move, which is entered (line
420) as two numbers. The first is the number of the square the player is
moving from, and the second is the square he or she is moving to. Line
460 'erases' a computer's piece if the player has captured it.

10 REM xKiddie Checkers*
20 REM (C) Her trie 11 1982
30 GOSUB 780
40 Q=0:Z=24
50 FOR G=:69 TO 72
60 IF A(G)=-1 A(G)=-2
70 NEXT G
80 IF A(Z)=99 OR A(Z)<1 THEN 170
90 IF Z<28 AND A(Z)=1 A(Z)=2

100 Y=1
110 IF A(Z+X(Y))<0 AND A(Z+2*(X(Y>))=0 Q=X(Y)
120 IF A(Z)=2 AND A(Z-X(Y))<0 AND

A(Z-2*X(Y))~09 Q=~X(Y)
130 IF GOO AND Z+2*Q>23 THEN 20 0
140 0=0
150 IF Y=2 GOTO 170
160 y«2:gotoiio
170 Z=Z+1
180 IF Z<73 GOTO 80
190 IF 0=0 THEN 250
200 A(Z+Q)=0
210 A(Z+2*Q)=A(Z)
220 A(Z)=0
230 GOSUB 500
240 GOTO410
250 U=0
260 Z=23+RND(49)
270 U=U+1
280 IF A(Z)==1 OR A(Z)«2 THEN 300
290 GOTO260
300 Y=1
310 IF A(Z+XCY))=0 Q=X(Y)
320 IF A(Z)«2 AND A(Z-X(Y))=0 Q=-X(Y)
330 IF GOO THEN 380
340 IF Y=1 Y=2tGOTO310
350 IF UC1000 THEN 260

168

360 PRINT "You win"
370 END
380 A(Z+Q)*A(Z)
390 A(Z)*0
400 GOSUB500
410 SOUND 1,-15,100,3
420 INPUT D,E
430 PRINT CHR*(11)J"
440 A(E)”A(D)
450 A(D)~0
460 IF ABS(D-E)>7 A(DHINT(E~D)/2))*0
470 GOSUB 500
480 GOTO40
490 IF QOO THEN 290
500 PRINT'''
510 FOR M“24 TO 72
520 IF A(M)~1 A(M)*79
530 IF A(M)*2 ACM)*33
540 IF A(M)*0 ACMJ--32
550 IF A(M)*“1 A(M)*88
560 IF A(M)*--2 A(M)--36
570 NEXT M
580 PRINT CHR$(30)'" C>JZ,Z+Q
590 PRINT
600 FOR K*0 TO 3
610 FOR J*0 TO 3
620 PRINT CHR$(255)JCHR$(A(72-J-13xK))$
630 NEXT J
640 PRINT
650 FOR J*0 TO 3
660 PRINT CHR$(A(66-J-13xK));CHR$(255)$
670 NEXTJ
680 PRINT
690 NEXT K
700 FOR M*24 TO 72
710 IF A(M)*79 A(M)*1
720 IF A(M)=33 A(M)==2
730 IF A(M)*32 A(M)*0
740 IF A(M)*88 A(M)*-1
750 IF A(M)*36 A(M)*-2
760 NEXT M

169

770 RETURN
780 DIMA(99),X(2>:00
790 X(l)=”6:X(2)=--7
800 FOR Z=1 TO 99
810 A(Z)-99
820 IF Z<73 AND Z>55 AND N0T(Z=67 OR Z=68

OR Z~60 OR Z=-61 OR Z=62) A(Z) = 1
830 IF Z<54 AND Z>42 AND NOT (ZM7 OR Z~48

OR ZM9> A(Z)==0
8^0 IF Z<^1 AND Z>23 AND N0T(Z==34 OR Z=35

OR Z=36 OR Z=:28 OR Z=29> A(Z)==-1
850 NEXT Z
860 Move! "
870 CLS
880 GOSUB 500
890 RETURN

Next we have a 'proper' draughts game. That is, the next program is a
development of the proceeding one. In this version, there are multiple
jumps. The computer will make its multiple jumps automaticaly. After
you make a capture, you'll be asked "Can you jump again?" Just press
RETURN if you cannot, and the game will continue. If you can jump
again, press any key, before you press return and you'll be offered
another move. You enter your move by typing in the letter at the
bottom of the square which is on the line on which, your piece is
sitting, then the number along the right hand side, then a comma, then
the letter and number co-ordinate of the square you're moving to.
There are clear player prompts within the program, so you should have
little trouble in playing it. You'll find this version of the game puts up a
far stronger defence than the other program, and is most reluctant to
move into danger. There are three ways the game can end. The
computer will either concede defeat, even if there are still possible
moves, if it judges the situation is hopeless; or it will claim victory on
capturing all you pieces, or give you the game when you capture all of
its pieces, although you should not have too much trouble beating this
program (which plays like a better-than-average beginner), it is still a
most entertaining program to run, and a study of how it decides which
moves to make should stand you in good stead when you write your
own games of strategy.

10 REM*x*xx*xxxxx**x**x***xx
20 REM ^Draughts*
30 REM (C) Hartnell, 1982
40 REMxxxxxxxxxxxxxxxxxxxxx*
50 PR0CinitialisetM0DE7

170

60 REM **Master REPEAT/UNTIL**
70 REPEATtQ=0tZ=24
80 REM **Create hunan kings**
90 FOR G=69 TO 72JIF A(G)=-1 A(G)=~2

100 NEXT G
110 PROCprint._board
120 REM **Conputer looks for capture**
130 IF A(Z>=99 OR A(Z)<1 THEN 220
140 IF Z<28 AND A(Z)«1 A(Z)=2
150 Y=1
160 IF A(Z+X(Y))<0 AND A(Z+2*(X(Y)))=0 Q=X(Y)
170 IF A(Z)=2 AND A(Z-X(Y)X0 AND

A(Z-2*X(Y))-0 THEN Q=-X(Y)
180 IF QOO AND Z+2*Q>23 THEN 250
190 «=0
200 IF Y-2 THEN 220
210 Y=2:GOTO160
220 Z=Z+1
230 IF Z<73 THEN 130
240 IF Q-0 THEN 340
250 A(Z+Q)-0 ♦ A(Z+2*Q>=:A(Z) ?A(Z)=0
260 Z=Z+2*QtC0M=C0M+ltPROCprint_board
270 OOtY=l
280 IF A(Z+X(Y)X0 AND A(Z+2*(X(Y))) =0 Q=X(Y)
290 IF A(Z)=2 AND A(Z-X(Y)X0

AND A(Z-2*X(Y))=0 THEN Q=-X(Y)
30 0 IF QOO AND Z+2*Q>23 THEN 250
310 IF Y=1 Y=2tG0T0 280
320 GOTO 480
330 REM **CoMputer looks for non-capture
340 U=0
350 Z=23+RND(49)tU=U+1
360 IF A(Z)=1 OR A(Z)=2 THEN 380
370 GOTO 350
380 Y®1
390 IF A(Z+X(Y))=0 AND (A(Z+2*X(Y))>-l
AND A(Z+2*X(Y)+1)>-l AND A(Z+2*X<Y)-l)>
-1 OR U>600) Q=X(Y)

400 IF A(Z)=2 AND A(Z-X(Y))-0 AND
(A(Z-2*X(Y))>-l AND A(Z-2*X(Y)+l)>-l AND
A(Z-2*X(Y)-1)>-1 OR U>600> Q=~X(Y)
410 IF Q<>0 THEN 450

171

420 IF Y=1 Y-2*G0T0 390
430 IF UC1000 THEN 350
440 PRINT "I concede the 98ne!",END
450 A(Z+Q)~A(Z)tA(Z)=O
470 PROCprint._board
480 PRINT" 'TAB(5)JCHR$(128+RND(5)) J

"Enter your move"
490 PRINT TAB(4)|CHR$<128+RNDC5)) I

"as A9, 88 separated"
500 PRINT!AB(7);CHR$(128+RNDC5))J

"by a comhb"
510 SOUND 1,-15,100,3
520 INPUT A$,B$*FOR W=1 TO 2JZ=0
530 IF N-l C$~A$
540 IF W~-2 C$-B$
550 Z=-24*<C$="G9")-25*<C$="E9")-

