
# **Applied Statistics**

Using the power of your Solid State Software™ module



Copyright© 1977, Texas Instruments Incorporated

# TABLE OF CONTENTS

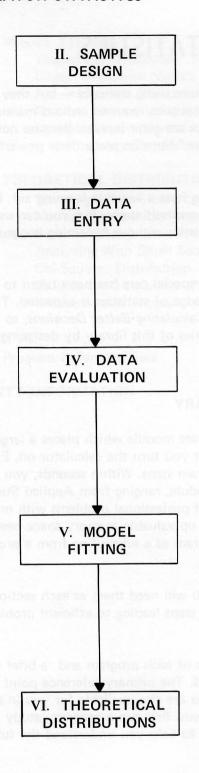
| I   | CALCULATOR STATISTICS                      |   |
|-----|--------------------------------------------|---|
|     | Using This Library                         |   |
|     |                                            |   |
|     | DUDDING SOUG State Cofficience Dua-        |   |
|     | USIDO SOUO STATO SOFTIMORO DECENSAR O L    |   |
|     |                                            |   |
|     | Additional Notes                           |   |
|     | Additional Notes                           |   |
|     | Notation                                   |   |
|     | References for Further Study               | 7 |
|     | Statistics Library Diagnostic Program      | 3 |
|     | Diagnostic/Library Module Check            | 3 |
|     | Linear Regression Initialization           | 3 |
| II  | SAMPLE DESIGN                              |   |
|     |                                            | 1 |
|     | Sample Sizing                              |   |
|     | Sample Selection                           | ; |
|     | Sample Evaluation                          |   |
|     | Stratified Sampling                        |   |
|     | Monte Carlo Simulation                     |   |
|     | Random Number Generator Program            |   |
| TIT |                                            | h |
| III | DATA ENTRY                                 |   |
|     | Data Entry Notes                           |   |
|     | Univariate Data (Ungrouped) Program        |   |
|     | omvariate Data (Grouped) Program           |   |
|     | Divariate Data Frogram                     |   |
|     | Trivariate Data Program                    |   |
|     | Offe-way Analysis of Variance Data Program |   |
|     | WU-Wdy Analysis of Variance Data Program   |   |
|     |                                            |   |
|     |                                            |   |
|     | LIUVACIATO LISTA L'ESPECTORMA              |   |
|     |                                            |   |
|     | 3-14                                       |   |
| IV  | DATA EVALUATION                            |   |
|     | Means and Momenta Dunament                 |   |
|     | Histogram Construction Program: 4-2        |   |
|     | Histogram Construction Program             |   |
|     | Frequency Plotting                         |   |
|     | t-Statistic Evaluation Program             |   |
|     | For Paired Observations                    |   |
|     | Two Sample Test                            |   |
|     | Contingency Table Analysis Program         |   |
|     | Analysis of Variance Programs 4-20         |   |
|     | One-way AOV                                |   |
|     | I Wo-Way AUV                               |   |
|     | Rank-Sum Test Program                      |   |
|     | 720                                        |   |

| V      | MODEL FITTING                        |    |  |    |   |  |   |    |     |    |    |    | 5-1  |
|--------|--------------------------------------|----|--|----|---|--|---|----|-----|----|----|----|------|
|        | Theoretical Histogram Program        |    |  |    |   |  |   |    |     |    |    |    | 5-1  |
|        | Linear Regression Models             |    |  |    |   |  |   |    |     |    |    |    | 5-6  |
|        | About the Correlation Coefficien     | t. |  |    |   |  |   |    |     |    |    |    | 5-7  |
|        | Bivariate Curve Fitting Program      |    |  |    |   |  |   |    |     |    |    |    | 5-8  |
|        | Multiple Linear Regression Program . |    |  |    |   |  |   |    |     | ě  |    |    | 5-14 |
|        | Nonlinear Regression                 |    |  |    |   |  |   |    |     |    | •  | •  | 5-16 |
| VI     | THEORETICAL DISTRIBUTIONS            |    |  |    |   |  |   |    |     |    |    |    | 6-1  |
|        | Selecting a Confidence Level         |    |  |    |   |  |   |    |     |    |    |    | 6-3  |
|        | Normal Distribution Program          |    |  |    |   |  |   |    |     |    |    |    | 6-4  |
|        | Binomial Distribution Program        |    |  |    |   |  |   |    |     |    |    |    | 6-8  |
|        | Analyzing With Small Samples         |    |  |    |   |  |   |    |     |    |    |    | 6-10 |
|        | Chi-Square Distribution Program      |    |  |    |   |  | 7 |    |     |    |    |    | 6-11 |
|        | Student's t Distribution Program     |    |  |    |   |  |   |    |     |    |    |    | 6-14 |
|        | F Distribution Program               |    |  |    |   |  |   |    |     |    |    |    | 6-17 |
|        |                                      |    |  |    |   |  |   |    |     |    |    |    |      |
| APPENI | DIX A                                |    |  |    | • |  |   |    |     | •  |    |    | A-1  |
|        | Program Reference Data               |    |  |    |   |  |   |    |     |    |    |    |      |
| WARRA  | ANTY INFORMATION                     |    |  | d. |   |  |   | lı | nsi | de | Ba | ck | Cove |
|        |                                      |    |  |    |   |  |   |    |     |    |    |    |      |

Professionals from many fields could make better decisions using statistics — but they have needed a way to make it easy. In the past, the use of statistics required tedious manual calculations or access to expensive computers. But those days are gone forever. Because now, our programmable calculators with their *Solid State Software\** libraries place these powerful tools literally into the palm of your hand!

Students, you too can benefit from this library by using it as a valuable learning aid. Don't expect your calculator to replace classroom instruction and self study. But you can use it to gain considerable experience in the practical use of statistics without becoming bogged down in complicated calculations.

No programming skill is needed. However, even though special care has been taken to make this library easy to read and understand, a basic knowledge of statistics is expected. Those of you needing a brief review may find TI's publication, *Calculating Better Decisions*, to be helpful. This text may also help you to extend the capabilities of this library by designing your own programs if you wish.


#### **USING THIS LIBRARY**

Your calculator contains a removable *Solid State Software* module which places a large library with a variety of programs at your fingertips the instant you turn the calculator on. Each *Solid State Software* module contains up to 5000 program steps. Within seconds, you can replace the Master Library Module with an optional module, ranging from Applied Statistics to Aviation, to tailor your calculator to solve a series of professional problems with minimal effort. Your *Solid State Software* library does not take up valuable memory space needed for your own programs. In fact, you can call a library program as a subroutine from a program of your own without interruption.

The library programs are discussed in the order that you will need them as each section in this manual is designed to correspond to one of several steps leading to efficient problem solving.

Program documentation includes a complete description of each program and a brief explanation of how the programmed techniques may be applied. The primary reference point for each program is the User Instructions. These instructions are also available for you in the handy pocket guide furnished with your library. When you first run a program, study the program description and complete the sample problems to help you understand the full capabilities and limitations of the program.

<sup>\*</sup>Trademark of Texas Instruments



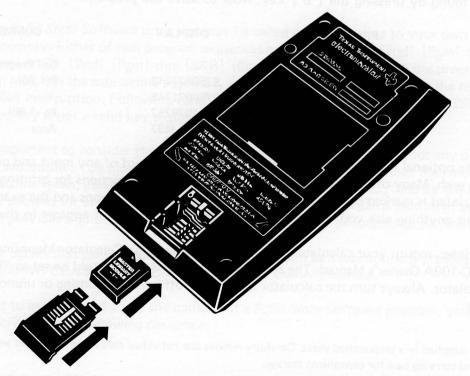
Section II helps you to design and collect your sample. A program used to generate random numbers is of special interest here.

Seven programs are described in this section. They are used to enter and organize your data for use by other programs and any other purpose you can think of.

Now that you have gathered your data you are ready to put it to work. This section describes various programs used for making statistical tests.

You may often find the need to fit your data to a model. This section includes a program that compares a theoretical histogram to your data to help you determine the shape of your sample distribution. Various curve fitting procedures are also described.

The programs described in this section are provided to help you evaluate your test statistic and determine whether to accept or reject your hypothesis.


### REMOVING AND INSTALLING MODULES

The Master Library module is installed in the calculator at the factory, but can easily be removed or replaced with another. It is a good idea to leave the module in place in the calculator except when replacing it with another module. Be sure to follow these instructions when you need to remove or replace a module.

#### CAUTION

Be sure to touch some metal object before handling a module to prevent possible damage by static electricity.

- Turn the calculator OFF. Loading or unloading the module with the calculator ON
  may cause the keyboard or display to lock out. Also, shorting the contacts can
  damage the module or calculator.
- 2. Slide out the small panel covering the module compartment at the bottom of the back of the calculator. (See Diagram below.)
- 3. Remove the module. You may turn the calculator over and let the module fall out into your hand.
- 4. Insert the module, notched end first with the labeled side up into the compartment. The module should slip into place effortlessly.
- 5. Replace the cover panel, securing the module against the contacts.



Don't touch the contacts inside the module compartment as damage can result.

### RUNNING SOLID STATE SOFTWARE PROGRAMS

The Statistics Library contains a variety of useful programs. To help you get started in using the *Solid State Software* programs, install your Statistics Library Module and follow us through a couple of brief examples.

First of all, to eliminate any possibility of having any pending operations or previous results interferring with your current program, turn your calculator off for a couple of seconds, and back on again. This off/on sequence is the assumed starting point for each example problem in this manual. Now press the key sequence [2nd] [Pgm] [0] [1] [SBR] [=] to call and run the "diagnostic" program. Notice the display goes blank except for a faint "[" at the far left which indicates that calculations are taking place. After about 15 seconds, "2." will appear in the display. This displayed number indicates that the Statistics Library Module is installed in the calculator and that the calculator and module are operating properly. If the display is flashing after the diagnostic, refer to "In Case of Difficulty" in the SERVICE INFORMATION Appendix of the Owner's Manual.

The diagnostic program is a highly specialized one that works internally to check the operation of your software library. Once you're sure things are working, you can continue with another program in the library. A complete description of this program is found at the end of this section.

Suppose that you need to know the area under the standard normal curve between z=-1.96 and z=1.96. Look through the nonmagnetic black and gold label cards\* and find card ST-19 titled NORMAL DISTRIBUTION. Insert this card in the window above the top row of keys on your calculator. You can now see that the area under the curve from negative infinity to z, P(z), may be found by pressing the [B] key. Now to solve the problem:

| ENTER | PRESS          | DISPLAY     | COMMENTS        |
|-------|----------------|-------------|-----------------|
|       | [2nd] [Pgm] 19 |             | Call Program 19 |
| 1.96  | [B]            | .9750021748 | P(1.96)         |
| 1.50  | i – i          | .9750021748 |                 |
| 1.96  | [+/_] [B]      | .0249978252 | P(-1.96)        |
| 1.00  | [=]            | .9500043497 | Area            |

If you have the optional PC-100A printer\*\* you may obtain a record of any input and output data that you wish. Many of the programs in this library include instructions for printing data. Data that is printed is marked by a dagger "†" in both the User Instructions and the examples. You may print anything else you wish by pressing [2nd] [Prt] when it appears in the display.

To use the printer, mount your calculator on the PC-100A using the Calculator Mounting procedure in the PC-100A Owner's Manual. The switch called out in Step 2 should be set to "OTHER" for your calculator. Always turn the calculator and printer off before mounting or unmounting the calculator.

<sup>\*</sup>The cards are supplied in a prepunched sheet. Carefully remove the individual cards from the sheet and insert them in the card carrying case for convenient storage.

<sup>\*\*</sup>Note: The TI Programmable 58 and TI Programmable 59 will not operate on the PC-100 print cradle.

Before you begin using the Statistics Library programs on your own, here are a few things to keep clearly in mind until you become familiar with your calculator.

- 1. Press [CLR] before running a program if you are not sure of the status of the calculator. (To be completely sure of calculator status, turn it off and on again but remember that this clears the program memory.)
- 2. There is no visual indication of which *Solid State Software* program has been called. If you have any doubts, the safest method is to call the desired program with [2nd] [Pgm] mm, where mm is the two-digit program number. The calculator remains at this program number until another program is called, [RST] is pressed or the calculator is turned off.
- 3. A flashing display normally indicates an improper key sequence or that a numerical limit has been exceeded. When this occurs, always repeat the program sequence and check that each step is performed as directed by the User Instructions. Any unusual limits of a program are given in the User Instructions or related notes. The In Case of Difficulty portion of Appendix A in the Owner's Manual may be helpful in isolating a problem.
- 4. Some of the *Solid State Software* programs may run for several minutes depending on input data. If you desire to halt a running program, press the [RST] key. This is considered as an emergency halt operation which returns control to the main memory. A program must be recalled to be run again.

#### USING SOLID STATE SOFTWARE PROGRAMS AS SUBROUTINES

Any of the *Solid State Software* programs may be called as a subroutine to your own program in the main memory. Either of two program sequences may be used: 1) [2nd] [Pgm] mm (User Defined Key) or 2) [2nd] [Pgm] mm [SBR] (Common Label). Both send the program control to program mm, run the subroutine sequence, and then automatically return to the main program without interruption. Following [2nd] [Pgm] mm with anything other than [SBR] or a user-defined key is not a valid key sequence and can cause unwanted results.

It is very important to consider the Program Reference Data in Appendix A for any program called as a subroutine. You must plan and write your own program such that the data registers, flags, subroutine levels, parentheses levels, T-register, angular mode, etc., used by the called subroutine are allowed for in your program. In addition, a Register Contents section of each program description provides a guide to determine where data is or must be located to run the program.

A sample program that calls a *Solid State Software* program as a subroutine is provided in the *PROGRAMMING CONSIDERATIONS* section of the Owner's Manual.

If you need to examine and study the content of a *Solid State Software* program, you can download as described in the following paragraph.

### DOWNLOADING SOLID STATE SOFTWARE PROGRAMS

If you need to examine a *Solid State Software* program, it can be downloaded into the main program memory.\* This allows you to single step through a program in or out of the learn mode. It also allows using the program list or trace features of the optional printer. The only requirement for downloading a *Solid State Software* program is that the memory partition be set so there is sufficient space in the main program memory to receive the downloaded program. The key sequence to download a program is [2nd] [Pgm] mm [2nd] [Op] 09, where mm is the program number to be downloaded. This procedure places the requested program into program memory beginning at program location 000. The downloaded program writes over any instructions previously stored in that part of program memory. Remember to press [RST] before running or tracing the downloaded program.

If you own a TI Programmable 59 the partitioning established when you turn your calculator on is sufficient to download any program in this library. If your calculator is a TI Programmable 58, see Appendix A to determine if you need to repartition your calculator after powering up to download the program you want to examine. Programs which are no longer than 240 steps may be downloaded with the calculator set at the initial partitioning. For longer programs use the key sequence shown on the right to repartition your calculator according to the length of the program you want to download.

| Steps     | Key Sequence         |
|-----------|----------------------|
| 3 teps    | (Needed for 58 Only) |
| 241 - 320 | 2 [2nd] [Op] 17      |
| 321 - 400 | 1 [2nd] [Op] 17      |
| 401 - 480 | 0 [2nd] [Op] 17      |
|           |                      |

#### **ADDITIONAL NOTES**

While every effort has been made to ensure the accuracy of these programs, in the final analysis, you must assess program results in light of all available information. Program output that clearly doesn't square with other data should be treated with caution. Your programmable calculator, as a powerful computational instrument, can relieve you of much drudgery. But it can never relieve you of the obligation to exercise your own judgment.

#### NOTATION

The following list is provided to acquaint you with the notation used in this manual.

- $\mu$  mean of total population or theoretical distribution
- $\overline{x}$  sample mean
- $\sigma$  standard deviation of total population or theoretical distribution
- s sample standard deviation
- $\sigma^2$  variance of total population or theoretical distribution

<sup>\*</sup>Unless the library is a protected, special-purpose library.

s<sup>2</sup> - sample variance

s - standard error of estimate based on sample

 $\nu$  - degrees of freedom

r - correlation coefficient

r<sup>2</sup> - coefficient of determination

F(x) - continuous distribution function

F(k) - discrete distribution function

f(x) - continuous density function

f(k) - discrete density function

Pr - probability statement

n - sample size

N - population size

#### REFERENCES FOR FURTHER STUDY

Data evaluation and mathematical statistics:

Brunk, H.D., An Introduction to Mathematical Statistics, Blaisdell Publishing Company, Waltham, Mass., 1965

Chou, Ya-lun, *Statistical Analysis*, Holt, Rinehart, and Winston, New York, 1975

DeGroot, Moris H., *Probability and Statistics*, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1975

Hoel, Paul G., Introduction to Mathematical Statistics, John Wiley and Sons, Inc., New York, 1962

Hoel, Paul G., Port, Sidney C., and Stone, Charles J., *Introduction to Probability Theory* and *Introduction to Statistical Theory*, Houghton Mifflin Company, Boston, 1971

Sample sizing, random sampling, stratified sampling:

Cochran, William G., Sampling Techniques, John Wiley and Sons, Inc., New York, 1963

Synthetic sampling and Monte Carlo simulation:

Naylor, Thomas J., et. al., *Computer Simulation Techniques*, John Wiley and Sons, Inc., New York, 1966

# STATISTICS LIBRARY DIAGNOSTIC PROGRAM

This program performs the following functions separately.

- 1. Diagnostic/Library Module Check
- 2. Linear Regression Initialization

### DIAGNOSTIC/LIBRARY MODULE CHECK

This routine checks the operation of your calculator and most of its functions, including conversion and statistics functions that are preprogrammed in the calculator, trigonometric functions, data register operations, program transfers, and comparisons. It also uses other Statistics Library programs to verify that the module is connected and operating correctly. If this diagnostic routine runs successfully, in approximately 15 seconds the numeral 2. is displayed. If the calculator is attached to a PC-100A print cradle, the following is printed:

STATISTICS 2.

If there is a malfunction in the calculator or the *Solid State Software* module, a flashing number is displayed. Refer to Appendix A of the Owner's Manual for an explanation of the various procedures to be followed when you have difficulties.

When you simply want to know which of your *Solid State Software* modules is in the calculator without physically looking at it, you can call the Library Module check portion of the routine directly. If the Statistics Library Module is in the calculator, the number 2. is displayed. This number is unique to the Statistics Library (other optional libraries use other identifying digits).

### LINEAR REGRESSION INITIALIZATION

This routine initializes the calculator for linear regression by clearing registers  $R_{01}$  through  $R_{06}$  and the T-register. It should be used whenever linear regression or other built-in statistics functions are to be started. You can also use the routine at any time to clear these registers selectively without disturbing any other registers.



### **USER INSTRUCTIONS**

| STEP | PROCEDURE                    | ENTER | PRESS             | DISPLAY |
|------|------------------------------|-------|-------------------|---------|
|      | Diagnostic/Module Check      |       |                   |         |
| 1a   | Select Program               |       | [2nd] [Pgm] 01    |         |
| 1b   | Run Diagnostic<br>or         |       | [SBR] [ = ]       | 2.1     |
| 1c   | Library Module Check         |       | [SBR] [2nd] [R/S] | 2.2     |
|      | Initialize Linear Regression |       |                   |         |
| 2a   | Select Program               |       | [2nd] [Pgm] 01    |         |
| 2b   | Initialize Linear Regression |       | [SBR] [CLR]       | 0.      |

#### NOTES:

- 1. This output is obtained if the calculator is operating properly
- 2. The number 2 indicates the Statistics Library.
- 3. The Statistics Library programs are numbered 1 through 22. Program number 0 is the calculator's program memory.

### **Register Contents**

|                                                                | 25 |
|----------------------------------------------------------------|----|
| $R_{01}$ LR Init $R_{06}$ LR Init $R_{11}$ $R_{16}$ $R_{21}$ F | 26 |
| $R_{02}$ LR Init $R_{07}$ $R_{12}$ $R_{17}$ $R_{22}$ F         | 27 |
| $R_{03}$ LR Init $R_{08}$ $R_{13}$ $R_{18}$ $R_{23}$ F         | 28 |
| D IDI: D III                                                   | 29 |

Example 1: Diagnostic **OPTIONAL** DISPLAY **PRINTOUT PRESS** [2nd] [Pgm] 01 [SBR] [=] 2. STATISTICS Example 2: Library Module Check **OPTIONAL** DISPLAY **PRESS PRINTOUT** [2nd] [Pgm] 01 **STATISTICS** [SBR] [2nd] [R/S]

Example 3:

Initialize Linear Regression

PRESS DISPLAY

[2nd] [Pgm] 01
[SBR] [CLR] 0.

# II. SAMPLE DESIGN

For reasons of economy most statistical projects begin with the design of a sample from which the characteristics of a population are to be estimated. Selecting a good sample is probably the most important step in the designing of your experiment. Some constraints, such as cost and time limitations, may be beyond your control. However, factors you can control such as how many members of the population should be sampled and which members you should include in your sample, must be carefully determined. Your calculator may be used as a valuable aid in making these decisions.

#### SAMPLE SIZING

If a sample is random, the precision of population parameter estimates are related to sample size by the equations shown in Table 2.1. You may use these equations to determine a sample size that should give you the precision you need in your estimation.

When using any of the methods outlined in Table 2.1 you must first make an initial estimate of the population parameter indicated in the center column. This estimate may be based on theory, judgment, prior data, or pilot samples. The next step is to use your estimate of this parameter in the formula on the right to find the standard error of the estimate, \$\frac{1}{2}\$. To determine how large your sample needs to be, simply evaluate \$\frac{1}{2}\$ for increasing sample sizes until this value is reduced to a satisfactory level. Then once you have found an appropriate sample size, you may take a sample and use the formula on the left to estimate the indicated parameter. (Note that n represents the sample size while N is the population size.)

Table 2.1

| Purpose of Sample                                                                                    | Method of Estimating Sample Size                                                                                                                                               | Formula for Estimating<br>Sample Size                                                                                        |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Estimate's a population's mean as $\widehat{\mu}_y = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$ | Estimate the population's standard deviation by any method you desire. Then use this estimate and the equation on the righ to find a sufficient sample size as describe above. | t '                                                                                                                          |
| Estimate a population's total value Y as                                                             | Same as the above.                                                                                                                                                             | $\hat{s} = \sqrt{\frac{N^2 \hat{\sigma}^2}{n} \left(1 - \frac{n}{N}\right)}$                                                 |
| $\hat{Y} = N\overline{y}$ .                                                                          |                                                                                                                                                                                | eris noiselugo entre M.  o mesa and standard deviation is  o mesa and standard deviation is                                  |
| Estimate the ratio of two population values X and Y as                                               | Take a small pilot sample and make an initial estimate of R as $\widehat{R} = \overline{x}/\overline{y}$ . Then use this value and the formula on the                          | $\widehat{s} = \sqrt{\frac{1 - n/N}{n \overline{x}^2}} \left( \frac{\sum_{i=1}^{n} (y_i - \widehat{R}x_i)^2}{n - 1} \right)$ |
| $\hat{R} = \overline{x}/\overline{y}$ .                                                              | right to determine an appropriate sample size as described above.                                                                                                              |                                                                                                                              |

(continued on next page)

#### Purpose of Sample

Estimate the proportion of a population possessing an attribute A as

$$\hat{P} = \overline{y}$$
.

Estimate  $\mu_{y}$  indirectly through linear regression

$$\widehat{\mu}_{V(Ir)} = \overline{y} + b(\mu_{X} - \overline{x}) + \overline{e}$$

Where  $\mu_x$  is known and b is the estimate of the change in v when x is increased by 1. (A population's total value Y may be estimated as  $\hat{Y} = N \hat{\mu}_{v(lr)}$ ).

#### Method of Estimating Sample Size

Assuming  $y_i = 1$  if it possesses an attribute A and  $y_i = 0$  if it does not, take a small pilot sample and let p equal y. Then use p in the equation on the right to determine how large of a sample is needed as described above.

Take a small pilot sample and estimate  $\sigma_e$  as

$$\hat{\sigma}_{e} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \frac{[(y_{i} - \overline{y}) - b(x_{i} - \overline{x})]^{2}}{s}} \cdot \hat{s} = \sqrt{\frac{\hat{\sigma}_{e}^{2}}{n} (1 + \frac{1}{n-3})}$$

Then use this result and the equation on the right to find a sufficient sample size as described above.

#### Formula for Estimating Sample Size

$$\hat{s} = \sqrt{\left(\frac{N-n}{(n-1)N}\right) p(1-p)}$$

If the x's are normally distributed:

$$\hat{s} = \sqrt{\frac{\hat{\sigma}_e^2}{n} \left(1 + \frac{1}{n-3}\right)}$$

$$\hat{s} = \sqrt{\frac{\hat{\sigma}_e^2}{n} \left(1 + \frac{1}{n} + \frac{3 + Sk}{n^2}\right)}$$

where Sk is the measure of the relative skewness of the distribution of the x's.

#### Example:

As an educational administrator, you want to know how many students would attend a new school supporting a district of 500 households. You would like to survey a minimum number of homes to determine the average number of students eligible per home and multiply by 500 to obtain your estimate. Your estimate should be accurate within 30% at a 95% confidence level (within about 2 standard deviations). That is, the standard error of your estimate should be less than  $.15 \times 2 \times 500 = 150$ .

From Table 2.1 we see that

$$\hat{s} = \sqrt{(N^2 \hat{\sigma}^2/n)(1 - n/N)}$$

where:

 $\hat{s}$  = the standard error of the estimate ( $\hat{s}$  < 150 is desired),

N =the population size (500 households),

n = the sample size (to be determined),

 $\sigma$  = the population standard deviation (estimated below).

From prior experience you know that more than 6 students in a family is very rare and that most families have only 2. Since population extremes are usually no more than 2.5 standard deviations from the mean you may estimate the population standard deviation as

$$\hat{\sigma} = (x_{\text{max}} - \overline{x})/2.5 = (6 - 2)/2.5 = 1.6.$$

Now program your calculator with the first equation and determine  $\hat{s}$  for various sample sizes. You may use the sequence shown below.

|       | [2nd] [CP]  | [1]                          | (020) [RCL]        |
|-------|-------------|------------------------------|--------------------|
|       | [LRN]       | (010) [·]                    | [1]                |
| (000) | [2nd] [Lbl] | [6]                          | $[\dot{\cdot}]$    |
|       | [A]         | $[x^2]$                      | [5]                |
|       | [STO]       | micro or in cal [ ÷ ] h do y | [0]                |
|       | [0][1]      | [RCL]                        | (025) [ <b>0</b> ] |
|       | [5]         | (015) [ <b>1</b> ]           | [)]                |
| (005) | [0]         | [ × ]                        | [=]                |
|       | [0]         | pay an io age [(] mus doo.   | $[\sqrt{x}]$       |
|       | $[x^2]$     | [1]                          | [R/S]              |
|       | [ X ]       | [-]                          | (030) [LRN]        |
|       | ENTER       | PRESS                        | DISPLAY            |
|       | 15          | diw eight [A] mae elique     | 203.437132         |
|       | 20          | animid briga jess sid goo.   | 175.2712184        |
|       | 25          | [A]                          | 155.9487095        |
|       | 30          | [ A ]                        | 141.6097925        |

A sample size of 25 yields an adequate value of s.

#### SAMPLE SELECTION

You now need to determine which members of the population should be included in your sample. Your sample should be randomly selected to avoid accidental bias. The *Random Number Generator Program* at the end of this section is designed to help you here. Simply generate 500 random numbers between 0 and 1 using this program and assign one number to each household in the district. Now, since you want to sample 5% of the population (25 households out of 500), include only those households to which you assigned a number that is less than or equal to 0.05.

#### SAMPLE EVALUATION

Suppose that the sample selected above yielded the following sample of students per family:

Based upon this data you may now reestimate the population mean and standard deviation as 1.52 for the mean and about 1.23 for the standard deviation. You may use either the statistical functions built into your calculator or the *Means and Moments Program* in Section IV, to perform these calculations. (The answers given above were found using the built-in features [2nd]  $[\overline{x}]$  and [INV] [2nd]  $[\overline{x}]$ .)

As the resulting estimate of the standard deviation is within the limits we established earlier you may now estimate the number of students in the district as  $1.52 \times 500 = 760$ .

#### SAMPLE DESIGN

#### STRATIFIED SAMPLING (Improving Sample Sensitivity)

Recall from the sample sizing formula that if a population has a large intrinsic variance, it takes many sample points to estimate its parameters. In many cases, you may be able to separate a population into subgroups which have differing variability. You should then collect more data from the groups with high variability where you need it the most. This technique is known as stratified sampling. You may use it to obtain a more exact estimate of the population mean than you can find by using a simple random sample. When using this technique, you should make the number of data points collected in each subgroup or strata proportional to the population of the subgroup and the size of its variance.