26*(C$="C9")-27*(C$="A9")-30*
<C$="H8")~31x(C$="F8")-32*(C$~
"D8")--33*(C$="B8")-37x(C$="G7")

-38*(C$="E7")-39*(C$="C7")-40*(C*="
A7")-43*< C$="H6")-44*(C$="F6")-45*(C$=

"D6")-46*(C$="B6")-50* (C*="G4")
560 IF ZOO THEN 580
570 Z=-51*(C$="E4")-52*(C$="C4")-53

(C$-"A4")-56(C$="H3")-57*(C$-"F3")
-58*(0$ ="D3")-59*(C$="B3")-63*(C$=
"G2")-64*(C$="E2")-65*(C$-"C2")-66*
(0$="A2")-69*(C$~" Hl")-70*(C$="Fl")-

71*<C$="D1")-72*(C$-"B1")
580 IF W=1 D“Z
590 IF W=2 E=Z
600 NEXT W
610 PRINT CHR$<11)|CHR$(11)J

CHR* <11> ?CHR$(11)JCHR$(11)
620 FOR T=--1TO 4
630 PRINT "
640 NEXT
650 A(E)»A(D)JA(D)=O
660 IF ABS(D-E)>7 A(D+(INT(E-D)/2))=0♦

HUM=HUM+1

172

670 PROCpr irit_board
680 IF ABS(D-E)>7 PRINT''•♦INPUT

"Can you jump aeain?"U$»
PRINT CHR$(11)J" •• J

IF U$<>"" THEN 520
690 UNTIL HUM-12 OR C0M=12
70 0 IF HUM:=12 PRINT "You win, hunan! " tEND
710 IF C0M=12 PRINT"I have beaten you!"tEND
720 REM xxPrint board procedure**
730 DEF PROCp r irit_board
740 FOR M-24 TO 72
750 A(M)"--79*<ACM)®!)--33*C ACM)®2)-32*

760
770

NEXTM
PRINT

780

CHR$C30)'
II

Z+Q PRINTIF Z
C128+RNDC5))t"My
", and yours is

CHR$C11)tCHR$
score is "JCOMt

"♦HUM

/ / n

790 T~-2tF0R K®0 TO 3IF0R J=0 TO 3
800 PRINT CHR$C255)tCHR$CAC72-J“13*K))♦
810 nextj:t==t+i
820 PRINTtCHR$(128+RND(5))JINTCCJ+K)/2)+T
830 FOR J®0 TO 3
840 PRINT CHR$CAC66-J~13*K)),CHR$C255)♦
850 NEXTJtT-T+l
860 PRINT ?CHR$(128+RND(5))tINTCCJ+K)/2)+T
870 NEXT K
880 PRINT "ABCDEFGH"
890 FOR M~24 TO 72
900 ACM)®-CACM)=79)-2*CACM)=33)-0*CACM)

=32)+(A(M)-88)+2*(ACM)=36)-99*CACM)«99)
910 NEXTM
920 ENDPROC
930 REM **Iriitialisation procedure**
940 DEF PROCiriitialise
950 CLStDIM AC99)»XC2)tXCl)®~6tXC2)®-7
960 FOR Z=1 TO 99tACZ)®99
970 IF Z<73 AND Z>55 AND NOTCZ=67 OR Z®68

OR Z=60 OR Z=61 OR Z=62) ACZ)=1

173

980 IF Z<54 AND ZM2 AND N0T(Z^7
OR Z=48 OR Z^9) A(Z)=0

990 IF Z<41 AND Z>23 AND N0T(Z-34 OR Z-35
OR Z~36 OR Z-28 OR Z-29) A(Z)«-1

1000 NEXT Z
1010 VDU23;8202;0;0|0
1020 COM-O tHUM-O J ENDF’ROC

Whereas the computer plays only like a fairly good beginner at
draughts, it manages a much stronger game in the following program,
'Othello'. Othello is a registered name, copyright Mine of Information,
1 Francis Avenue, St Albans. The game is a development of Reversi,
which was invented in the 1880s, with a restriction in the opening
moves.

Reversi was played on a standard draughts board, using pieces which
were doublesided, black on one side, red on the other. R C Bell
explains, in his book Discovering Old Board Games (Shire Publications
Ltd., Aylesbury, 1980), that black begins the game by placing a piece
black side up one of the four central squares on the empty board. Red
replies by placing his or her first red side on another central square.
"The four squares are covered in the first four turns of play and then
the players continue alternately, placing their pieces on a square
adjacent to one occupied by an enemy piece," says Bell. (Incidentally,
this book, and others by Bell, are a great source of games ideas for
computer programs.)

Any enemy pieces in a straight line between the latest piece placed and
another one of the player's pieces is then flipped over to show the
colour of the player. The winner is the player with the most pieces
when the board is covered, or when neither player may move.

A computer programmer from Chichester, G J Suggett, has pointed
out to me that most published Othello programs evaluate the best
move for the computer to make "on the basis of maximising the
number of captures made with a possible extra score given to certain
positions, such as the corners. In fact, Mr Suggett said, "in the early
stages of the game, positional play is far more important than making
a large number of captures." In this version of Othello, great weight is
placed upon positional play. The program was originally written in
Microsoft by Graham Charlton of Romford, and adapted by me for the
BBC Microcomputer.
10CLS
20 X=ASC(,,X,,):O=ASC(,,O")
30 DIM A(lOtlO)
40 R=0
50 FOR B=lTO10
60 FOR C=lTO10

174

70 IF B<>1 AND CO1 AND BO10 AND CO10 THEN A(B,C)=ASC(V)
80 NEXT C
90 NEXT B
100 A(5,5)=X
110 A(6,6)=X
120 A(6,5)=O
130 A(5,6)=O
140 P=0
150 PRINT
160 PRINT "DO YOU WANT TO GO"
170 PRINT"FIRST (1-YES,2-NO)"
180 INPUT W
190 CLS
200 GOSUB 720
210 IF W=1 THEN 600
220 PRINT"MY MOVE
230 S=O
240 T=X
250 H=0
260 FOR A=2 TO 9
270 FOR B=2 TO 9
280 IF A(A,B)O46 THEN 540
290 Q=0
300 FOR C=-l TO 1
310 FOR D=-l TO 1
320 K=0
330 F=A
340 G=B
350 IF A(F+C,G+D)OS THEN 400
360 K=K+1
370 F=F+C
380 G=G+D
390 GOTO 350
400 IF A(F+C,G+D)OT THEN 420
410 Q=Q+K
420 NEXT D
430 NEXT C
440 IF A=2 OR A=9 THEN Q=Q*2
450 IF B=2 OR B=9 THEN Q=Q*2
460 IF A=3 OR A=8 THEN Q=Q/2
470 IF B=3 OR B=8 THEN Q=Q/2
480 IF (A=2 OR A=9) AND (B=3 OR B=8) THEN Q=Q/2
490 IF (A=3 OR A=8) AND (B=2 OR B=9) THEN Q=Q/2
500 IF Q<H OR Q=0 OR (RND(l)>0.3 AND Q=H) THEN 540
510 H=Q
520 M=A
530 N=B
540 NEXT B
550 NEXT A
560 IF H=0 AND R=0 THEN 1100
570 IF H=0 THEN 590
580 GOSUB 930
590 GOSUB 720
600 INPUT"YOUR GO ",R
610 S=X