#### Example:

Suppose that in the previous example you decided that you didn't have time to survey 25 households. However, using a simple random sample with fewer points wouldn't give you the needed accuracy. But, based upon the wealth and birthrate patterns in the school district you were able to break the population into two strata as shown in Table 2.2.

Table 2.2

| stymmed as<br>Legi   | Population (N) | Std Dev (σ) | N×σ | Per Cent of Data<br>Points Allocated |  |
|----------------------|----------------|-------------|-----|--------------------------------------|--|
| Low Income Families  | 250            | 1.5         | 375 | 75%                                  |  |
| High Income Families | 250            | 0.5         | 125 | 25%                                  |  |
| Total Population     | 500            | 1.0         | 500 | 100%                                 |  |

The next step is to use the following equation (see Table 2.1) to determine the size of your sample. Remember, you want the standard error of your estimate to be less than 150.

$$\hat{s}^2 = (N^2 \sigma^2 / n)(1 - n/N).$$

Table 2.3

| Sample | Sample Sizes | Low Income | High Income<br>Variance $\hat{s}_H^2$ | District Variance \$\hat{s}^2\$ | Precision |
|--------|--------------|------------|---------------------------------------|---------------------------------|-----------|
| I      | 19 + 6 = 25  | 6,839      | 2,542                                 | 9,381                           | 97        |
| II     | 12 + 4 = 16  | 11,156     | 3,844                                 | 15,000                          | 122       |
| III    | 9 + 3 = 12   | 15,063     | 5,146                                 | 20,209                          | 142       |
| IV     | 7 + 2 = 9    | 19,527     | 7,750                                 | 27,277                          | 165       |

Sample III presents the best combination of precision and economy of the experiment. Note that since the strata are independent the district variance is simply the sum of the strata variances.

You may now use the *Random Number Generator Program* to choose the households for your survey and estimate the number of students in the district as in the last example except that only 9 of the 250 low income and 3 of the 250 high income families need be included.

#### MONTE CARLO SIMULATION (Synthetic Sampling)

There are experiments in which you cannot obtain a particular set of data by directly sampling the population. However, if partial data is available you may be able to predict or synthesize sample points.

#### Example:

The school board is considering going to a new policy of charging for textbooks on a per capita cost recovery basis. However, there is some concern that the cost may be too high for large families. Due to this concern, you have been asked to determine what proportion of families with children in school will have to spend over \$250 for books.

This task may appear difficult at first because the students have no idea of what their books will cost. As a result, you cannot obtain data for your estimate by simply sampling the population. But what do you know about the situation? Based on your experience as a school administrator you know how much you've had to spend on books for your students in the past. Using this knowledge you may estimate the distribution of your population. Let's assume that you estimated costs per student to be normally distributed with a mean of \$100 and a standard deviation of \$35.

Now, with this information at hand, you may use Monte Carlo simulation to predict your data points. Assign each student in your original sample (See *Sample Evaluation*.) a charge by using the *Random Number Generator Program* and the parameters estimated above to generate normally distributed charges. Suppose that the following data resulted from this process.

#### SAMPLE DESIGN

Table 2.4

|        |    | Individual Payment per Student |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |             |         |
|--------|----|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|-------------|---------|
|        | \$ | 1                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3              | 4                 | 5           | Payment |
| 36,346 | 1  | 62                             | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59             |                   | and the     | 225     |
|        | 2  | 108                            | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 129            | 28                |             | 397     |
|        | 3  | 94                             | ARO HEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.5 THE        | T. Willet         |             | 94      |
|        | 4  | 62                             | 9 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e rendem       | S)/181/481-5      | men prim    | 62      |
|        | 5  | 112                            | 100 to 10 | Product of the | ESCAL MIN         | Goldenie    | 112     |
|        | 6  | 63                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE MAN        | BETCH.            | for States  | 63      |
|        | 7  | 76                             | n who sk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oleva 31 e     |                   | di Tausan   | 76      |
|        | 8  | 134                            | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -              | -                 | -           | 244     |
|        | 9  | 65                             | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Part Town      |                   | Sand Flore  | 245     |
|        | 10 | 85                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arisi con      | Tourist year      | e to Samuel | 85      |
| Family | 11 | 49                             | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128            | 127               | 53          | 447     |
|        | 12 | 79                             | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | were a gr      | print-en          | sibitedo s  | 181     |
|        | 13 | 58                             | MADDON 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 008 PF 919     | O TENTAN          | H alesti v  | 58      |
|        | 14 | 98                             | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63             | nceng, you        | to rivis or | 278     |
|        | 15 | 97                             | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAR OF SA      | rt High los       | ea in sen   | 175     |
|        | 16 | 74                             | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -              | 1                 |             | 163     |
|        | 17 | 79                             | MISSAUR 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D 181111752    | 12117 16 14       | JOHN THE    | 79      |
|        | 18 | 69                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second of  | ELECTRICAL STATES | - 100%      | 69      |
|        | 19 | 69                             | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h had and      | ou dance          | -           | 177     |
|        | 20 | 80                             | tuel in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in stemie      | e vete us         | u scholum   | 80      |
|        | 21 | 138                            | interior which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25501.00       | e trackinia       |             | 138     |

From Table 2.4 you can see that 14% (3 of 21) of the families will have to pay more than \$250 for books. Note that families without children are not considered in this example.

#### RANDOM NUMBER GENERATOR PROGRAM

This program generates sequences of uniformly or normally distributed random numbers. To use this program, simply enter a seed number (0 to 199017), select the distribution, and enter its parameters.

For uniformly distributed random numbers, enter the upper and lower limits of the range you desire. Uniformly distributed random numbers are then generated using the following formula.

$$x_{i+1} = [(24298x_i + 99991) \mod 199017] (x_{max} - x_{min})/199017 + x_{min}]$$

where  $x_0$  is your seed.

If you choose to generate normally distributed numbers, enter the mean and standard deviation that you want the generated numbers to have. Each random number is then generated by first generating a pair of uniform random numbers  $(u_1, u_2)$ . The normally distributed random number is then found by

$$x = \sqrt{-2 \ln u_1} \cos(2\pi u_2) \sigma + \mu.$$

As an added feature, this program uses the [2nd]  $[\Sigma +]$  instruction to compile statistical data and allow you to compute the actual mean and standard deviation of the generated numbers. Also, subroutine [D.MS] may be used to generate uniformly distributed random numbers on the interval (0, 1) at any time. However, the statistical data feature does not apply to this routine.

| €®                  | Solid S             | tate Soft        | ware     | TI ©1977   |
|---------------------|---------------------|------------------|----------|------------|
| RANDOM              | NUMBER (            | ENERATOR         |          | ST-02      |
|                     |                     |                  |          | Initialize |
| x <sub>min</sub> /μ | x <sub>max</sub> /σ | <b>→</b> Uniform | → Normal | Seed       |

# USER INSTRUCTIONS

| STEP | PROCEDURE                                                         | ENTER               | PRESS              | DISPLAY                       |
|------|-------------------------------------------------------------------|---------------------|--------------------|-------------------------------|
| 1    | Select Program                                                    |                     | [2nd] [Pgm] 02     | No Change                     |
| 2    | Initialize                                                        | - Inchesioali       | [2nd] [ E' ]       | 0.                            |
| 3    | Enter random number seed $(0 \le \text{Seed} \le 199017)$         | Seed <sup>†</sup>   | [E]                | Seed                          |
|      | For Uniform Distribution                                          | a Triyaata          |                    |                               |
| 4    | Enter lower limit                                                 | x <sub>min</sub> †  | [A]                | X <sub>min</sub>              |
| 5    | Enter upper limit                                                 | $x_{max}^{\dagger}$ | [B]                | × <sub>max</sub>              |
| 6    | Generate random number <sup>1</sup><br>(Repeat Step 6 as needed)  |                     | [C]                | Random<br>Number <sup>†</sup> |
|      | For Normal Distribution                                           |                     |                    |                               |
| 7    | Enter desired mean                                                | $\mu^{\dagger}$     | [A]                | μ                             |
| 8    | Enter desired standard deviation                                  | $\sigma^{\dagger}$  | [B]                | σ                             |
| 9    | Generate random number <sup>1</sup><br>(Repeat Step 9 as needed)  |                     | [D]                | Random<br>Number <sup>†</sup> |
|      | For Either Distribution                                           | Lara                | 2 823919           |                               |
| 10   | Compute actual mean of generated numbers                          | E Zag               | [2nd] [ x ]        | X                             |
| 11   | Compute actual standard deviation of generated numbers            |                     | [INV] [2nd] [x]    | S S                           |
| 12   | Display number of random numbers generated                        |                     | [RCL] 03           | n                             |
|      | For Range of (0, 1)                                               |                     |                    |                               |
| 13   | Generate random number <sup>1</sup><br>(Repeat Step 13 as needed) |                     | [SBR] [2nd] [D.MS] | Random<br>Number              |

- **NOTES:** 1. Only the first five digits may be considered random.
  - † Printed when PC-100A is used.

### **Register Contents**

| $R_{00}$ |              | $R_{05}$ | $\Sigma X^2$ | $R_{10}$        | Used                 | R <sub>15</sub> | R <sub>20</sub> | $R_{25}$        |
|----------|--------------|----------|--------------|-----------------|----------------------|-----------------|-----------------|-----------------|
| $R_{01}$ | $\Sigma$ y   | $R_{06}$ | Σχγ          | R <sub>11</sub> | Used                 | R <sub>16</sub> | R <sub>21</sub> | $R_{26}^{23}$   |
| $R_{02}$ | $\Sigma y^2$ | $R_{07}$ |              | $R_{12}$        | $x_{min}$ , $\mu$    | R <sub>17</sub> | R <sub>22</sub> | R <sub>27</sub> |
| $R_{03}$ | n            | $R_{08}$ |              |                 | $x_{max}$ , $\sigma$ | $R_{18}$        | R <sub>23</sub> | R <sub>28</sub> |
| $R_{04}$ | $\Sigma x$   | $R_{09}$ | Seed         | $R_{14}$        |                      | R <sub>19</sub> | R <sub>24</sub> | R <sub>29</sub> |

### SAMPLE DESIGN

#### Example:

Compute five uniformly distributed random numbers on the interval (1, 10). Use .32 as your seed.

| ENTER            | PRESS          | DISPLAY              | COMMENTS                        |
|------------------|----------------|----------------------|---------------------------------|
|                  | [2nd] [Pgm] 02 |                      | Select Random<br>Number Program |
|                  | [2nd] [ E' ]   | 0.                   | Initialize                      |
| .32†             | [E]            | 0.32                 | Seed                            |
| 1.†              | [ A ]          | 1.                   | × <sub>min</sub>                |
| 10. <sup>†</sup> | [B]            | 10.                  | × <sub>max</sub>                |
|                  | [C]            | 5.87341 <sup>†</sup> | Random No.                      |
|                  | [ C ]          | 7.34635†             | Random No.                      |
|                  | [ C ]          | 3.5911†              | Random No.                      |
|                  | [ C ]          | 1.63531 <sup>†</sup> | Random No.                      |
|                  | [C]            | 9.05329†             | Random No.                      |

#### Example:

Compute five normally distributed random numbers with desired mean 5.84 and standard deviation 2.12. Also find the actual mean and standard deviation of the generated numbers. Use 1 as your seed.

| ENTER | PRESS                  | DISPLAY                  | COMMENTS       |
|-------|------------------------|--------------------------|----------------|
|       | [2nd] [Pgm] 02         |                          | Select Random  |
|       |                        |                          | Number Program |
|       | [2nd] [ E' ]           | 0.                       | Initialize     |
| 1†    | [E] DO [109]           | 1. induces to            | Seed           |
| 5.84† | [ A ]                  | 5.84                     | $\mu$          |
| 2.12† | [B]                    | 2.12                     | σ              |
|       | [D]                    | 7.8171433 <sup>†</sup>   | Random No.     |
|       | [D]                    | 7.290557451†             | Random No.     |
|       | [D]                    | 3.075542923†             | Random No.     |
|       | [D]                    | 5.109539381 <sup>†</sup> | Random No.     |
|       | [D]                    | 3.323206704†             | Random No.     |
|       | [2nd] [ <del>x</del> ] | 5.323197952              | <del>X</del>   |
|       | [INV] [2nd] [x]        | 2.190196047              | s s            |
|       | [RCL] 03               | 5.                       | n              |

<sup>†</sup> Printed when PC-100A is connected.

# III. DATA ENTRY

The programs described in this section are used as general input and storage routines to allow various data evaluation, model fitting, and testing procedures to be applied without the labor of data reentry. Besides collecting the data in an organized fashion, these routines generate commonly used intermediate results. Separate routines are used to assimilate data for various data storage formats as illustrated in Table 3.1. See Table 3.2 for the limits of the raw data base.