175

620 t=o:rem letter o
630 REM 0 TO PASS
640 IF R=0 THEN 700
650 IF R<11 OR R>88 THEN 600
660 M=INT(R/10)+l
670 N=R-10*INT(R/10)+l
680 IF A(M,N)OASC("«") THEN GOTO 600
690 GOSUB 930
700 GOSUB 720
710 GOTO 220
720 PRINT TAB(0,0)J
730 C=0
740 H=0
750 PRINTtPRINT TAB(10)J"OTHELLO":PRINT
760 PRINT TAB(IO);" 12345678"
770 FOR B=2 TO 9
780 PRINT B-i;
790 FOR D=2 TO 9
800 PRINT CHR$(A(B,D)K
810 IF A(B,D)=X THEN C=C+1
820 IF A(B,D)=O THEN H=H+1
830 NEXT D
840 PRINT STR$(B-1)
850 NEXT B
860 PRINT TAB(10)J" 12345678"
870 PRINT
880 PRINT"I HAVE "ICJ" "
890 PRINT
900 PRINT"YOU HAVE "IH?" "
910 PRINT
920 RETURN
930 FOR C=-l TO 1
940 FOR D=-l TO 1
950 F=M
960 G=N
970 IF A(F+CfG+D)OS THEN 1010
980 F=F+C
990 G=G+D
1000 GOTO 970
1010 IF A(F+C,G+D)OT THEN 1070
1020 A(F,G)=T
1030 IF M=F AND N=G THEN 1070
1040 F=F-C
1050 G=G-D
1060 GOTO 1020
1070 NEXT D
1080 NEXT C
1090 RETURN
1100 GOSUB 720
1110 IF OH THEN PRINT"I WON "JCJVJH
1120 IF C<H THEN PRINT"YOU WON "JCJVJH
1130 IF H=C THEN PRINT"IT'S A DRAW!"
1140 END

176

We finally have a number of programs which you may like to try on
your BBC Microcomputer. There will be no 'commentary' with them,
as they are primarily designed for use, rather than as teaching aids.
However, you are sure to discover many new ideas for programs by
reading through the listings, and working out how they do what they
do. The first program is one of the old classics of computer games, a
Lunar Lander. Listings of other programs will follow this one, without
introduction.
10 REM xLunar Lander*
20 m=o:t=o:s=o:h=4ooo+rndciooo)
30 F=5000/RND(3) :Q=-17:E:=1
40 cls:vdu23;82O2;o;o;o
50 MODE7:GOTO210
60 REMxxxxxxxxxxxxxxx
70 PRINT CHR$(128+RND(6))J"(+ is towards Luna)";
80 INPUT ZJIF Z<-30 OR Z>30 THEN 80
90 PRINT CHR$(128+RND(6))I"For how Many seconds";

ioo input e:e=e+i
110 PRINT TAB(0,15>;"
ti t n ••

120 T=T+E
130 S=S+10+3xEx((Z+l)/B)
140 F=F-3xExABS(ZxRND(3))
150 IF F<500 PRINT TAB(20,6);CHR$<128+RND(6))♦"FUEL

LOW"tS0UND1,-15,250t2555S0UND2,-15,240,255
160 H=H-EXS
170 IF H<20 AND H>-10 AND S<12 THEN 430
180 IF HC-10 OR F<1 THEN 370
190 IF RND(10)=5 AND MO2 THEN GOSUB 480
200 PROCdelay
210 PRINT TAB(0,8)JCHR$(129+M)I"HEIGHT ABOVE SURFACE: "INT(H)"
220 PROCdelay
230 IF 00-17 THEN Q=Q-RND(16)
240 IF Q<0 AND Q>-17 THEN 370
250 IF 00-17 PRINT CHR$(128+RND(6))I"OXYGEN LEFT: "0"
260 PROCdelay
270 PRINTCHR$(129+M>;"VELOCITY: "INT<S>"
280 IF BO1 PRINT CHR$(129+M)J"WARNING - THRUST ERRATIC"
290 PROCdelay
300 PRINT CHR$(129+M)»"FUEL LEFT: "INT(F)"
310 PROCdelay
320 PRINT CHR$(129+M)♦"FLIGHT TIME: "T
330 FOR A=1 TO 20:PRINT CHR$(128+RND(6))J"x";:NEXT
340 PRINT TAB(0,15)tCHR$(128+RND(6)):"THRUST (-30 TO 30)"
350 GOTO 70
360 REMxxxxxxxxxxxx
370 REPEAT
380 PRINT TAB(RND(4));CHR<<128+RNDC6))I"xxCRASHxx

YOU HIT THE SURFACE AT"
390 PRINT TAB(RND(7));CHR$<128+RND(6))IABS(S)"

METRES PER SECOND"
400 SOUND 0,-15,RND(3),RND(10)
410 UNTIL FALSE
420 REMxxxxxxxxxxxx
430 REPEAT
440 PRINT CHR$(134)|"SUCCESSFUL LANDING"7
450 PRINT CHR$(134)I"FINAL VELOCITY: "ABS(S)
460 UNTIL FALSE
470 REMxxxxxxxxxxxxxxxx

177

480
490
500
510
520
530
540

550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

CLS♦M=M+11 U=RND(32000)
FOR V=1 TO 4
PRINT ZCHR$(128+RNDC6))>"HOUSTONf WE HAVE A PROBLEM!"
SOUND 0,-15,RND(4),RNDC10)
PRINT TAB(RND(20))JCHR$(129)|"DANGER!!"
NEXT
PRINT ''CHR$(129)|"MALFUNCTION♦"XCHR$(130)J"USE

COMPUTER ACCESS"
PRINT TAB(5);CHR$(130)|"CODE "U" FOR DETAILS"
INPUT V
CLS
IF UOV S=INT(S*H/5):GOTO370
P=RND(2)
ON P GOSUB 670,700
PRINT ZCHR$(128+RND(6))J"PRESS ANY KEY TO RETURN TO FLIGHT
A$=GET$
CLS
PROCdelay
RETURN
REMxxxxxxxxxxxxxxx
Q=101+RND(19)
PRINT TAB(0,9)CHR(130)J"OXYGEN METER UNRELIABLE"
RETURN
B=B+RND(3)
PRINT TAB(0,9)|CHR$(130)|"THRUST CONTROL ERRATIC"
RETURN
REMxxxxxxxxxxxxxxx
DEF PROCdelay
TIME=0:REPEAT UNTIL TIME=50
SOUND 3,-15,RND(254),2
ENDPROC

REM MASTERTRIO
REM zMastermindz WITH 3 DIGITS
MODE 7:PRINTZZZZZ
DIM A(3),B(3)
FOR Z=1 TO 3
A(Z)=RND(9)
NEXT Z
IF A(1)=A(2) OR A(1)=A(3) OR A(2)=A(3) THEN 50
D=100*A(1)+10*A(2)+A(3)
FOR C=1 TO 10
PRINT CHR$(129+RNDC5)) JCHR*(157) *,CHR$(129) *,
PRINT "WHAT IS YOUR GUESS NO* "JC}
SOUND 1,-15,RND(10)+50,2
INPUT X
B(1)=INT(X/100)
B(2)=INT((X-100*B(1))/10)
B(3)=X-100xB(l)-10*B<2)
IF D=X THEN 430
W=0
N=0
FOR E=1 TO 3
IF A(E)OB(E) THEN 250
N=N+1
A(E)=0
NEXT E
FOR F=1 TO 3
IF A(F)=0 THEN 320
FOR E=1 TO 3
IF B(F)OA(E) THEN 310
W=W+1

178

310 NEXT E
320 NEXT F
330 AC 1)=INT(D/100)
340 A(2)=INT(<D-100xA(1))/10)
350 A(3)=D~100*A(1)-10*A(2)
360 SOUND 2,-15,RND(20)+235,2
370 PRINT CHR$(129);"YOU SCORED "INT’ BLACKS "J
380 PRINT "AND " JW," WHITES"
390 NEXT C
400 PRINT CHR$(129)JCHR$C157)JCHRSC131)J
410 PRINT "MY NUMBER WAS " J A (1) J A C 2) J A (3)
420 END
430 PRINT CHR$(129)|CHR$(157)|CHR$(131)J"CONGRATULATIONS"
440 END

10 REM 'MATCHSTICKS7
20 m=o:e=o
30 Z=16+RND(7)
40 IF 2*INT(Z/2)=Z THEN 30
50 H=2+RND(2)
60 REPEAT
70 CLS
80 PRINT "CHR$(132)1"MAXIMUM TO TAKE "JH
90 GOSUB 320