Table 3.1a - Intermediate Data

|                      | Pgm 03                  |                         | Pgm 04   Pgm 05      |                                       | Pgn                        | Pgm 07                                 |                         |
|----------------------|-------------------------|-------------------------|----------------------|---------------------------------------|----------------------------|----------------------------------------|-------------------------|
| Register             | Univaria<br>Ungrouped   | te Data<br>Grouped      | Bivariate<br>Data    | Trivariate<br>Data                    | One-Way<br>AOV Data        | Two-Way<br>AOV Data                    | Histogram<br>Data       |
| 00                   | Used                    | Used                    | Used                 | Used                                  | Used                       | Used                                   | Cell No.                |
| 01                   | Property and the        | The user on             | $\Sigma$ y           | $\Sigma$ y                            | $\Sigma\Sigma x$           | Rows                                   | X <sub>min</sub>        |
| 02                   | 1.645/11                |                         | $\Sigma y^2$         | $\Sigma y^2$                          | $\Sigma\Sigma x^2$         | Columns                                | Width                   |
| 03                   | n                       | $\Sigma$ f              | n <sub>y</sub>       | n                                     | n                          | n                                      | n                       |
| 04                   | $\Sigma x$              | $\Sigma$ fx             | $\Sigma x$           | $\Sigma x$                            | $\Sigma x$                 | Σχ                                     | $\Sigma x$              |
| 05                   | $\Sigma x^2$            | $\Sigma f x^2$          | $\Sigma x^2$         | $\Sigma x^2$                          | $\Sigma x^2$               | $\Sigma x^2$                           | $\Sigma x^2$            |
| 06                   | Used                    | Used                    | $\Sigma$ xy          | $\Sigma$ xy                           | Mean                       | Mean                                   | Cell 1 Cnt              |
| 07                   | $\Sigma x^3$            | $\Sigma f x^3$          | $\Sigma x^3$         | $\Sigma z$                            | Variance                   | Variance                               | Cell 2 Cnt              |
| 08                   | $\Sigma x^4$            | $\Sigma f x^4$          | $\Sigma x^4$         | Last z                                | Used                       | Used                                   | akey, made              |
| 09                   | Last x                  | Last x                  | Last x               | Last x                                | $\Sigma$ n                 | They have true?                        | las sned) to b          |
| 10                   | 1                       | Last f                  | Last y               | Last y                                | $\Sigma(\Sigma x)^2/n$     |                                        | estudi. C16             |
| 11                   | πx                      | $\pi x^f$               | $\Sigma x^2 y$       | $\Sigma$ xz                           | Used                       | F-1707 157 03                          |                         |
| 12                   | Low x                   | Low x                   | $\Sigma(x - y)$      | $\Sigma$ yz                           | SAIN MARKET                | $\Sigma x_{i1}$                        | THUY SEC 9              |
| 13                   | High x                  | High x                  | $\Sigma(x-y)^2$      | $\Sigma z^2$                          | MED OTHERS                 | $\Sigma x_{i2}$                        | OHUSED -                |
| 14                   | Mid x                   | Mid x                   | $\Sigma(x-y)^2/y$    | Used                                  | Barryj.                    | C (L 101 011                           |                         |
| 15                   | $\sum x_i x_{i+1}$      | $\sum x_i x_{i+1}$      | n <sub>x</sub>       | ny barone i                           | eso vistata                | and british we                         | Thoy H +                |
| 16                   | $\Sigma(x_{i+1} - x_i)$ | $\Sigma(x_{i+1} - x_i)$ | $\Sigma y^3$         | ey. The ad                            | a bachtab lie              | (See Note)                             | ileo ezed               |
| 17                   | $\Sigma 1/x$            | Σf/x                    | $\Sigma y^4$         |                                       | Rayne Fitz                 | DM1 (2)                                | Cell 12 Cnt             |
| 18                   | Used                    | Used                    | maron 357 del        |                                       |                            | Den Wilde                              | Last x                  |
| 19                   |                         | ed ord sea to           | thm Boy Stel         | To noise                              | loo a hetria               | $\Sigma x_{iC}$                        | Cells                   |
| 20                   |                         | FIFT SALES              | V LOG PAGE           | Park Dali                             | -9046                      | $\Sigma x_{1j}$                        | rose fil teather no     |
| 21                   |                         | ad amon un              |                      |                                       | arment has                 | $\Sigma x_{2j}$                        | francisco con como como |
| 22                   |                         | E III.                  |                      |                                       |                            | and the same                           | 10 mm - 100 mm          |
| 23                   |                         | GREATH IN STATE         | STOR MENUNCOS        | LATE ALTER                            | THE PART OF RE             | 4 57 Ch 45 54                          | IC DOX ME DIT           |
| 24                   |                         |                         | DIST BROTH !         | BARRIN LADY                           | TRUE SECOND                | e man ma                               | 0340 P-10255 4          |
| 25                   |                         | E ATOMOSON              | I Demonsor.          | RETAIN ASTER                          | Man wodel                  | not b spin                             | S 9 19A500 20           |
|                      | Used                    | Used                    | Used                 | Used                                  | Used                       | Lu mais mali                           | Used                    |
|                      | 2304                    | 2 300                   | 2000                 |                                       | 2004                       | Σxp;                                   | 2300                    |
|                      | Used                    | Used                    | v Count              |                                       | i Count                    |                                        | Used                    |
|                      |                         |                         |                      |                                       |                            |                                        | x Count                 |
| 26<br>27<br>28<br>29 | Used<br>Used<br>x Count | Used<br>Used<br>x Count | Used y Count x Count | Used<br>z Count<br>y Count<br>x Count | Used<br>i Count<br>j Count | Σx <sub>Rj</sub><br>i Count<br>j Count | Use                     |

**NOTE:** For *Two-Way AOV Data* the actual sums stored in registers  $R_{12} - R_{27}$  will vary depending upon the number of rows and columns that your data requires. If R + C is less than 16 then registers  $R_{(12+R+C)} - R_{27}$  are not used.

### **DATA ENTRY**

Table 3.1b - Raw Data

|          | Pgm 03                |                                 |                | Pgm 05             | Pgm 06                   | Pgm 07            |
|----------|-----------------------|---------------------------------|----------------|--------------------|--------------------------|-------------------|
| Register | Univaria<br>Ungrouped | Grouped                         | Bivariate Data | Trivariate<br>Data | One-Way Two-Way AOV Data | Histogram<br>Data |
| 30       | Pointer               | ar seems , ma<br>Selfonizas est | host ma m      | itien etm          | Pointer                  | Pointer           |
| 31       | X <sub>1</sub>        | Pointer                         | Pointer        | 27 F F 61          | ×1                       | x <sub>1</sub>    |
| 32       | X <sub>2</sub>        | × <sub>1</sub>                  | × <sub>1</sub> | Pointer            | X <sub>2</sub>           | X <sub>2</sub>    |
| 33       | <b>x</b> <sub>3</sub> | f <sub>1</sub>                  | У1             | x <sub>1</sub>     | x <sub>3</sub>           | X <sub>3</sub>    |
| 34       | X4                    | X <sub>2</sub>                  | X <sub>2</sub> | У1                 | X <sub>4</sub>           | X4                |
| 35       | x <sub>5</sub>        | f <sub>2</sub>                  | Y <sub>2</sub> | z <sub>1</sub>     | X <sub>5</sub>           | ×5                |
| 36       | x <sub>6</sub>        | x <sub>3</sub>                  | X <sub>3</sub> | X <sub>2</sub>     | X <sub>6</sub>           | X <sub>6</sub>    |
| 37       | ×7                    | f <sub>3</sub>                  | У3             | Y2                 | × <sub>7</sub>           | ×7                |
| • 8151   | orași vol             | Care le de l' ya                | Ventor train   | wist - state       | National Diabotal Colem  | ed Daniel 🕶 🕆 .   |
|          | ed . med              | VOAE: es                        | TAGY N         | 3 . 0              | tege of the test of the  |                   |
|          |                       |                                 |                |                    |                          | (0.23)            |

As you can see, the data base is divided into two sections. Registers  $R_{00}-R_{29}$  make up the intermediate data base. This is where information for use in other programs is stored. The real advantage of this system is the fact that you may also write your own programs to use this intermediate data in any way you wish.

The raw data base is not used by any other program in this library except the *Rank-Sum Tests Program*. However, you may use it to great advantage. One feature of the data entry programs is that there are two ways to accumulate or compile intermediate results in the intermediate data base.

- As you enter raw data from the keyboard it is stored in the raw data base and compiled in the intermediate data base at the same time.
- If your raw data has already been stored you can compile the intermediate data base using a single user-defined key. The advantages of this feature are described below.

Naturally, the first time you enter a collection of data you must use the keyboard method. But what if you would like to use this same data again later? With the TI Programmable 59 you can record your raw data on magnetic cards. Then, when you come back to your calculator, all you have to do is read the data cards and compile the intermediate data base using the second method. Now, suppose that you make a wrong data entry. How do you correct it? The answer is simple if you follow these easy steps. (Detailed procedures are found in the user instructions.)

- 1. Delete the bad data from the raw data base.
- 2. Reinitialize the intermediate data base.
- 3. Compile a new intermediate data base from the raw data base.
- 4. Enter the correct data and continue entering new data.

Each program uses an initialization routine to set a raw data pointer and prepare the data base for input. These initialization routines also partition the calculators storage area to:

- 480 program locations and 60 data registers in the TI Programmable 59.
- Zero program locations and 60 data registers in the TI Programmable 58.

This provides up to 29 registers for storing raw data. With the TI Programmable 59 you may repartition the storage area to allow as many as 69 registers for raw data storage. Naturally, if you need more program memory space, you may repartition the calculator to allow as few as 40 data registers for the entire data base. To repartition your calculator simply press n [2nd] [Op] 17. This sequence gives you n × 10 data registers. See your owner's manual for a complete explanation of partitioning.

If you fill the raw data base in either calculator the display flashes when you attempt to enter additional data. If you wish to record this data on magnetic cards you may do so at this time. Then, to enter additional data, reposition the raw data pointer and write over the raw data base with new data. The user instructions detail how this is done. Note, however; that the old raw data is lost unless it is first recorded on magnetic cards.

The following list illustrates the data entry routines required by the programs in this library. Programs that are not listed have their own data entry routines or call one of the data entry routines themselves.

| Program                            | Data Entry Routine      |
|------------------------------------|-------------------------|
| Means and Moments (ST-08)          | Univariate Data (ST-03) |
| Histogram Contruction (ST-09)      | Histogram Data (ST-07)  |
| Theoretical Histogram (ST-10)      | Histogram Data (ST-07)  |
| t-Statistic Evaluation (ST-13)     | Bivariate Data (ST-04)  |
| One-Way AOV (ST-15)                | AOV Data (ST-06)        |
| Two-Way AOV (ST-16)                | AOV Data (ST-06)        |
| Rank Sum Tests (ST-17)             | Bivariate Data (ST-04)  |
| Multiple Linear Regression (ST-18) | Trivariate Data (ST-05) |

See the discussions of the programs on the left for data entry examples.

#### **DATA ENTRY NOTES**

The following notes apply to all Data Entry programs.

- 1. Initialization affects only the intermediate data base and the raw data pointer. The raw data base is not disturbed. However, you may want to clear these registers using the [CMs] key before initialization (check partitioning). Initialization also provides 60 data registers as described earlier.
- 2. The calculator ignores data entered after the raw data base is filled. This condition is indicated by a flashing display. You may determine how many pieces of data you can store in the raw data base using the following table. This table gives the upper limit of complete sets of data that may be stored for the indicated partitioning.

Table 3.2.

|                                                                                  | Partitioning (n)                                   |                                                    |                                    |                                                       |                                                       |                                                          |                                                          |  |
|----------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|
| Upper Limit of Data                                                              | 4                                                  | 5                                                  | 6                                  | 7                                                     | 8                                                     | 9                                                        | 10                                                       |  |
| Univariate Data (Ungrouped),<br>Analysis of Variance Data,<br>and Histogram Data | X9                                                 | X <sub>19</sub>                                    | X <sub>29</sub>                    | X <sub>3 9</sub>                                      | X <sub>4</sub> 9                                      | X <sub>5</sub> 9                                         | X <sub>6</sub> 9                                         |  |
| Univariate Data (Grouped)                                                        | x <sub>4</sub><br>f <sub>4</sub>                   | X9<br>f <sub>9</sub>                               | x <sub>14</sub><br>f <sub>14</sub> | X <sub>19</sub> f <sub>19</sub>                       | X <sub>24</sub> f <sub>24</sub>                       | X <sub>29</sub> f <sub>29</sub>                          | X <sub>34</sub>                                          |  |
| Bivariate Data                                                                   | X <sub>4</sub><br>Y <sub>4</sub>                   | X9<br>Y9                                           | X <sub>14</sub><br>Y <sub>14</sub> | X <sub>1</sub> 9<br>Y <sub>1</sub> 9                  | X <sub>24</sub><br>Y <sub>24</sub>                    | X <sub>2</sub> 9<br>Y <sub>2</sub> 9                     | X <sub>3</sub> 4<br>Y <sub>3</sub> 4                     |  |
| Trivariate Date                                                                  | X <sub>2</sub><br>Y <sub>2</sub><br>Z <sub>2</sub> | X <sub>5</sub><br>Y <sub>5</sub><br>Z <sub>5</sub> | X9<br>Y9<br>Z9                     | X <sub>12</sub><br>Y <sub>12</sub><br>Z <sub>12</sub> | X <sub>15</sub><br>Y <sub>15</sub><br>Z <sub>15</sub> | X <sub>1</sub> 9<br>Y <sub>1</sub> 9<br>Z <sub>1</sub> 9 | X <sub>2 2</sub><br>Y <sub>2 2</sub><br>Z <sub>2 2</sub> |  |

- 3. Follow these steps to record the data base on magnetic cards.
  - 1. Place the bank number of the registers you wish to record in the display.
  - 2. Press [2nd] [Write].
  - 3. Insert magnetic card in card slot.

The bank number of the intermediate data base  $(R_{00} - R_{29})$  is 4. The bank numbers of the raw data base are given below.

| Registers         | Bank Number    |
|-------------------|----------------|
| $R_{30} - R_{59}$ | 3              |
| $R_{60} - R_{89}$ | 2              |
| $R_{90} - R_{99}$ | COLUMN COMPANY |

Note that bank 1 includes program memory.

- 4. Resetting the raw data pointer to the beginning of the raw data base allows you to continue entering new raw data after filling the raw data base by writing over previously entered data. Although the intermediate data base is not affected, overwritten raw data is lost unless first stored on a magnetic card. Note that you may obtain a hardcopy printer listing of the data registers by entering the number of the first register you want listed and pressing [INV] [2nd] [List]. Then press [R/S] when you want to stop.
- 5. If you have already compiled your intermediate data base and recorded it on a magnetic card, simply read that card and go on to the data evaluation programs. You don't even have to call the Data Entry program to do this.
- 6. The length of execution time increases with the number of data points when the intermediate data base is compiled directly from the raw data base.
- 7. Data must be deleted in the same form it is entered in (e.g., pairs, triplets, etc.). Data that has been overwritten may not be deleted. If the calculator cannot find the data you have asked it to delete, nines are flashed in the display. This process may take several seconds to complete.