100 IF E>0 PRINT 'CHRSC130) J"YOU TOOK "JE
110 IF E>0 PRINT CHR$(129)|" I TOOK "JQ'
120 FOR K=1 TO Z
130 PRINT CHR$(129)|CHR$C157)ICHR$(129+RND(5))J
140 PRINT KJ
150 IF RND(l)>0+6 PRINT
160 NEXT K
170 GOSUB 320
180 PRINT "HOW MANY WILL YOU TAKE";
190 INPUT E
200 IF E>H OR E<1 THEN 190
210 Z=Z-E
220 GOSUB 320
230 IF Z<1 PRINT "YOU TOOK THE LAST ONE"
240 IF Z<1 PRINT "SO I WIN"♦END
250 Q=Z-1-INT((Z-l)/(H+l))x(H+l)-INT(RND(1)*2)+INT(RND(1)*2)
260 IF OKI OR Q>H THEN 250
270 GOSUB 320
280 Z=Z-0
290 IF Z=0 THEN PRINT CHR$C129);"I TOOK "IQ
300 IF Z=0 THEN PRINT "SO YOU WIN":END
310 UNTIL FALSE
320 FOR T=1 TO 4
330 PRINT
340 NEXT T
350 RETURN

10 REM 'PERSONAL ACCOUNTS'
20 REM ADAPTED FROM ZX80 PROGRAM
30 REM WRITTEN BY RON JONES
40 DIM A(6)
50 E^O
60 GOSUB 290
70 INPUT "ANY CHANGES (Y OR N)",:

179

80
90

10 0
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
30 0
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

IF Z$=="N" THEN 150
INPUT "NUMBER",K
IF K>6 OR K<1 THEN 90
INPUT "NEW AMOUNT"E
IF K~6 THEN £==••■£
ACK) •==£
GOTO 60
INPUT "ENTER SALARY'S8
GOSUB 290
R==S-T+B
PRINT '"BALANCE $"?R
B=R
PRINT
PRINT "ENTER 1 TO END# 2 TO SET BALANCE TO"
PRINT "ZERO# OR 3 TO RUN AGAIN, STARTING­
PRINT "WITH CURRENT BALANCE"
INPUT O
IF Q<1 OR Q>3 THEN 240
IF Q-l THEN END
IF Q==2 THEN 50
IF Q:=3 THEN 60
T~0
CLS
PRINT '"PERSONAL ACCOUNTS"
PRINT ""PREVIOUS BALANCE "IB
PRINT
FOR F~1 TO 6
PRINT F|" "J
ON F GOSUB 420,440,460,480,500,520
PRINT " $"?A(F)'
T=T+A(F)
NEXT F
PRINT
RETURN
PRINT "CHEQUES OUT'S
RETURN
PRINT "CREDIT CARDS"’,
RETURN
PRINT "RATES"?
RETURN
PRINT "MORTGAGE"?
RETURN

180

50 0 PRINT "STANDING ORDERS"J
510 RETURN
520 PRINT "MONEY IN"J
530 RETURN

10 REM DIGITAL CLOCK
20 PRINT "ENTER HOURS"
30 INPUT H
40 PRINT HP’ ENTER MINUTES"
50 INPUT M
60 PRINT H|" ENTER SECONDS"
70 INPUT S
80 MODE7
90 REPEAT

100 PRINTTAB(0,10) ICHRM129) |CHR$(157)
110 PRINT TAB<15)|CHR$(131)|H|" "I
120 IF MC10 THEN PRINT "0"?
130 PRINT |M|" "1
140 IF S<10 THEN PRINT "0"|
150 PRINT |S|" "
160 TIME-0
17 0 REPEAT UNTIL TIMERS
180 S==S+1
190 IF S=60 THEN M=M+1
20 0 IF S=60 THEN S==0
210 IF M~60 THEN H=H+1
220 IF M~60 THEN M==0
230 IF H=13 THEN H=1
240 UNTIL FALSE

10 REM INTEREST ON A LOAN
20 CLS
30 INPUT zzzz"PERCENTAGE INTEREST RATE"E
40 INPUT ""PRINCIPAL ($)"P
50 INPUT '"LENGTH OF LOAN (YEARS) "Y
60 Y=365*Y
70 INPUT '"AND DAYS"D
80 D=D+Y
90 E=INT(P*D/36500*E+0»9)

100 PRINT z//'"INTEREST IS $"|E
110 PRINT ''"TOTAL (PRINCIPAL PLUS"
120 PRINT "INTEREST) IS *";P+E

181

10 REM TEMPERATURE CONVERSION
20 INPUT '“ENTER HIGHEST TEMPERATURE IN F“A
30 INPUT '"AND LOWEST“B
40 INPUT "“ENTER INCREMENTS
so print chri(131);“F“;tab(1o>;“C“;tab<2o>;“K"
60 FOR T=B TO A+C STEP C
70 M=INT<5«<T-32)/9)
80 K=M+27390 print chr*<129);int(T);tab<io>;m;tab(2O);k

100 NEXT T

10 REM STOCK RECORD
20 MODE?
30 INPUT ""HOW MANY CATEGORIES",A
40 DIM A$(A,10)
50 DIM Z(A)
60 FOR C"*l TO A
"70 PRINT "ENTER THE NAME OF CATEGORY "JC
80 INPUT M$
90 A$(C/L0)==M$

100 NEXT C
110 REPEAT
120 CI...S
130 PRINT
140 FOR C=1 TO A
150 PRINT C?" "JA$(C,10>J" "?Z(C>
160 NEXT C
170 PRINT '"NUMBER OF CATEGORY?"
180 PRINT /'-99 TO END"
190 INPUT D
200 IF D>A THEN 190
210 IF D=~99 THEN END
220 PRINT A$(D,10) /'VALUE"?
230 INPUT E
240 Z(D)~Z(D)+E
250 UNTIL FALSE

10 REM SQUARE ROOTS BY ITERATION
20 M00E7
30 INPUT7'“NUMBER TO FIND ROOT OF",B
10 IF B<=0 THEN 30
50 A=RND(B>
60 X=B/A
70 Y=<X+A)/2
80 PRINT 7Y
90 IF A=Y THEN 120

100 A=Y
110 GOTO 60
120 PRINT ""THE SQUARE ROOT OF "JB!" IS "JY

182

20 REM French bathrooms
30 REM <C> 1982 Jereny Ruston
/i ft EiE*ju(w^^9 ^^9 ^^9 ^^9 ^R ^^9 ^^9 ^^9 ^R ^R ^R ^R

50 DIM X(4),Y(4),XD(4),YD(4)
60 MODE 4

80 FOR X=0 TO 1249 STEP 250
90 FOR Y=0 TO 999 STEP 250

100 XM=X DIV 250
110 YM=Y DIV 250
120 IF (XM MOD 2)=(YM MOD 2) THEN SMU=

0.1 ELSE SMU=0.9
130 PROCTWIRL(X+250,Y+250,X+250, Y, X, Y,

X»Y+250fSMU)
140 NEXT Y
150 NEXT X
160 END
1 0 REM JK X X X X JK XC X X X X X X X X X Jit X X 5K X JK X X)K
180 DEF PROCTWIRLCX1tY1,X2,Y2,X3,Y3,X4

,Y4,SMU>
190 X(1)=X1:X(2)=X2:X(3)=X3tX(4)=X4
200 Y(1)=Y1:Y(2)=Y2:Y(3)=Y3:Y(4)=Y4
210 LOCAL RMUflfJfNJ
220 RMU=1-SMU
230 FOR 1=1 TO 21
240 MOVE X(4),Y(4)
250 FOR J=1 TO 4
260 DRAW X(J),Y(J)
270 NJ=(J MOD 4)+l
280 XD(J)=RMU*X(J)+SMU*X(NJ)
290 YD(J)=RMU*Y(J)+SMU*Y(NJ)
300 NEXT J
310 FOR J=1 TO 4
320 X(J)=XD(J)
330 Y(J)=YD(J)
340 NEXT J
350 NEXT I
360 ENDPROC
380 REM Change 230 tot
390•FOR 1=1 TO 21 STEP 2'

183

10
2.0
30
40
50
60
70
80
90

100
110
120
130
1^0
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

REM CARD 21
M0DE7
PRINT '''
M=0
GOTO 270
CA-RND(ll)
IF CA=11 AND D+CA>21 CA=1
D-D+CA
IF M>1 PRINT "A "JCA:" HAS BEEN DEALT"
M«M+1
RETURN
CA-RND(ll)
IF CA=11 AND B+CA>21 CA--1
E:=B+CA
RETURN
PRINT "ANOTHER CARD (1> OR WILL"
PRINT "YOU STAND (0)"J
INPUT G
xFX 15,0
RETURN
PRINT """ANOTHER GAME, CARD-SHARP":
INPUT A$
M~0
IF A$O"N0" OR A$O"N" THEN 270
PRINT "OK, THANKS FOR PLAYING"
END
D-0
B=0
GOSUB 60
H=CA
GOSUB 60
A-CA
GOSUB 120
E=CA
GOSUB 120
F-CA
B$~"THE COMPUTER HAS "
C$«"THE HUMAN HAS "
PRINT BMH
print cue:" and ":f
PRINT " TOTALLING "JE+F
D-H+A

184

430 B-E+F
440 IF B“:21 THEN 520
450 GOSUB 160
460 IF G=1 THEN 550
470 IF [)<17 THEN 60 0
480 if 0021 THEN PRINT b$;d
490 IF BO21 THEN PRINT c$;b
50 0 IF’ B™D AND BO21 THEN PRINT
“SO THIS ROUND IS A DRAW"

510 IF B>21 OR D>21 THEN 210
520 IF B>D THEN PRINT “ YOU WIN"
530 IF D’>B THEN PRINT “ I WIN"
5^0 GOTO 210
550 GOSUB 120
560 PRINT CV,CA|" TOTAL? “?B
570 IF B>21 THEN PRINT “»»> BUSTED"
580 IF B>21 THEN 210
590 GOTO ^50
60 0 PRINT BMD
610 FOR Y~’l TO 900?NEXT Y
620 GOSUB 60
630 PRINT “TOTAL IS NOW “?D
6^0 FOR Y~=l TO 900?NEXT Y
650 IF D>21 THEN PRINT “»» BUSTED”
660 IF D>21 AND BO21 PRINT “SO YOU WIN"
670 IF DCL7 THEN 620
680 GOTO zl80

10 REM 9TH HOLE
20 MODE 7
30 C=0
40 FOR Z=1 TO 9JSC=0
50 J=RND(12)-1
60 Q=RND(3)+2
70 IF 0=5 Q$="FIVE"
80 IF 0=4 Q$=“FOUR”
90 IF Q=3 Qt="THREE"

100 PRINT '' ZCHR$(128+RNDC6)) $’’♦♦♦HOLE NUMBER "^"♦♦♦"
110 PRINT ''CHR*C129)|CHR*<157)ICHRt(151)|
120 PRINT ’’HOLE DIFFICULTY IS ,,;Q$ZZZZ
130 GOSUB 370
140 PRINT CHR$(139)J'"STROKE "J JINPUT A
150 IF J>26 A=-A
160 J=J+INT<A/RND(Q))
170 GOSUB 370
180 SC=SC+1
190 PRINT CHRt (131) ?CHR$ < 157) *,CHR* (129) } ’’AFTER THAT “J
200 PRINT "STROKE YOUR SCORE IS "JSC'

185

210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

PRINT
IF JO26 THEN 140
GOSUB 450
C=C+SC
PRINT ZCHR$(128+RNDC6)>J"SCORE FOR "JZ?
PRINT " HOLES IS "JC
FOR M=1 TO 1000INEXT
FOR L=1 TO 20:FOR Y=1 TO L
PRINT •' "nSOUND 18,-15,200-L, 1
SOUND 19,-15,200-Y,1
NEXT Y
PRINT CHR$<128+RND(6))|CHR*(157) *,
PRINT CHR$<128+RND(6))?"STAND BY"
NEXT L
NEXT Z
GOTO 550
IF J>30 THEN J=30
FOR K=1 TO J-2
PRINT "
NEXT K
PRINT CHR$<129)|"o"
PRINT CHR$ < 130) *, •• aaaaaaaaaaaaaah ♦
PRINT "AAAAAAAAAA AAAAAAAAA"

RETURN
FOR L=1 TO 30
PRINT CHR$<128+RND<6))J
PRINT "YOU DID IT IN "JSC," STROKES"
SOUND 17,-15,200-L,2
SOUND 18,-15,10*L,2
NEXT L
PRINT
PRINT CHR$(130)I"aaaaaaaaaaaaaaaaaaaaaaa"♦
PRINT CHR$ <129) J "o" |CHR$ <130) J " aaaaaaa«
RETURN
PRINT "END OF THAT ROUND"
PRINT
PRINT "YOU SCORED "*,C
PRINT "YOUR AVERAGE WAS "J INK C/9)
PRINT
PRINT "DO YOU WANT ANOTHER ROUND?"
INPUT T*
IF T$O"N0" THEN RUN
PRINT "OK, THANKS FOR PLAYING, CHAMP"

10 REM HIDE'N'SEEK
20 REM This is Just the raw bones of
30 REM a program to 'hide' something
^0 REM on a 10 X 10 grid* You are
50 REM sure to be able to improve it*
60 M0DE7
70 A«RND<10)
80 E:=RND(10)
90 FOR Z=1 TO 10

100 PRINT
110 PRINT '"YOU HAVE JUST " ;n-z;

186

120 PRINT " SECONDS LEFT”
130 PRINT "WHERE IS THE GOLD?"
140 INPUT C,D
150 PRINT " 1234567890"
160 IF A-C AND B-D THEN 40 0
170 FOR F=1 TO C-l
180 PRINT ?F
190 NEXT F
200 PRINT?F?
210 FOR F~1 TO D-l
220 PRINT " "?
230 NEXT F
240 PRINT "X"
250 FOR F-C-l TO 10
260 PRINT ?F
270 NEXT F
280 PRINT "IT IS NOT AT "?C?" "ID
290 PRINT '"HERE IS A CLUE?”"
300 PRINT "TRY TO THE "?
310 IF A>C THEN PRINT "SOUTH" ♦
320 IF ACC THEN PRINT "NORTH" ♦
330 IF E:<D THEN PRINT "WEST"
340 IF B>D THEN PRINT "EAST"
350 NEXT Z
360 PRINT
370 PRINT "TIME IS UP, THE GOLD "?
380 PRINT "WAS AT "?A?" "?B
390 END
400 PRINT "WELL DONE, YOU'ME FOUND
410 PRINT "$"?10 0 0 XRND(2 0)
420 END

10 REM xPiano deneritiax
20 M0DE7
30 FOR J=255 TO 0 STEP -1
40 SOUND 17,-15,J,1
50 PRINT CHR$(128+RND(6))JCHRSC157)I
60 NEXT J
70 FOR J=0 TO 255
80 SOUND 17,-15,J,1
90 NEXT J

100 REPEAT
110 A=RND(47)+43
120 M=-53x(A=90)-61x(A=88)-69x(A=67)-73*(A=86)

-81*(A=66)-89*(A=78)-97*(A=77)-101*(A=44)
130 IF M=0 THEN 110

187

140 PRINT CHR$(128+RND<6))*,CHR$(157);CHR$(128+RND(6)>;M,M,M
150 FOR J=-15 TO -1 STEP RND(3)
160 SOUND 1,J,M,RND(3)
170 SOUND 2,J,M,RND(5)
180 NEXT J
190 UNTIL RND(10)=l
200 PRINT CHR$(128+RND(6)
210 FOR J=-15 TO -1
220 SOUND 1,J,53,5
230 NEXT J
240 FOR J=1 TO 255 STEP RND(10)
250 SOUND 17,-15,J,2
260 SOUND 18,-15,255-J,2
270 SOUND 19,-15,J/2,2
280 PRINT CHR$(128+RND(6))JCHR$(157>|
290 NEXT J
300 GOTO 30

Improving your
programs
You've probably gone through several stages as you develop your
programming skills. After the first, brief struggle with BASIC, you
suddenly discovered you could, after a fashion, write programs which
ran. They may have looked pretty convoluted when you looked at their
listings, and friends may have needed a detailed explanation from you
before they knew what to do when running the programs, but as least
they worked.

There comes a stage when you decide you're going to have to do
better than that. But while you may be vaguely dissatisfied with your
programs, you may not have much idea of how to go about becoming
a better programmer. Here are a few guidelines which may help.