### UNIVARIATE DATA (UNGROUPED)

| ર્સ્ક્ષ  | Solid S  | State Soft   | ware 1     | 'I ©1977 |
|----------|----------|--------------|------------|----------|
| UNIVARIA | TE DATA  |              |            | ST-03    |
| Delete x | Delete f | Pointer (G)  | Compile G  | Init G   |
| x        | f        | Pointer (UG) | Compile UG | Init UG  |

### **USER INSTRUCTIONS**

| STEP | PROCEDURE                                                                                                     | ENTER           | PRESS                                      | DISPLAY     |
|------|---------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------|-------------|
| 1    | Select Program*                                                                                               |                 | [2nd] [Pgm] 03                             | No Change   |
| 2    | Initialize Data Base <sup>1</sup>                                                                             |                 | [E]                                        | 1.          |
| 3    | Repartition if needed                                                                                         | n               | [2nd] [Op] 17                              | Steps. Reg  |
|      | Enter data using either I or II                                                                               |                 |                                            | o topo. mog |
| I    | KEYBOARD ENTRY                                                                                                |                 | YATAB OR                                   |             |
| 4    | Enter data (repeat for each $x_i$ ) <sup>2</sup>                                                              | ×i <sup>†</sup> | [A]                                        | i           |
|      | If Raw Data Base is filled:                                                                                   | •               | LEES! A UNIC TORONT                        |             |
| 5a   | Record raw data on magnetic                                                                                   |                 |                                            |             |
| 5b   | card(s) if desired <sup>3</sup> Reset Raw Data Pointer <sup>4</sup> and go to Step 4 to enter additional data |                 | [c]                                        | 31.         |
| 6    | Record intermediate data on magnetic card if desired <sup>3</sup>                                             |                 | Core Points 1011 Step 1 to some 1011 detal |             |
| II   | MAGNETIC CARD ENTRY <sup>5</sup>                                                                              |                 |                                            | CBI 00000   |
| 7    | Read raw data card(s)                                                                                         |                 | [CLR]                                      | 0.          |
| 8    | D . D . D . A                                                                                                 | Card            |                                            | Bank No.    |
|      | Reset Raw Data Pointer <sup>4</sup>                                                                           |                 | [C]                                        | 31.         |
| 9    | Compile Intermediate Data Base (raw data is printed) <sup>6</sup>                                             |                 | [D]                                        | Last i      |
| 10   | For additional data cards — go to Step 7                                                                      |                 |                                            |             |
|      | To delete data <sup>7</sup> :                                                                                 |                 |                                            | SECRETAL D  |
| 11   | Enter unwanted data                                                                                           | ×i              | [2nd] [ A' ]                               | ×i          |
| 12   | Initialize Data Base <sup>1</sup>                                                                             |                 | [E]                                        | 1,00        |
| 13   | Repartition if needed                                                                                         | n               | [2nd] [Op] 17                              | Steps. Regs |
| 14   | Recompile raw data currently stored in Raw Data Base (raw data is printed) <sup>6</sup>                       |                 | [D]                                        | Last i      |
| 15   | Reenter raw data that has been overwritten using either Steps 4-6 or 7-10                                     |                 | 12mm of the state was a second week        |             |
| 16   | Continue entering new data                                                                                    |                 | 10010                                      |             |

NOTES: See Data Entry Notes.

\*For TI-58, repartition by pressing 6 [2nd] [Op] 17.

### **DATA ENTRY**

#### **UNIVARIATE DATA (GROUPED)**

| ₹\$      | Solid S  | State Soft   | ware T     | © 1977  |
|----------|----------|--------------|------------|---------|
| UNIVARIA | TE DATA  |              |            | ST-03   |
| Delete x | Delete f | Pointer (G)  | Compile G  | Init G  |
| x        | f        | Pointer (UG) | Compile UG | Init UG |

### USER INSTRUCTIONS

|            |                                                                                                               | INSINOC                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| STEP       | PROCEDURE                                                                                                     | ENTER                                | PRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DISPLAY                          |
| 1          | Select Program*                                                                                               |                                      | [2nd] [Pgm] 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No Change                        |
| 2          | Initialize Data Base <sup>1</sup>                                                                             |                                      | [2nd] [ E' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.                               |
| 3          | Repartition if needed                                                                                         | n                                    | [2nd] [Op] 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Steps. Regs                      |
|            | Enter data using either I or II                                                                               |                                      | u il soli sessi acian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| I          | KEYBOARD ENTRY                                                                                                |                                      | The state of the s |                                  |
| 4a<br>4b   | Enter frequency <sup>8</sup> Enter data (repeat Step 4 for each x <sub>i</sub> ) <sup>2</sup>                 | f <sub>i</sub> †<br>x <sub>i</sub> † | [B]<br>[A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f <sub>i</sub>                   |
|            | If Raw Data Base if filled:                                                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| 5a         | Record raw data on magnetic                                                                                   |                                      | and the personaless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |
| 5b         | card(s) if desired <sup>3</sup> Reset Raw Data Pointer <sup>4</sup> and go to Step 4 to enter additional data |                                      | [2nd] [ C' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.                              |
| 6          | Record intermediate data on magnetic card if desired <sup>3</sup>                                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| II         | MAGNETIC CARD ENTRY <sup>5</sup>                                                                              | . 1990                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| 7          | Read raw data card(s)                                                                                         | Card                                 | [CLR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>Bank No.                    |
| 8          | Reset Raw Data Pointer                                                                                        |                                      | [2nd] [ C' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.                              |
| 9          | Compile Intermediate Data Base (raw data is printed) <sup>6</sup>                                             |                                      | [2nd] [ D' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Last i                           |
| 10         | For additional data cards — go to<br>Step 7                                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|            | To delete data <sup>7</sup> :                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| 11a<br>11b | Enter frequency<br>Enter unwanted x <sub>i</sub>                                                              | f <sub>i</sub><br>x <sub>i</sub>     | [2nd] [ B' ]<br>[2nd] [ A' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f <sub>i</sub><br>× <sub>i</sub> |
| 12         | Initialize Data Base <sup>1</sup>                                                                             |                                      | [2nd] [ E' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.                               |
| 13         | Repartition if needed                                                                                         | n                                    | [2nd] [Op] 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Steps. Regs                      |
| 14         | Recompile raw data currently stored in Raw Data Base (raw data is printed) <sup>6</sup>                       |                                      | [2nd] [ D' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Last i                           |
| 15         | Reenter raw data that has been overwritten using either Steps 4-6 or 7-10                                     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| 16         | Continue entering new data                                                                                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |

NOTES: See Data Entry Notes for 1-7.

- 8. The frequency should be a positive integer. The display flashes for negative entries and zero; but no test is made for noninteger entries.
- † Printed when PC-100A is used.

<sup>\*</sup>For TI-58, repartition by pressing 6 [2nd] [Op] 17.

### **BIVARIATE DATA**

| र्स्क           | Solid St | ate Software | TI ©1977   |
|-----------------|----------|--------------|------------|
| <b>BIVARIAT</b> | E DATA   |              | ST-04      |
| Delete x        | Delete y | Compile      | Initialize |
| x               | У        | Pointer      |            |

# **USER INSTRUCTIONS**

| STEP | PROCEDURE                                                                                     | ENTER                                | PRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DISPLAY        |
|------|-----------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1    | Select Program*                                                                               |                                      | [2nd] [Pgm] 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No Change      |
| 2    | Initialize Data Base <sup>1</sup>                                                             |                                      | [2nd] [ E' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.             |
| 3    | Repartition if needed                                                                         | n                                    | [2nd] [Op] 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Steps. Regs    |
|      | Enter data using either I or II                                                               |                                      | No Locitores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| Ι    | KEYBOARD ENTRY                                                                                |                                      | warna zama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 4a   | Enter x <sub>i</sub>                                                                          | x <sub>i</sub> †<br>y <sub>i</sub> † | [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i              |
| 4b   | Enter y <sub>i</sub>                                                                          | Υi <sup>Ť</sup>                      | [B]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i              |
|      | (Repeat Step 4 for each data pair) <sup>2</sup>                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|      | If Raw Data Base is filled:                                                                   |                                      | emb com of a file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 5a   | Record raw data on magnetic card(s) if desired <sup>3</sup>                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 5b   | Reset Raw Data Pointer <sup>4</sup> and go                                                    |                                      | [D]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.            |
|      | to Step 4 to enter additional data                                                            |                                      | [D]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.            |
| 6    | Record intermediate data on                                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|      | magnetic card if desired <sup>3</sup>                                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| II   | MAGNETIC CARD ENTRY <sup>5</sup>                                                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 7    | Read raw data card(s)                                                                         |                                      | [CLR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0              |
|      |                                                                                               | Card                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bank No.       |
| 8    | Reset Raw Data Pointer                                                                        |                                      | [D]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.            |
| 9    | Compile Intermediate Data Base (raw data is printed) <sup>6</sup>                             | /                                    | [2nd] [ D' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Last i         |
| 10   | For additional data cards — go to Step 7                                                      |                                      | exical edgic starbarness of the barness of the barn |                |
|      | To delete data <sup>7</sup> :                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 11a  | Enter unwanted x <sub>i</sub>                                                                 | xi                                   | [2nd] [ A' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x <sub>i</sub> |
| 11b  | Enter unwanted yi                                                                             | Уi                                   | [2nd] [ B' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yi             |
| 12   | Initialize Data Base <sup>1</sup>                                                             |                                      | [2nd] [ E' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.             |
| 13   | Repartition if needed                                                                         | n                                    | [2nd] [Op] 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Steps. Regs    |
| 14   | Recompile raw data currently<br>stored in Raw Data Base (raw<br>data is printed) <sup>6</sup> |                                      | [2nd] [ D' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Last i         |
| 15   | Reenter raw data that has been overwritten using either Steps 4-6 or 7-10                     |                                      | Land Tray to a strike war and the same of  |                |
| 16   | Continue entering new data                                                                    |                                      | e roug sed sed embra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |

NOTES: See Data Entry Notes.

<sup>†</sup> Printed when PC-100A is used.

<sup>\*</sup>For TI-58, repartition by pressing 6 [2nd] [Op] 17.

# **DATA ENTRY**

#### TRIVARIATE DATA

| Solid State Software TI ©1977 |          |          |         |            |  |
|-------------------------------|----------|----------|---------|------------|--|
| TRIVARIA                      | TE DATA  |          |         | ST-05      |  |
| Delete x                      | Delete y | Delete z | Compile | Initialize |  |
| х                             | у        | z        | Pointer |            |  |

# **USER INSTRUCTIONS**

| STEP       | PROCEDURE                                                                     | ENTER                                                    | PRESS                        | DISPLAY              |
|------------|-------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------|----------------------|
| 1          | Select Program*                                                               |                                                          | [2nd] [Pgm] 05               | No Change            |
| 2          | Initialize Data Base <sup>1</sup>                                             |                                                          | [2nd] [ E' ]                 | 0.                   |
| 3          | Repartition if needed                                                         | n                                                        | [2nd] [Op] 17                | Steps. Regs          |
|            | Enter data using either I or II                                               |                                                          |                              |                      |
| I          | KEYBOARD ENTRY                                                                |                                                          | Year                         |                      |
| 4a         | Enter x <sub>i</sub>                                                          | x <sub>i</sub> <sup>†</sup>                              | [A]                          | i                    |
| 4b<br>4c   | Enter y <sub>i</sub><br>Enter z <sub>i</sub>                                  | x <sub>i</sub> †<br>y <sub>i</sub> †<br>z <sub>i</sub> † | [B]                          | i<br>i               |
| 40         | (Repeat Step 4 for each data triplet) <sup>2</sup>                            | <b>~</b> I                                               |                              |                      |
|            | If Raw Data Base is filled:                                                   |                                                          |                              |                      |
| 5a         | Record raw data on magnetic card(s) if desired <sup>3</sup>                   |                                                          | all the "Struct are come     |                      |
| 5b         | Reset Raw Data Pointer <sup>4</sup> and go to Step 4 to enter additional data |                                                          | [D]                          | 33.                  |
| 6          | Record intermediate data on magnetic card if desired <sup>3</sup>             |                                                          | YVATUE SITAS                 |                      |
| П          | MAGNETIC CARD ENTRY <sup>5</sup>                                              |                                                          |                              |                      |
| 7          | Read raw data card(s)                                                         | Card                                                     | [CLR]                        | 0<br>Bank No.        |
| 8          | Reset Raw Data Pointer                                                        |                                                          | [D]                          | 33.                  |
| 9          | Compile Intermediate Data Base (raw data is printed) <sup>6</sup>             |                                                          | [2nd] [ D' ]                 | Last i               |
| 10         | For additional data cards — go to<br>Step 7                                   |                                                          |                              |                      |
|            | To delete data <sup>7</sup> :                                                 |                                                          |                              |                      |
| 11a        | Enter unwanted x <sub>i</sub>                                                 | x <sub>i</sub>                                           | [2nd] [A']                   | ×i                   |
| 11b<br>11c | Enter unwanted y <sub>i</sub><br>Enter unwanted z <sub>i</sub>                | Y <sub>i</sub><br>z <sub>i</sub>                         | [2nd] [ B' ]<br>[2nd] [ C' ] | y <sub>i</sub>       |
| 12         | Initialize Data Base <sup>1</sup>                                             | 21                                                       | [2nd] [ E' ]                 | z <sub>i</sub><br>0. |
| 13         | Repartition if needed                                                         | n                                                        | [2nd] [Cp] 17                | Steps. Regs          |
| 14         | Recompile raw data currently                                                  | •                                                        | [2nd] [D']                   | Last i               |
| •          | stored in Raw Data Base (raw data is printed) <sup>6</sup>                    |                                                          |                              |                      |
| 15         | Reenter raw data that has been overwritten using either Steps 4-6 or 7-10     |                                                          |                              |                      |
| 16         | Continue entering new data                                                    |                                                          |                              |                      |

NOTES: See Data Entry Notes.

† Printed when PC-100A is used.

<sup>\*</sup>For TI-58, repartition by pressing 6 [2nd] [Op] 17.

### ONE-WAY ANALYSIS OF VARIANCE DATA

| Solid State Software TI ©1977   |                         |    |         |            |  |
|---------------------------------|-------------------------|----|---------|------------|--|
| ANALYSIS OF VARIANCE DATA ST-06 |                         |    |         |            |  |
| Delete x                        | $\overline{\mathbf{x}}$ | s² | Compile | Init 1-Way |  |
| х                               | R                       | С  | Pointer | Init 2-Way |  |

### **USER INSTRUCTIONS**

| STEP | PROCEDURE                                                                                                                            | ENTER             | PRESS                               | DISPLAY                           |
|------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|-----------------------------------|
| 1    | Select Program*                                                                                                                      |                   | [2nd] [Pgm] 06                      | No Change                         |
| 2    | Initialize Data Base <sup>1</sup>                                                                                                    |                   | [2nd] [ E' ]                        | 0.                                |
| 3    | Repartition if needed                                                                                                                | n                 | [2nd] [Op] 17                       | Steps. Regs                       |
|      | Enter data using either I or II                                                                                                      |                   | 1.02.4                              |                                   |
| I    | KEYBOARD ENTRY                                                                                                                       |                   |                                     |                                   |
| 4    | Enter data for Treatment Group i<br>(repeat for each j) <sup>2</sup>                                                                 | × <sub>ij</sub> † | [A]                                 | j                                 |
|      | If Raw Data Base is filled:                                                                                                          |                   | GN 6-151 (50)                       |                                   |
| 5a   | Record raw data on magnetic                                                                                                          |                   |                                     |                                   |
| 5b   | card(s) if desired <sup>3</sup> Reset Raw Data Pointer <sup>4</sup> and go to Step 4 to complete entry of data for Current Treatment |                   | [D]                                 | 31.                               |
|      | Group                                                                                                                                |                   |                                     |                                   |
| 6    | Calculate $\overline{x}$ for Current<br>Treatment Group                                                                              |                   | [2nd] [ B' ]                        | <del>x</del> †                    |
| 7    | Display s <sup>2</sup> for Current<br>Treatment Group                                                                                |                   | [2nd] [ C' ]                        | s <sup>2</sup> †                  |
| 8    | Go to Step 4 for Next<br>Treatment Group <sup>8</sup>                                                                                |                   | Shareki eli 7000 ti. 374 render bel |                                   |
| 9    | Record intermediate data on magnetic card if desired <sup>3</sup>                                                                    |                   |                                     |                                   |
| II   | MAGNETIC CARD ENTRY <sup>5</sup>                                                                                                     |                   | KIR                                 |                                   |
| 10   | Read raw data card(s) for<br>Treatment Group i                                                                                       | Card              | [CLR]                               | 0.<br>Bank No.                    |
| 11   | Reset Raw Data Pointer <sup>4</sup>                                                                                                  |                   | [D]                                 | 31.                               |
| 12   | Compile Intermediate Data Base (raw data is printed) <sup>6</sup>                                                                    |                   | [2nd] [ D' ]                        | Last j                            |
| 13   | To enter additional data cards<br>for Current Treatment Group —<br>go to Step 10                                                     |                   |                                     |                                   |
| 14   | Calculate x for Current<br>Treatment Group                                                                                           |                   | [2nd] [B']                          | $\overline{\mathbf{x}}^{\dagger}$ |
| 15   | Display s <sup>2</sup> for Current<br>Treatment Group                                                                                |                   | [2nd] [ C' ]                        | s <sup>2</sup> †                  |
| 16   | Go to Step 10 for Next<br>Treatment Group                                                                                            |                   |                                     |                                   |

<sup>\*</sup>For TI-58, repartition by pressing 6 [2nd] [Op] 17.

### **DATA ENTRY**

| STEP | PROCEDURE                                                                                     | ENTER   | PRESS                     | DISPLAY          |
|------|-----------------------------------------------------------------------------------------------|---------|---------------------------|------------------|
|      | To delete data <sup>7</sup> :                                                                 |         |                           |                  |
| 17   | Enter unwanted data                                                                           | ×ij     | [2nd] [ A' ]              | ×ij              |
| 18   | Initialize Data Base <sup>1</sup>                                                             |         | [2nd] [ E' ]              | 0.               |
| 19   | Repartition if needed                                                                         | n       | [2nd] [Op] 17             | Steps. Regs      |
| 20   | Recompile raw data currently<br>stored in Raw Data Base (raw<br>data is printed) <sup>6</sup> | RATES I | [2nd] [ D' ]              | Last j           |
| 21   | Continue entering data for<br>Current Treatment Group                                         |         |                           |                  |
| 22   | Reenter data for Current<br>Treatment Group that has<br>been overwritten                      |         | That is a distance to re- |                  |
| 23   | Calculate $\overline{x}$ for Current Treatment Group                                          |         | [2nd] [B']                | <del>x</del> †   |
| 24   | Display s <sup>2</sup> for Current<br>Treatment Group                                         |         | [2nd] [ C' ]              | s <sup>2</sup> † |
| 25   | Reenter raw data for previous<br>Treatment Groups using either<br>Steps 4-9 or 10-16          |         | otherquen no Listi v      |                  |
| 26   | Enter data for New Treatment<br>Groups                                                        |         | to yane stolenes of       |                  |

#### NOTES: See Data Entry Notes for 1-7.

- 8. If you are recording your raw data on magnetic cards, each Treatment Group should be recorded on separate sets of cards. To do this, simply reset the Raw Data Pointer here. Also, data deletion procedures are invalidated unless this pointer is reset.
- † Printed when PC-100A is used.

#### TWO-WAY ANALYSIS OF VARIANCE DATA

| ∜ Solid State Software TI ©1977 |   |    |         |            |  |  |
|---------------------------------|---|----|---------|------------|--|--|
| ANALYSIS OF VARIANCE DATA ST-06 |   |    |         |            |  |  |
| Delete x                        | X | s² | Compile | Init 1-Way |  |  |
| х                               | R | С  | Pointer | Init 2-Way |  |  |

# **USER INSTRUCTIONS**

| STEP | PROCEDURE                                                                     | ENTER             | PRESS          | DISPLAY          |
|------|-------------------------------------------------------------------------------|-------------------|----------------|------------------|
| 1    | Select Program*                                                               |                   | [2nd] [Pgm] 06 | No Change        |
| 2    | Initialize Data Base <sup>1</sup>                                             |                   | [E]            | 0.               |
| 3    | Enter number of rows <sup>8</sup>                                             | R†                | [B]            | R                |
| 4    | Enter number of columns <sup>8</sup>                                          | C†                | [C]            | С                |
| 5    | Repartition if needed                                                         | n                 | [2nd] [Op] 17  | Steps. Regs      |
|      | Enter data using either I or II                                               |                   |                |                  |
| I    | KEYBOARD ENTRY                                                                |                   |                |                  |
| 6    | Enter data for row i (repeat for each j) <sup>2</sup>                         | x <sub>ij</sub> † | [A]            | j                |
|      | If Raw Data Base is filled:                                                   |                   |                |                  |
| 7a   | Record raw data on magnetic card(s) if desired <sup>3</sup>                   |                   |                |                  |
| 7b   | Reset Raw Data Pointer <sup>4</sup> and go to Step 6 to enter additional data |                   | [D]            | 31.              |
|      | (Repeat 6-7 for each row) <sup>9</sup>                                        |                   |                |                  |
| 8    | Calculate $\overline{\mathbf{x}}^{1 \ 0}$                                     |                   | [2nd] [ B' ]   | <del>x</del> †   |
| 9    | Display s <sup>2</sup>                                                        |                   | [2nd] [ C' ]   | s <sup>2</sup> † |
| 10   | Record intermediate data on magnetic card if desired <sup>3</sup>             |                   |                |                  |
| II   | MAGNETIC CARD ENTRY <sup>5</sup>                                              |                   |                |                  |
| 11   | Read raw data card(s)                                                         | Card              | [CLR]          | 0<br>Bank No.    |
| 12   | Reset Raw Data Pointer <sup>4</sup>                                           |                   | [D]            | 31.              |
| 13   | Compile Intermediate Data Base (raw data is printed) <sup>6</sup>             |                   | [2nd] [ D' ]   | Last j           |
| 14   | For additional data cards — go to Step 11                                     |                   |                |                  |
| 15   | Calculate $\overline{x}^{10}$                                                 |                   | [2nd] [B']     | <del>x</del> †   |
| 16   | Display s <sup>2</sup>                                                        |                   | [2nd] [ C' ]   | s <sup>2</sup> † |

<sup>\*</sup>For TI-58, repartition by pressing 6 [2nd] [Op] 17.

# DATA ENTRY

| STEP     | PROCEDURE                                                                                                   | ENTER           | PRESS                    | DISPLAY               |
|----------|-------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|-----------------------|
| 17<br>18 | <b>To delete data<sup>7</sup>:</b><br>Enter unwanted data <sup>9</sup><br>Initialize Data Base <sup>1</sup> | × <sub>ij</sub> | [2nd] [ A' ]<br>[ E ]    | x <sub>ij</sub><br>0. |
| 19       | Enter number of rows <sup>8</sup>                                                                           | R <sup>†</sup>  | [B]                      | R                     |
| 20       | Enter number of columns <sup>8</sup>                                                                        | C†              | [ C ]                    | С                     |
| 21       | Repartition if needed                                                                                       | n               | [2nd] [Op] 17            | Steps. Regs<br>Last i |
| 22       | Recompile raw data currently<br>stored in Raw Data Base (raw<br>data is printed) <sup>6</sup>               |                 | [2nd] [ D <sup>'</sup> ] | Last J                |
| 23       | Reenter raw data that has been overwritten using either Steps 6-9 or 11-16                                  |                 |                          |                       |
| 24       | Continue entering new data                                                                                  |                 |                          |                       |

#### NOTES:

See Data Entry Notes for 1-7.

- 8. R + C may not exceed 15.
- 9. Data deletion procedures may be invalidated unless the Raw Data Pointer is reset between rows.
- 10. This step may be performed only after all raw data is entered.
- † Printed when PC-100A is used.

#### **HISTOGRAM DATA**

| ₹\$      | Solid S          | State Soft | ware    | TI ©1977   |
|----------|------------------|------------|---------|------------|
| HISTOGR  | AM DATA          |            |         | ST-07      |
| Delete x | X <sub>min</sub> |            | Compile | Initialize |
| x        | Cells            | Width      | Pointer |            |

### **USER INSTRUCTIONS**

| STEP       | PROCEDURE                                                                                                     | ENTER                                    | PRESS                                        | DISPLAY          |
|------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------|------------------|
| 1          | Select Program*                                                                                               |                                          | [2nd] [Pgm] 07                               | No Change        |
| 2          | Initialize Data Base <sup>1</sup>                                                                             |                                          | [2nd] [ E' ]                                 | 0.               |
| 3          | Enter number of cells <sup>8</sup>                                                                            | Cells <sup>†</sup>                       | [B]                                          | Cells            |
| 4          | Enter lower limit                                                                                             | × <sub>min</sub> †                       | [2nd] [ B' ]                                 | X <sub>min</sub> |
| 5          | Enter cell width                                                                                              | Width <sup>†</sup>                       | [ C ]                                        | Width            |
| 6          | Repartition if needed                                                                                         | n                                        | [2nd] [Op] 17                                | Steps. Reg       |
|            | Enter data using either I or II                                                                               |                                          |                                              |                  |
| I          | KEYBOARD ENTRY                                                                                                |                                          | aunch mootened etc                           |                  |
| 7          | Enter data (repeat for each $x_i$ ) <sup>2</sup>                                                              | x <sub>i</sub> †                         | [A]                                          | dt ni steb       |
|            | If Raw Data Base is filled:                                                                                   | •                                        |                                              |                  |
| 8a         | Record raw data on magnetic                                                                                   |                                          | iolagini presbivena                          |                  |
| <b>8</b> b | card(s) if desired <sup>3</sup> Reset Raw Data Pointer <sup>4</sup> and go to Step 7 to enter additional data | sari neeven<br>Sari neeven<br>Sarini ete | on backgager as mag                          |                  |
| 9          | Record intermediate data on magnetic card if desired <sup>3</sup>                                             |                                          | so pleanifeoidus tud<br>atneoubloodus erriss |                  |
| II         | MAGNETIC CARD ENTRY <sup>5</sup>                                                                              |                                          |                                              |                  |
| 10         | Read raw data card(s)                                                                                         | Card                                     | [CLR]                                        | 0.<br>Bank No.   |
| 11         | Reset Raw Data Pointer <sup>4</sup>                                                                           |                                          | [D]                                          | 31.              |
| 12         | Compile Intermediate Data Base<br>(raw data is printed) <sup>6</sup>                                          |                                          | [2nd] [ D' ]                                 | Last i           |
| 13         | For additional data card(s) — go to Step 10                                                                   |                                          |                                              |                  |
|            | To delete data <sup>7</sup> :                                                                                 |                                          |                                              |                  |
| 14         | Enter unwanted data                                                                                           | ×i                                       | [2nd] [ A' ]                                 | x <sub>i</sub>   |
| 15         | Initialize Data Base <sup>1</sup>                                                                             |                                          | [2nd] [ E' ]                                 | 0.               |
| 16         | Enter number of cells                                                                                         | Cells <sup>†</sup>                       | [B]                                          | Cells            |
| 17         | Enter lower limit                                                                                             | × <sub>min</sub> †                       | [2nd] [ B' ]                                 | × <sub>min</sub> |
| 18         | Enter cell width                                                                                              | Width <sup>†</sup>                       | [ C ]                                        | Width            |
| 19         | Repartition if needed                                                                                         | n                                        | [2nd] [Op] 17                                | Steps. Reg       |
| 20         | Recompile raw data currently<br>stored in Raw Data Base (raw<br>data is printed) <sup>6</sup>                 | hae suottan                              | [2nd] [ D' ]                                 | Last i           |
| 21         | Reenter raw data that has been overwritten using either Steps 7-9 or 10-13                                    |                                          | i savementa been ad                          |                  |
| 22         | Continue entering new data                                                                                    | 900                                      |                                              |                  |

NOTES: See Data Entry Notes for 1-7.

- 8. The number of cells may not exceed 12.
- † Printed when PC-100A is used.
- \* For TI-58, repartition by pressing 6 [2nd] [Op] 17.

### **DATA ENTRY**

### DATA TRANSFORM PROGRAMS

You may often find the need to replace your data with computed quantities before you can go on to perform your evaluations and tests. Two programs included in this library are specifically designed for this purpose. These programs are actually data entry routines that first transform your data to the form that you desire. They then assimilate a data base by calling an appropriate data entry program to enter the transformed data.

### UNIVARIATE DATA TRANSFORMS

This program may be used wherever the *Univariate Data (Ungrouped) Program* is called for. Two prewritten transform routines are included.

- An exponential transform converts any x you enter to exp(x) before compiling the data in the intermediate data base.
- A logarithmic transform converts any x you enter to ln x before compiling the data in the intermediate data base.

A third routine is provided to transform your data into any form that you wish. All you have to do is store your transform in program memory under label [2nd] [A']. Then select the user-defined transform as explained in the user instructions and enter your data. The only restrictions are that you may not use [=], [CLR], or [RST] in your transform routine. Note that when your subroutine is called x is in the display register. When your subroutine ends the display register should contain f(x). Remember to end your routine with [INV] [SBR].

### **BIVARIATE DATA TRANSFORMS**

This program includes three prewritten routines for transforming data pairs before assimilating the data base.

- (x, y) becomes (x, ln y).
- (x, y) becomes (ln x, ln y).
- (x, y) becomes (In x, y).