First, have a look at a printout of your listing. Programs linked by REM
statements look better, and are easier to understand when you return
to them after a break. Of course, shortage of memory may preclude
the luxury of REM statements, but if you have the memory, you should
include them. REM statements filled just with a line of asterisks can
prove quite useful in separating each major section of the program.
Examine any unconditional GOTO critically. Too many GOTOs
leapfrogging over other parts of the program show a lack of directed
thinking, make programs run more slowly, and can make them almost
impossible to decipher.

It is very good programming practice, as I have suggested earlier, to
have each of the main sections of the program (like the one which

188

assigns the variables at the beginning of a run, the one which prints
out the board, the one which works out who has won, and so on) in
separate subroutines or procedures. The beginning of your program
could well look like this:

10 REM *NAME OF PROGRAM*
20 REM ASSIGN VARIABLES
30 GOSUB 9000
40 REM PRINT BOARD
50 GOSUB 8000
60 REM HUMAN'S MOVE
70 GOSUB 7000
80 REM COMPUTER'S MOVE
90 GOSUB 6000

100 REM CHECK IF GAME OVER
110 GOSUB 5000
120 GOTO 50

As you can see, this ensures that the program actually cycles through
a continuous loop over and over again, until the program terminates
with the "CHECK IF GAME OVER" subroutine. You can actually write
a series of lines like these before you start writing anything else, and
even before you know how you are going to actually perform some of
the tasks within the subroutine.

Then you can write the program module by module, making sure that
each module works before going onto the next. It is relatively easy to
debug a program like this, and far simpler to keep an image of 'where
everything is' when you do this, then when you just allow a program
to, more or less, write itself.

The listing should be, then, as transparent as you can make it, both for
your own present debugging, and for future understanding of what bit
carries out what task. The output of the program should also look
good. Again, if memory is not a problem, make sure the display is clear
and uncluttered. Use blank PRINT lines to space it out, use rules and
graphic symbols or whatever to break the screen up into logical
sections and so on. Once you have a program working satisfactorily, it
is worth spending extra time on the subroutine which controls the
display. Here you'll appreciate again the advantage of having all the
display handling in one subroutine, as it will be easy to know where to
go to enhance the display.

Of course, as we live in a far from ideal world, it is unlikely that every
single display command can be contained within one subroutine, but if
you aim towards that end, it will make subsequent working upon the
program much easier than it might be otherwise.

The 'structured' approach outlined also helps you realise another aim
of a good program — to do what you expected it to, every time you

189

run it. You should write a program so that, even if you are not present
when a friend decides to run it for the first time, it performs as
expected. This means not only, of course, that it is properly
debugged, but that the instructions (which can be contained within
the ASSIGN VARIABLES subroutine or procedure) are clear and
complete.

The user prompts should be clear, so the human operators know
whether to enter a number, a series of numbers, a word, a date, a
mixture of letters and numbers, and so on. The program has to assume
that the operator is a complete idiot, and that no matter how clearly
the instructions and/or user prompts are stated, he or she will attempt
to do things the wrong way. A classic example of this is the entering of
dates. 'Mug traps', as the routines to reject erroneous input from the
operator are called, should be set up to reject a date being entered in a
form which the computer cannot understand (such as the month
before the day) or which is clearly wrong (such as entered the 32nd of
February). You should ensure that, no matter what the operator does,
the program does not crash or otherwise misbehave. This can happen
if the program was expecting a numerical input, and the operator tried
to enter a letter or a word, or hit RETURN without entering anything at
all. You can get around this by always allowing a string input, going
back for another input if the empty string is entered, and taking the
ASC, VAL or CODE of the input to turn it into numerical form.

Documentation is an area of programming which is often neglected. It
is virtually essential for a program which is intended for publication,
and most advisable for long programs which you've written for
yourself. At the least, the documentation should include a list of
variables, an explanation of the program structure (which should be
easy to do if you've followed the 'modular' approach advised earlier),
and brief instructions, especially if the program itself does not contain
instructions. A sample run showing the kind of inputs, and the nature
and layout of the program outputs, is also useful.

Your program should run as quickly as possible. Every time there is a
subroutine or GOTO call, the computer must search through the whole
program, line by line, to find the specified line number so placing often
used subroutines near the beginning of the program will speed them
up fractionally. That is why the instructions are often placed right at
the end. You do not want the computer to have to wade through the
initialisation and instruction lines every time it has been told to GOTO
or GOSUB looking for the destination, or return line number. Use
procedures rather than subroutines if you can as these run more
quickly then subroutines. Use variables instead of constants. The
computer takes a little more time to change a constant into a number
than it does for it to look up a value in an array, for example. Define
often-used variables first, so they will occupy the early slots in the
varibles store. The computer will search the store only until it finds the

190

variable it wants, so there is no point in getting it to look at more
entries than absolutely necessary.

Finally, and this is by far the best way to test a program you've written,
call in a friend and sit him or her in front of the TV, and tell them to
press RUN, without you saying anything, and just sit back and watch.
If there is any hesitation, or the program hiccups, you have more work
to do.

In summary, then:

• Use REM statements
• Make program listing neat and logical
• Use structured programming techniques, controlling the program
through a loop of subroutine calls, or procedures
• Examine unconditional GOTO commands critically, using
REPEAT/UNTIL instead if it is appropriate
• Make output display attractive and clear
• Ensure all user prompts are clear
• Add 'mugtraps' on all user input
• Document your programs, even if you just make a list of variables
• Make your program run as quickly as possible
• Test programs by allowing someone unfamiliar with the program to
run it.

Good programming.

191

CONTENTS:

In t rod uction -- 3
The PRINT statement --- 5
Editing --- 8
LIST and RENUMBER.. 9
RUN, STOP, END, NEW, OLD....................... 10
PRINT formatting and TAB --- 12

TABULATOR ROCKET RANGE------------------- 15
SAVE...................-.. 16
TAB (X) and TAB (X,Y) 17

SQUASH............................... 18
Random numbers --- 21

DICE ROLLER..............-... 23
ACEY DUECY ... 25

Variables -- 28
String variables --- 31

CRICKETS---------------- ------------------..................-..............- 31
INPUT-------------------- ---------------------------- --------------------- -....................... 33

BIRD CAGE.................-... 35
COMPOUND INTEREST --- 38
ARITHMETIC MEAN ... 39

GOTO.......................... 41
IF.. .THEN GOTO.. 42

MATCHSTICKS-.................................... 44
IF.. .THEN. . .ELSE .. 46

GRAPHS --- 46
FOR/NEXT loops --- 51
Nested loops -- 54
STEP 56
REPEAT/UNTIL.......................... 58
GOSUB and RETURN.............. -............................... 59

BLACKJACK--- 61
ON GOTO. ..ON GOSUB...................... -.............. 64

POETRY..................... 65
DIM and ARRAYS.............. 68

MASTERMIND---------------------------- 73
PERSONAL ACCOUNTS 74

String arrays -- 77
STRING SORT---------------- --------------................................. 78

String handling -- 79
ALPHA.. 81
MUSIC MAKER.........-... 82

GET, GET#, INKEY, INKEY# -------------- 84
PREDICTION .. 85
MAZE MAKER... 87
ROAD RUNNER...................... -...................88

SOUND------------- 90
BAMBOO FLUTES...... .. 91
STEAM TRAIN... 91
PIANO ..-..................-...................92
AUTO PIANO.. 93

ENVELOPE..................... 96
READ/DATA/RESTORE --.......................... 98

192

MASTERING THE GRAPHICS ... 102
DOUBLE HEIGHT ... 104
CHUNKY GRAPHICS ... 105
CONCATENATION ... 107
MASTERMIND 11 109
MODES 0 to 7 . .. 1 10
GCOL/CLG.........................-.. 1 1 3

PLOT...-.. 1 16
ELECTRIC SPARK.. 1 1 7
I CE CAVE......... .. 1 1 8
ZEBRA TRIANGLES, ROTATING SQUARES,

SHRINKER, MOIRE-LACE, SINE CURVE,
TUNNEL TUNER, SINE RIBBON,
ORBITAL SKETCHER, ROLLER COASTER,
COSMIC TABLE MAT-.. 120

VDU drivers ------------------------------------ 126
CHARACTER REDEFINITION ... 133
SIDEWAYS SCROLL ... 133
CORRUPTION .. 134