A fourth routine is provided to transform your data into any form that you wish. Simply store your transform for x in program memory under label [2nd] [ A' ]. Then store your transform for y in program memory under label [2nd] [ B' ]. Now select the user-defined transform as explained in the user instructions and enter your data. Again, you may not use [ = ], [CLR], or [RST] in your transform routines. Also, you must end your routines with [INV] [SBR].

This program may be used wherever the *Bivariate Data Program* is called for. See Section V for further applications of this program.

| ₹\$      | Solid S    | tate Software | TI ©1977   |
|----------|------------|---------------|------------|
| UNIVARIA | TE DATA TF | RANSFORMS     | ST-11      |
| Ехр      | Ln         | User          | Initialize |
| х        |            |               |            |

# **USER INSTRUCTIONS**

| STEP | PROCEDURE                                                               | ENTER | PRESS                                                                 | DISPLAY                |
|------|-------------------------------------------------------------------------|-------|-----------------------------------------------------------------------|------------------------|
|      | For Preprogrammed Transform                                             |       |                                                                       |                        |
| 1    | Select Program*                                                         |       | [2nd] [Pgm] 11                                                        | No Change              |
| 2    | Initialize <sup>1</sup>                                                 |       | [2nd] [ E' ]                                                          | 1.                     |
| 3    | Repartition if desired                                                  | n     | [2nd] [Op] 17                                                         | Steps. Regs            |
| 4    | Choose Transform:<br>Exponential,<br>Logarithmic                        |       | [2nd] [ A' ]<br>[2nd] [ B' ]                                          | No Change<br>No Change |
| 5    | Enter data (repeat for each $x_i$ ) <sup>2</sup>                        | ×i    | [A]                                                                   | i                      |
|      | For User-Defined Transform                                              |       |                                                                       |                        |
| 6    | Enter Transform into program memory (do not use [ = ], [CLR], or [RST]) | f(x)  | [2nd] [CP] [LRN]<br>[2nd] [Lbl]<br>[2nd] [A']<br>[INV] [SBR]<br>[LRN] |                        |
| 7    | Select Program                                                          |       | [2nd] [Pgm] 11                                                        | No Change              |
| 8    | Initialize <sup>1</sup>                                                 |       | [2nd] [ E' ]                                                          | 1.                     |
| 9    | Repartition if needed                                                   | n     | [2nd] [Op] 17                                                         | Steps. Reg             |
| 10   | Select User-Defined Transform mode                                      |       | [2nd] [ C' ]                                                          | No Change              |
| 11   | Enter data (repeat for each $x_i$ ) <sup>2</sup>                        | ×i    | [A]                                                                   | i                      |

#### NOTES:

- 1. Initialization uses routine [ E ] of the Univariate Data (Ungrouped) program.
- 2. Once the data is transformed, it is entered using routine [A] of the Univarite Data (Ungrouped) program. See the User Instructions of that program for data deletion procedures and limitations of the Raw Data Base. f(x) is printed when the PC-100A is used.
- 3. This program uses the same data registers as ST-03.

<sup>\*</sup>For TI-58, repartition by pressing 6 [2nd] [Op] 17.

# **DATA ENTRY**

| £\$P                            | Solid St       | tate Softv   | vare T       | I ©1977      |
|---------------------------------|----------------|--------------|--------------|--------------|
| BIVARIATE DATA TRANSFORMS ST-12 |                |              |              |              |
| Exp (x, ln y)                   | Pwr(ln x,ln y) | Ln (in x, y) | User         | Initialize   |
| х                               |                | ⇒b; m (Pgm)  | x → y' (Pgm) | y → x' (Pgm) |

# **USER INSTRUCTIONS**

| STEP       | PROCEDURE                                                                                                                                 | ENTER                            | PRESS                                                                         | DISPLAY                             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------|-------------------------------------|
|            | For Preprogrammed Transforms                                                                                                              |                                  | machines Theorems                                                             |                                     |
| 1          | Select Program*                                                                                                                           |                                  | [2nd] [Pgm] 12                                                                | No Change                           |
| 2          | Initialize <sup>1</sup>                                                                                                                   |                                  | [2nd] [ E' ]                                                                  | 0.                                  |
| 3          | Repartition if desired                                                                                                                    | n                                | [2nd] [Op] 17                                                                 | Steps. Regs                         |
| 4          | Choose Transform: (x, ln y), (ln x, ln y), (ln x, y)                                                                                      |                                  | [2nd] [ A' ]<br>[2nd] [ B' ]<br>[2nd] [ C' ]                                  | No Change<br>No Change<br>No Change |
| 5a<br>5b   | Enter x <sub>i</sub> <sup>2</sup> Enter y <sub>i</sub> <sup>2</sup>                                                                       | x <sub>i</sub><br>y <sub>i</sub> | [A]<br>[B]                                                                    | i.                                  |
| 6          | (Repeat Step 5 for each data pair)  For User-Defined Transforms  Enter Transforms into program memory (do not use [ = ], [CLR], or [RST]) | f(x)                             | [2nd] [CP] [LRN]<br>[2nd] [Lbl]<br>[2nd] [ A' ]<br>[INV] [SBR]<br>[2nd] [Lbl] |                                     |
|            | Tand 1 C 1                                                                                                                                | g(y)                             | [2nd] [EB]<br>[2nd] [B']<br>[INV] [SBR]<br>[LRN]                              | Li resine                           |
| 7          | Select Program                                                                                                                            |                                  | [2nd] [Pgm] 12                                                                | No Change                           |
| 8          | Initialize <sup>1</sup>                                                                                                                   |                                  | [2nd] [ E' ]                                                                  | 0.                                  |
| 9          | Repartition if needed                                                                                                                     | n                                | [2nd] [Op] 17                                                                 | Steps. Regs                         |
| 10         | Choose User-Defined Transform                                                                                                             |                                  | [2nd] [ D' ]                                                                  | No Change                           |
| 11a<br>11b | Enter x <sub>i</sub> <sup>2</sup><br>Enter y <sub>i</sub> <sup>2</sup>                                                                    | x <sub>i</sub><br>y <sub>i</sub> | [A]<br>[B]                                                                    | i                                   |
|            | (Repeat Step 11 for each data pair)                                                                                                       |                                  | t les arms est sous recipo                                                    |                                     |

#### NOTES:

- 1. Initialization uses routine [2nd] [E'] of the Bivariate Data program.
- 2. Once the data is transformed, f(x) is entered using routine [ A ] of the Bivariate Data program and g(y) is entered using routine [ B ]. Data must be entered in pairs. See the Bivariate Data User Instructions for data deletion procedures and limitations of the Raw Data Base. f(x) and g(y) are printed when the PC-100A is used.
- 3. This program uses the same data registers as ST-04.

<sup>\*</sup>For TI-58, repartition by pressing 6 [2nd] [Op] 17.

# IV. DATA EVALUATION

The first two programs in this section are designed to help you interpret your data. For example, the *Means and Moments Program* can be used to determine the shape of your sample distribution. You may then use this information in evaluating your data.

Statistical data is evaluated in order to make a decision. This decision usually involves choosing between two or more alternatives called hypotheses. For example, what if you want to determine whether or not a coin is balanced? The hypotheses that you wish to test are

 $H_0$ : the coin in balanced (p = 0.5)

against

 $H_1$ : the coin is unbalanced (p  $\neq$  0.5).

 $H_0$  is the null hypothesis. If you reject  $H_0$  you would then accept the alternative hypothesis  $H_1$ . In the above, p is the probability of heads on any toss of the coin.

To determine whether you should accept or reject  $H_0$  your first step is to obtain a sample. You should then use your sample data to derive a test statistic. Since the binomial distribution (see Section VI) is to be used as your probability model, your test statistic for this experiment is k where k is the number of heads occurring in n tosses of the coin.

Confidence limits for a test statistic are the usual criteria established for accepting or rejecting a hypothesis. Let's suppose that if you accept  $H_0$  you want to be 95% certain that you are right. To achieve this degree of confidence for the type of test described above you would normally construct an acceptance region for your test statistic  $(k_1, k_2)$ . These values are determined such that  $F(k_2) - F(k_1) = 0.95$  where the midpoint of the interval is the expected value of k given n and p. Then, if your test statistic k is such that  $k_1 \leqslant k \leqslant k_2$ , you would accept  $H_0$ .

This may seem like a complicated process and it often is. However, the *Theoretical Distributions* programs (Section VI) make it easy to determine whether to accept or reject your hypothesis.

Most of the programs in this section follow the same pattern of development discussed above. First, a test is described. If this test meets your needs you may use the program to compute a statistic. You can then plug this data into an appropriate *Theoretical Distributions* program (Section VI) to determine whether to accept or reject your hypothesis.

You should realize that the test described above is for a special case. Here, we tested

 $H_0: p = 0.5$ 

against

 $H_1: p \neq 0.5.$ 

If we wanted to test hypotheses such as

 $H_0: p \le 0.5$ 

against

 $H_1$ : p > 0.5,

a different test with another type of acceptance region would be required.

The examples in this section offer the acceptance regions of the tests without proof. These examples should give you further insight into confidence levels and acceptance regions. However, a complete discussion is left until Section VI.

#### MEANS AND MOMENTS PROGRAM

The means and moments of a sample can tell us a lot about the shape of its distribution. For a given set of input data  $\{x_1, x_2, \ldots, x_n\}$  with associated frequencies  $\{f_1, f_2, \ldots, f_n\}$ , you may use this program to calculate the following means, moments, skewness and kurtosis of a sample distribution. To use this program you must enter your data using one of the *Univariate Data* programs found in Section III. If  $f_i = 1$  for all i, the calculations are for ungrouped data, otherwise they are for grouped data.

In the following discussion 
$$N = \sum_{i=1}^{n} f_{i}.$$

$$i = 1$$
The arithmetic mean, 
$$\overline{x} = 1/N \sum_{i=1}^{n} f_{i} x_{i},$$

$$i = 1$$

is simply the average value of the sample data. For ungrouped data this value is known as the simple arithmetic mean. For grouped data it is called the weighted arithmetic mean.

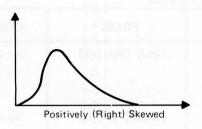
The geometric mean, 
$$g = \prod_{i=1}^{n} (x_i^{f_i})^{1/N},$$

is another measure of central tendency. It is especially useful in averaging ratios, percentages and rates of change.

The harmonic mean, 
$$h = N \div \sum_{i=1}^{n} f_i/x_i ,$$
 
$$i = 1$$

is primarily used when dealing with ratio data having physical dimensions such as miles per hour.

The second moment, 
$$m_2 = 1/N \sum_{i=1}^{n} f_i(x_i - \overline{x})^2$$


 $(\overline{x})$  is the first moment), is more often called variance. It is the mean of squared deviations of the sample data from  $\overline{x}$ . This moment is used to measure the variability or dispersion of a population.

The third moment, 
$$m_3 = 1/N \sum_{\Sigma}^{n} f_i (x_i - \overline{x})^3 \ ,$$
 
$$i = 1$$

is used to determine whether a distribution is symmetric or skewed about  $\overline{x}$ . Negative and positive deviations cancel each other out since all deviations in the equation for  $m_3$  are cubed. Therefore,  $m_3$  is equal to zero when the distribution is symmetric about its mean. A distribution is said to be right or positively skewed when  $m_3$  is positive and left or negatively skewed when  $m_3$  is negative. You can also use this program to calculate a relative measure of skewness eliminating any influence by the units your variables are measured in.

Skewness = 
$$m_3/(m_2)^{3/2}$$

You may consider your distribution to be symmetric when -0.5 < Skewness < 0.5. The distribution is highly skewed when this value exceeds  $\pm 1$ .



Negative (Left) Skewed

Figure 4.1

The fourth moment,

$$m_4 = 1/N \sum_{i=1}^{n} f_i(x_i - \overline{x})^4$$
,

is used to interpret the flatness or peakedness of a distribution curve. You may use another relative measure known as the kurtosis of distribution to obtain this information.

Kurtosis = 
$$m_4/(m_2)^2$$

The kurtosis of a normal distribution is around three (see Section VI). For values less than three the curve flattens out and for values greater than three it becomes more peaked.

| €\$                                               | Solid S    | tate Sof | tware '           | ΓΙ ©1977          |
|---------------------------------------------------|------------|----------|-------------------|-------------------|
| MEANS AN                                          | D MOME     | NTS      |                   | ST-08             |
| →m <sub>2</sub> ; m <sub>3</sub> ; m <sub>4</sub> |            |          |                   |                   |
| <del>→</del> <del>x</del>                         | <b>→</b> g | ≯h       | <b>→</b> Kurtosis | <b>→</b> Skewness |

# **USER INSTRUCTIONS**

| STEP     | PROCEDURE                                                                  | ENTER | PRESS                                      | DISPLAY          |
|----------|----------------------------------------------------------------------------|-------|--------------------------------------------|------------------|
| 1        | Select Program                                                             |       | [2nd] [Pgm] 03                             | No Change        |
| 2        | Enter Univariate Data according to User Instructions found in Section III. |       | ns maraonti, admini<br>ntus you cyle using |                  |
| 3        | Select Program                                                             |       | [2nd] [Pgm] 08                             | No Change        |
| 4        | Calculate arithmetic mean                                                  |       | [ A ]                                      | χt               |
| 5        | Calculate geometric mean <sup>1</sup>                                      |       | [B]                                        | g <sup>†</sup>   |
| 6        | Calculate harmonic mean                                                    |       | [ C ]                                      | h <sup>†</sup>   |
| 7a       | Calculate second moment                                                    |       | [2nd] [A']                                 | m <sub>2</sub> † |
| 7b<br>7c | Calculate third moment Calculate fourth moment                             |       | [R/S]<br>[R/S]                             | m <sub>3</sub> † |
| 8        | Calculate Kurtosis <sup>2</sup>                                            |       | [D]                                        | Kurtosis†        |
| 9        | Calculate Skewness <sup>2</sup>                                            |       | [E]                                        | Skewness†        |

NOTES:

- 1. The geometric mean is not valid for negative values of x.
- 2. Step 7 must be performed before calculating Kurtosis or Skewness.
- † Printed when PC-100A is used.