Introduction to arithmetic --- 135
ARITHMETIC PROGRESSION ------------------------------------ 135
ClRCULAR SECTIONS............... 137
PRIME NUMBERS............-.............-...............-.................. 138
DAY OF THE WEEK......................-.................................... 139
SPECIES ---------------------- 140

FUNCTIONS-................ 141
DEFINING FUNCTIONS ... 142
BAT--------------- 143

LOCAL VARIABLES........ 144
SPIROGRAPH 145

Procedures -- 146
TWENTY ONE..............-.......................-................... 150
SEVEN-UP..............................-... 152

User-definab 1e function keys -- 158
File handling --- 160

PARROT SHOP .. 162
Draughts and other games --- 164

KIDDIE CHECKERS-------------- ----------------..................... - 168
DRAUGHTS............... 170
OTHELLO --- 174
LUNAR LANDER-------------------------- 177
MASTERTRIO......................-............................ -................ - 178
MATCHSTICKS 11-... 179
PERSONAL ACCOUNTS 11-.................. 179
DIGITAL CLOCK........................... 1 8 1
INTEREST ON A LOAN.. 181
STOCK RECORD......... 182
SQUARE ROOTS------------- 182
FRENCH BATHROOMS................... -.................... -............. 183
CARD 21 --------------------------------------- 184
9th HOLE --- 185
H I DE ' N 1 SEEK.. 1 86
PIANO DEMENTIA............................ 187

Improving your programs --- 188

193

LET YOUR BBC MICRO TEACH YOU TO PROGRAM

This book by best-selling author Tim Hartnell is the ideal companion
for you if the BBC Microcomputer is your first computer. It takes you,
step by simple step, through programming in BBC BASIC-with a
number of worthwhile programs - and then goes further, giving you
leads to develop and expand your programming skills in the coming
months.

Once you've mastered the fundamentals of BASIC, this book will help
you understand and apply such things as the use of the ENVELOPE
command, how to master the graphics and use them to best effect,
the use of VDU drivers, graphic windows, how to define your own
characters, the use of functions and procedures, and ways of writing
better programs. There are a number of utility and games programs in
the book, ready to run.

Tim Hartnell is the author of a number of books, including "GETTING
ACQUAINTED WITH YOUR ZX81" and "SYMPHONY FOR A
MELANCHOLY COMPUTER". He is a frequent contributorto computer
magazines, and edits the magazine "ZX COMPUTING".

Another great book from
Interface Publications

	‎G:\TEMP21\bbcteachprog_Page_001.png‎
	‎G:\TEMP21\bbcteachprog_Page_002.png‎
	‎G:\TEMP21\bbcteachprog_Page_003.png‎
	‎G:\TEMP21\bbcteachprog_Page_004.png‎
	‎G:\TEMP21\bbcteachprog_Page_005.png‎
	‎G:\TEMP21\bbcteachprog_Page_006.png‎
	‎G:\TEMP21\bbcteachprog_Page_007.png‎
	‎G:\TEMP21\bbcteachprog_Page_008.png‎
	‎G:\TEMP21\bbcteachprog_Page_009.png‎
	‎G:\TEMP21\bbcteachprog_Page_010.png‎
	‎G:\TEMP21\bbcteachprog_Page_011.png‎
	‎G:\TEMP21\bbcteachprog_Page_012.png‎
	‎G:\TEMP21\bbcteachprog_Page_013.png‎
	‎G:\TEMP21\bbcteachprog_Page_014.png‎
	‎G:\TEMP21\bbcteachprog_Page_015.png‎
	‎G:\TEMP21\bbcteachprog_Page_016.png‎
	‎G:\TEMP21\bbcteachprog_Page_017.png‎
	‎G:\TEMP21\bbcteachprog_Page_018.png‎
	‎G:\TEMP21\bbcteachprog_Page_019.png‎
	‎G:\TEMP21\bbcteachprog_Page_020.png‎
	‎G:\TEMP21\bbcteachprog_Page_021.png‎
	‎G:\TEMP21\bbcteachprog_Page_022.png‎
	‎G:\TEMP21\bbcteachprog_Page_023.png‎
	‎G:\TEMP21\bbcteachprog_Page_024.png‎
	‎G:\TEMP21\bbcteachprog_Page_025.png‎
	‎G:\TEMP21\bbcteachprog_Page_026.png‎
	‎G:\TEMP21\bbcteachprog_Page_027.png‎
	‎G:\TEMP21\bbcteachprog_Page_028.png‎
	‎G:\TEMP21\bbcteachprog_Page_029.png‎
	‎G:\TEMP21\bbcteachprog_Page_030.png‎
	‎G:\TEMP21\bbcteachprog_Page_031.png‎
	‎G:\TEMP21\bbcteachprog_Page_032.png‎
	‎G:\TEMP21\bbcteachprog_Page_033.png‎
	‎G:\TEMP21\bbcteachprog_Page_034.png‎
	‎G:\TEMP21\bbcteachprog_Page_035.png‎
	‎G:\TEMP21\bbcteachprog_Page_036.png‎
	‎G:\TEMP21\bbcteachprog_Page_037.png‎
	‎G:\TEMP21\bbcteachprog_Page_038.png‎
	‎G:\TEMP21\bbcteachprog_Page_039.png‎
	‎G:\TEMP21\bbcteachprog_Page_040.png‎
	‎G:\TEMP21\bbcteachprog_Page_041.png‎
	‎G:\TEMP21\bbcteachprog_Page_042.png‎
	‎G:\TEMP21\bbcteachprog_Page_043.png‎
	‎G:\TEMP21\bbcteachprog_Page_044.png‎
	‎G:\TEMP21\bbcteachprog_Page_045.png‎
	‎G:\TEMP21\bbcteachprog_Page_046.png‎
	‎G:\TEMP21\bbcteachprog_Page_047.png‎
	‎G:\TEMP21\bbcteachprog_Page_048.png‎
	‎G:\TEMP21\bbcteachprog_Page_049.png‎
	‎G:\TEMP21\bbcteachprog_Page_050.png‎
	‎G:\TEMP21\bbcteachprog_Page_051.png‎
	‎G:\TEMP21\bbcteachprog_Page_052.png‎
	‎G:\TEMP21\bbcteachprog_Page_053.png‎
	‎G:\TEMP21\bbcteachprog_Page_054.png‎
	‎G:\TEMP21\bbcteachprog_Page_055.png‎
	‎G:\TEMP21\bbcteachprog_Page_056.png‎
	‎G:\TEMP21\bbcteachprog_Page_057.png‎
	‎G:\TEMP21\bbcteachprog_Page_058.png‎
	‎G:\TEMP21\bbcteachprog_Page_059.png‎
	‎G:\TEMP21\bbcteachprog_Page_060.png‎
	‎G:\TEMP21\bbcteachprog_Page_061.png‎
	‎G:\TEMP21\bbcteachprog_Page_062.png‎
	‎G:\TEMP21\bbcteachprog_Page_063.png‎
	‎G:\TEMP21\bbcteachprog_Page_064.png‎
	‎G:\TEMP21\bbcteachprog_Page_065.png‎
	‎G:\TEMP21\bbcteachprog_Page_066.png‎
	‎G:\TEMP21\bbcteachprog_Page_067.png‎
	‎G:\TEMP21\bbcteachprog_Page_068.png‎
	‎G:\TEMP21\bbcteachprog_Page_069.png‎
	‎G:\TEMP21\bbcteachprog_Page_070.png‎
	‎G:\TEMP21\bbcteachprog_Page_071.png‎
	‎G:\TEMP21\bbcteachprog_Page_072.png‎
	‎G:\TEMP21\bbcteachprog_Page_073.png‎
	‎G:\TEMP21\bbcteachprog_Page_074.png‎
	‎G:\TEMP21\bbcteachprog_Page_075.png‎
	‎G:\TEMP21\bbcteachprog_Page_076.png‎
	‎G:\TEMP21\bbcteachprog_Page_077.png‎
	‎G:\TEMP21\bbcteachprog_Page_078.png‎
	‎G:\TEMP21\bbcteachprog_Page_079.png‎
	‎G:\TEMP21\bbcteachprog_Page_080.png‎
	‎G:\TEMP21\bbcteachprog_Page_081.png‎
	‎G:\TEMP21\bbcteachprog_Page_082.png‎
	‎G:\TEMP21\bbcteachprog_Page_083.png‎
	‎G:\TEMP21\bbcteachprog_Page_084.png‎
	‎G:\TEMP21\bbcteachprog_Page_085.png‎
	‎G:\TEMP21\bbcteachprog_Page_086.png‎
	‎G:\TEMP21\bbcteachprog_Page_087.png‎
	‎G:\TEMP21\bbcteachprog_Page_088.png‎
	‎G:\TEMP21\bbcteachprog_Page_089.png‎
	‎G:\TEMP21\bbcteachprog_Page_090.png‎
	‎G:\TEMP21\bbcteachprog_Page_091.png‎
	‎G:\TEMP21\bbcteachprog_Page_092.png‎
	‎G:\TEMP21\bbcteachprog_Page_093.png‎
	‎G:\TEMP21\bbcteachprog_Page_094.png‎
	‎G:\TEMP21\bbcteachprog_Page_095.png‎
	‎G:\TEMP21\bbcteachprog_Page_096.png‎
	‎G:\TEMP21\bbcteachprog_Page_097.png‎
	‎G:\TEMP21\bbcteachprog_Page_098.png‎
	‎G:\TEMP21\bbcteachprog_Page_099.png‎
	‎G:\TEMP21\bbcteachprog_Page_100.png‎
	‎G:\TEMP21\bbcteachprog_Page_101.png‎
	‎G:\TEMP21\bbcteachprog_Page_102.png‎
	‎G:\TEMP21\bbcteachprog_Page_103.png‎
	‎G:\TEMP21\bbcteachprog_Page_104.png‎
	‎G:\TEMP21\bbcteachprog_Page_105.png‎
	‎G:\TEMP21\bbcteachprog_Page_106.png‎
	‎G:\TEMP21\bbcteachprog_Page_107.png‎
	‎G:\TEMP21\bbcteachprog_Page_108.png‎
	‎G:\TEMP21\bbcteachprog_Page_109.png‎
	‎G:\TEMP21\bbcteachprog_Page_110.png‎
	‎G:\TEMP21\bbcteachprog_Page_111.png‎
	‎G:\TEMP21\bbcteachprog_Page_112.png‎
	‎G:\TEMP21\bbcteachprog_Page_113.png‎
	‎G:\TEMP21\bbcteachprog_Page_114.png‎
	‎G:\TEMP21\bbcteachprog_Page_115.png‎
	‎G:\TEMP21\bbcteachprog_Page_116.png‎
	‎G:\TEMP21\bbcteachprog_Page_117.png‎
	‎G:\TEMP21\bbcteachprog_Page_118.png‎
	‎G:\TEMP21\bbcteachprog_Page_119.png‎
	‎G:\TEMP21\bbcteachprog_Page_120.png‎
	‎G:\TEMP21\bbcteachprog_Page_121.png‎
	‎G:\TEMP21\bbcteachprog_Page_122.png‎
	‎G:\TEMP21\bbcteachprog_Page_123.png‎
	‎G:\TEMP21\bbcteachprog_Page_124.png‎
	‎G:\TEMP21\bbcteachprog_Page_125.png‎
	‎G:\TEMP21\bbcteachprog_Page_126.png‎
	‎G:\TEMP21\bbcteachprog_Page_127.png‎
	‎G:\TEMP21\bbcteachprog_Page_128.png‎
	‎G:\TEMP21\bbcteachprog_Page_129.png‎
	‎G:\TEMP21\bbcteachprog_Page_130.png‎
	‎G:\TEMP21\bbcteachprog_Page_131.png‎
	‎G:\TEMP21\bbcteachprog_Page_132.png‎
	‎G:\TEMP21\bbcteachprog_Page_133.png‎
	‎G:\TEMP21\bbcteachprog_Page_134.png‎
	‎G:\TEMP21\bbcteachprog_Page_135.png‎
	‎G:\TEMP21\bbcteachprog_Page_136.png‎
	‎G:\TEMP21\bbcteachprog_Page_137.png‎
	‎G:\TEMP21\bbcteachprog_Page_138.png‎
	‎G:\TEMP21\bbcteachprog_Page_139.png‎
	‎G:\TEMP21\bbcteachprog_Page_140.png‎
	‎G:\TEMP21\bbcteachprog_Page_141.png‎
	‎G:\TEMP21\bbcteachprog_Page_142.png‎
	‎G:\TEMP21\bbcteachprog_Page_143.png‎
	‎G:\TEMP21\bbcteachprog_Page_144.png‎
	‎G:\TEMP21\bbcteachprog_Page_145.png‎
	‎G:\TEMP21\bbcteachprog_Page_146.png‎
	‎G:\TEMP21\bbcteachprog_Page_147.png‎
	‎G:\TEMP21\bbcteachprog_Page_148.png‎
	‎G:\TEMP21\bbcteachprog_Page_149.png‎
	‎G:\TEMP21\bbcteachprog_Page_150.png‎
	‎G:\TEMP21\bbcteachprog_Page_151.png‎
	‎G:\TEMP21\bbcteachprog_Page_152.png‎
	‎G:\TEMP21\bbcteachprog_Page_153.png‎
	‎G:\TEMP21\bbcteachprog_Page_154.png‎
	‎G:\TEMP21\bbcteachprog_Page_155.png‎
	‎G:\TEMP21\bbcteachprog_Page_156.png‎
	‎G:\TEMP21\bbcteachprog_Page_157.png‎
	‎G:\TEMP21\bbcteachprog_Page_158.png‎
	‎G:\TEMP21\bbcteachprog_Page_159.png‎
	‎G:\TEMP21\bbcteachprog_Page_160.png‎
	‎G:\TEMP21\bbcteachprog_Page_161.png‎
	‎G:\TEMP21\bbcteachprog_Page_162.png‎
	‎G:\TEMP21\bbcteachprog_Page_163.png‎
	‎G:\TEMP21\bbcteachprog_Page_164.png‎
	‎G:\TEMP21\bbcteachprog_Page_165.png‎
	‎G:\TEMP21\bbcteachprog_Page_166.png‎
	‎G:\TEMP21\bbcteachprog_Page_167.png‎
	‎G:\TEMP21\bbcteachprog_Page_168.png‎
	‎G:\TEMP21\bbcteachprog_Page_169.png‎
	‎G:\TEMP21\bbcteachprog_Page_170.png‎
	‎G:\TEMP21\bbcteachprog_Page_171.png‎
	‎G:\TEMP21\bbcteachprog_Page_172.png‎
	‎G:\TEMP21\bbcteachprog_Page_173.png‎
	‎G:\TEMP21\bbcteachprog_Page_174.png‎
	‎G:\TEMP21\bbcteachprog_Page_175.png‎
	‎G:\TEMP21\bbcteachprog_Page_176.png‎
	‎G:\TEMP21\bbcteachprog_Page_177.png‎
	‎G:\TEMP21\bbcteachprog_Page_178.png‎
	‎G:\TEMP21\bbcteachprog_Page_179.png‎
	‎G:\TEMP21\bbcteachprog_Page_180.png‎
	‎G:\TEMP21\bbcteachprog_Page_181.png‎
	‎G:\TEMP21\bbcteachprog_Page_182.png‎
	‎G:\TEMP21\bbcteachprog_Page_183.png‎
	‎G:\TEMP21\bbcteachprog_Page_184.png‎
	‎G:\TEMP21\bbcteachprog_Page_185.png‎
	‎G:\TEMP21\bbcteachprog_Page_186.png‎
	‎G:\TEMP21\bbcteachprog_Page_187.png‎
	‎G:\TEMP21\bbcteachprog_Page_188.png‎
	‎G:\TEMP21\bbcteachprog_Page_189.png‎
	‎G:\TEMP21\bbcteachprog_Page_190.png‎
	‎G:\TEMP21\bbcteachprog_Page_191.png‎
	‎G:\TEMP21\bbcteachprog_Page_192.png‎
	‎G:\TEMP21\bbcteachprog_Page_193.png‎
	‎G:\TEMP21\bbcteachprog_Page_194.png‎
	‎G:\TEMP21\bbcteachprog_Page_195.png‎