### **Register Contents**

| $R_{00}$        | $R_{05}$        | $R_{10}$        | R <sub>15</sub>                | $R_{20}$ $m_3$  | R <sub>25</sub> |
|-----------------|-----------------|-----------------|--------------------------------|-----------------|-----------------|
| $R_{01}$        | $R_{06}$        | R <sub>11</sub> | R <sub>16</sub>                | $R_{21}$ $m_2$  | $R_{26}$        |
| R <sub>02</sub> | R <sub>07</sub> | R <sub>12</sub> | R <sub>17</sub>                | R <sub>22</sub> | R <sub>27</sub> |
| $R_{03}$        | $R_{08}$        | R <sub>13</sub> | R <sub>18</sub>                | R <sub>23</sub> | R <sub>28</sub> |
| R <sub>04</sub> | R <sub>09</sub> | R <sub>14</sub> | R <sub>19</sub> m <sub>4</sub> | R <sub>24</sub> | $R_{29}$        |

### Example:

The following lists show the respective heights in inches of a random sample of 10 men over age 45 and their adult sons.

Fathers: 67.2, 65.0, 68.3, 69.9, 66.3, 69.7, 69.5, 72.9, 70.2, 74.1.

Sons: 68.4, 65.3, 66.5, 69.0, 73.6, 75.9, 69.7, 69.8, 71.0, 70.8,

67.7, 74.4, 69.9, 71.5, 71.1.

Compare the distribution of the heights of the fathers against that of the sons.

| ENTER             | PRESS                                    | DISPLAY                                        | COMMENTS                          |
|-------------------|------------------------------------------|------------------------------------------------|-----------------------------------|
|                   | [2nd] [Pgm] 03                           |                                                | Select Univariate<br>Data Program |
|                   | [E] TOTAL SECOND                         | 1. (AI                                         | Initialize Ungrouped Data Entry   |
| 67.2 <sup>†</sup> | [A]                                      | 1,                                             | $x_1$                             |
| 65.0†             | [A]                                      | 2. 41 (54%)                                    | X <sub>1</sub>                    |
| 68.3†             | [A]                                      | 3.                                             | x <sub>3</sub>                    |
| 69.9†             | [A] 125760 SEL                           | 4.                                             | ν.                                |
| 66.3 <sup>†</sup> | [A]                                      | 5.                                             | Heights                           |
| 69.7†             | [A]                                      | 6.                                             | V. OT                             |
| 69.5†             | [A]                                      | 7.                                             | Fathers                           |
| 72.9 <sup>†</sup> | [A]                                      | 8.                                             | x <sub>8</sub>                    |
| 70.2†             | [A]                                      | 9.                                             | X <sub>9</sub>                    |
| 74.1 <sup>†</sup> | [A]                                      | 10.                                            | $x_{10}$                          |
|                   | [2nd] [Pgm] 08                           | 10.                                            | Select Means and                  |
|                   | [A]                                      | CO 21 <sup>†</sup>                             | Moments Program                   |
|                   | [B]                                      | 69.31 <sup>†</sup><br>69.25951514 <sup>†</sup> | $\overline{\mathbf{x}}$           |
|                   | [C]                                      | 69.20924469 <sup>†</sup>                       | g disambanonem                    |
|                   | [2nd] [A']                               | 7.0269 <sup>†</sup>                            | only difference has               |
|                   | [R/S]                                    | 3.938892 <sup>†</sup>                          | m <sub>2</sub>                    |
|                   | [R/S]                                    | 114.13275 <sup>†</sup>                         | m <sub>3</sub>                    |
|                   |                                          |                                                | m <sub>4</sub>                    |
|                   | [D]                                      | 2.31144059 <sup>†</sup>                        | Kurtosis                          |
|                   | [ E ]<br>[2nd] [Pgm] 03                  | .2114600903 <sup>†</sup><br>.2114600903        | Skewness                          |
|                   | (Ziid) [Fgiii] 05                        | .2114600903                                    | Select Univariate                 |
|                   | [E]                                      | the many state of 1                            | Data Program                      |
|                   | The Control of the state of the state of | to that to ensure which sho to entity          | Initialize Ungrouped              |
| 68.4 <sup>†</sup> | [A]                                      | eideT 1.                                       | Data Entry                        |
| 65.3 <sup>†</sup> | [A]                                      | 1.<br>2.                                       | x <sub>1</sub>                    |
| 66.5 <sup>†</sup> | [A]                                      | 3.                                             | <b>x</b> <sub>2</sub>             |
| 69.0 <sup>†</sup> | [A]                                      |                                                | X <sub>3</sub>                    |
| 73.6 <sup>†</sup> |                                          | 4.                                             | X4                                |
| 75.9 <sup>†</sup> | [A]                                      | 5.                                             | X <sub>5</sub>                    |
| 69.7 <sup>†</sup> | [A]                                      | 6.                                             | X <sub>6</sub>                    |
| 69.8 <sup>†</sup> | [A]                                      | 7.                                             | X <sub>7</sub> Heights            |
|                   | [ A ]                                    | 8.                                             | $x_8$ of                          |
| 71.0 <sup>†</sup> | [A]                                      | 9.                                             | x <sub>9</sub> Sons               |
| 70.8 <sup>†</sup> | [ A ]                                    | 10.                                            | x <sub>10</sub>                   |
| 67.7 <sup>†</sup> | [A]                                      | 11.                                            | x <sub>11</sub>                   |
| 74.4 <sup>†</sup> | [ A ]                                    | 12.                                            | X <sub>12</sub>                   |
| 69.9 <sup>†</sup> | [ A ]                                    | 13.                                            | X <sub>13</sub>                   |
| 71.5 <sup>†</sup> | [A]                                      | 14.                                            | X <sub>14</sub>                   |
| 71.1 <sup>†</sup> | [ A ]                                    | 15.                                            | x <sub>15</sub>                   |

<sup>†</sup> Printed when PC-100A is used.

| ENTER | PRESS          | DISPLAY                  | COMMENTS                            |
|-------|----------------|--------------------------|-------------------------------------|
|       | [2nd] [Pgm] 08 | 15.                      | Select Means and<br>Moments Program |
|       | [A]            | 70.30666667 <sup>†</sup> | $\overline{\mathbf{x}}$             |
|       | [B]            | 70.25279208 <sup>†</sup> | g                                   |
|       | [C]            | 70.19915809 <sup>†</sup> | h                                   |
|       | [2nd] [ A' ]   | 7.609955561 <sup>†</sup> | $m_2$                               |
|       | [R/S]          | 4.932666 <sup>†</sup>    | $m_3$                               |
|       | [R/S]          | 152.04783 <sup>†</sup>   | m <sub>4</sub>                      |
|       | [D]            | 2.625523954 <sup>†</sup> | Kurtosis                            |
|       | [E]            | .2349678963 <sup>†</sup> | Skewness                            |

<sup>†</sup> Printed when PC-100A is used.

### Summary:

As you can see, these samples come from distributions which are both slightly skewed to about the same degree. The peakedness of the distributions are also nearly equal. Based on this information it is safe to assume that these samples come from distributions having the same shape. The only difference is that the average height of the sons is about 1 inch more than that of the fathers. That is, the distribution of the heights of the sons may be shifted to the right when compared with that of the fathers. This hypothesis is tested in the *Rank-Sum Test Program*.

#### Example:

When large amounts of data are involved you may find it easier to group your data before entering it. The sample heights of the sons data from the last example is grouped in Table 4.1.

Table 4.1

| Range          | 64 ≤ x < 66 | 66 ≤ x < 68 | 68 ≤ x < 70 | 70 ≤ x < 72 | 72 ≤ x < 74 | 74 ≤ x < 76 |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Frequency      | 1           | 2           | 5           | 4           | 1           | 2           |
| Assigned Value | 65          | 67          | 69          | 71          | 73          | 75          |

| ENTER                | PRESS          | DISPLAY                  | COMMENTS                                         |
|----------------------|----------------|--------------------------|--------------------------------------------------|
|                      | [2nd] [Pgm] 03 |                          | Select Univariate                                |
|                      | [2nd] [ E' ]   | 1.                       | Data Program<br>Initialize Grouped<br>Data Entry |
| 1†                   | [B]            | 1.                       | f <sub>1</sub>                                   |
| 65†                  | [A]            | 1.                       | x <sub>1</sub>                                   |
| 2†                   | [B]            | 2.                       | f <sub>2</sub>                                   |
| 67†                  | [A]            | 2.                       | X <sub>2</sub>                                   |
| 5†                   | [B]            | 5.                       | $f_3$                                            |
| 69†                  | [A]            | 3.                       | X <sub>3</sub>                                   |
| 4†                   | [B]            | 4.                       | f <sub>4</sub>                                   |
| 71†                  | [A]            | 4.                       | X <sub>4</sub>                                   |
| 1†                   | [B]            | 1 1. temples             | f <sub>5</sub>                                   |
| 73†                  | [A]            | 5.                       | x <sub>5</sub>                                   |
| 2†                   | [B]            | 2.                       | $f_6$                                            |
| 75 <sup>†</sup>      | [A]            | 6.                       | × <sub>6</sub>                                   |
|                      | [2nd] [Pgm] 08 | 6.                       | Select Means and<br>Moments Program              |
|                      | [A]            | 70.06666667†             | $\overline{x}$                                   |
|                      | [B]            | 70.01414879 <sup>†</sup> | g                                                |
|                      | [C]            | 69.96188555 <sup>†</sup> | h i sa minimum a                                 |
|                      | [2nd] [ A' ]   | 7.39555561 <sup>†</sup>  | $m_2$                                            |
|                      | [R/S]          | 4.987258†                | m <sub>3</sub>                                   |
|                      | [R/S]          | 140.27288†               | m <sub>4</sub>                                   |
| Bullet enen Tes soll | [D]            | 2.564673624†             | Kurtosis                                         |
|                      | [E]            | .2479737041 <sup>†</sup> | Skewness                                         |

<sup>†</sup> Printed when PC-100A is used.

#### Summary:

Comparing these outputs to those of the last example it is easy to see that little loss of accuracy occurs when data is grouped; but considerable data entry time is saved. The next program illustrates how you may use your calculator to group your data instead of doing it by hand.

#### HISTOGRAM CONSTRUCTION PROGRAM

A histogram is constructed to help interpret a set of data points. Each data point is assigned to a class interval or cell of the histogram depending upon its magnitude.

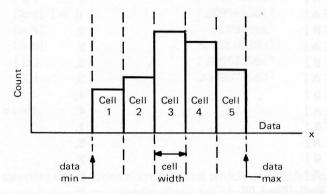



Figure 4.2

To construct a histogram with up to 12 cells, use the *Histogram Data* program found in Section III to enter and assimilate your data points. Remember to specify the number of cells you want and the width of each cell. You should also enter a lower limit for your data if it is different from zero. The program calculates the upper limit of the histogram and discards any data falling outside of the calculated range. This situation is indicated by flashing nines in the display.

Once you have assimilated the histogram data you may use this program to calculate the mean and standard deviation of your data points. You can also determine the count, or number of data points in each cell, and the upper limit of the data placed in a given cell. Note that if a piece of data falls on the upper limit of a cell it is assigned to the next cell. A piece data falling on the point designated data max in Figure 4.2 is discarded.

| €@             | Solid S    | tate Software      | TI ©1977   |
|----------------|------------|--------------------|------------|
| HISTOGI        | RAM CONSTI | RUCTION            | ST-09      |
| <b>≯</b> s     |            |                    | Initialize |
| → <del>x</del> | → Count    | → x <sub>max</sub> |            |

### USER INSTRUCTIONS

| STEP | PROCEDURE                                                                 | ENTER | PRESS          | DISPLAY            |
|------|---------------------------------------------------------------------------|-------|----------------|--------------------|
| 1    | Select Program                                                            |       | [2nd] [Pgm] 07 | No Change          |
| 2    | Enter Histogram Data according to User Instructions found in Section III. |       | (3) [66]       |                    |
| 3    | Select Program                                                            |       | [2nd] [Pgm] 09 | No Change          |
| 4    | Initialize                                                                |       | [2nd] [ E' ]   | 0.                 |
| 5    | Calculate sample mean                                                     |       | [ A ]          | <del>x</del> †     |
| 6    | Calculate sample standard<br>deviation <sup>1</sup>                       |       | [2nd] [ A' ]   | s <sup>†</sup>     |
| 7a   | Display count of current cell <sup>2</sup>                                |       | [B]            | Count <sup>†</sup> |
| 7b   | Calculate upper limit of current cell <sup>3</sup>                        |       | [C]            | x <sub>max</sub> † |
| 8    | Display accumulation of cell counts                                       |       | [RCL] 21       | $\Sigma$ Count     |

#### NOTES:

- 1. The n-1 method is used here. You may calculate  $s^2$  using the n method by pressing [2nd] [Op] 11 [ $x \ge t$ ].
- 2. The cell number is incremented by 1 each time [ B ] is pressed. Divide the count by n to determine the frequency.
- 3. 7b must be performed immediately following 7a for the cell in question.
- † Printed when PC-100A is used.

### **Register Contents**

| $R_{oo}$ | Cell No.         | R <sub>05</sub> | $\Sigma x^2$ | R <sub>10</sub> | Cell 5<br>Count |          | Cell 10<br>Count | R <sub>20</sub> | Used           | R <sub>25</sub> |
|----------|------------------|-----------------|--------------|-----------------|-----------------|----------|------------------|-----------------|----------------|-----------------|
| $R_{01}$ | X <sub>min</sub> | $R_{06}$        | Cell 1       | R <sub>11</sub> | Cell 6          | $R_{16}$ | Cell 11          | $R_{21}$        | $\Sigma$ Count | $R_{26}$        |
|          |                  |                 | Count        |                 | Count           |          | Count            |                 |                |                 |
| $R_{02}$ | Width            | $R_{07}$        | Cell 2       | $R_{12}$        | Cell 7          | $R_{17}$ | Cell 12          | $R_{22}$        |                | $R_{27}$        |
| 02       |                  |                 | Count        |                 | Count           |          | Count            |                 |                |                 |
| $R_{03}$ | n                | $R_{08}$        | Cell 3       | $R_{13}$        | Cell 8          | $R_{18}$ |                  | $R_{23}$        |                | $R_{28}$        |
| 00       |                  |                 | Count        |                 | Count           |          |                  |                 |                |                 |
| $R_{04}$ | $\Sigma x$       | R <sub>09</sub> | Cell 4       | $R_{14}$        | Cell 9          | $R_{19}$ | Cells            | $R_{24}$        |                | $R_{29}$        |
|          |                  |                 | Count        |                 | Count           |          |                  |                 |                |                 |

## Example:

Construct a histogram from the second set of data used in the last example. Use 6 cells with a width of 2 and a minimum value of 64. The data is repeated below.

Heights of Sons: 68.4, 65.3, 66.5, 69.0, 73.6, 75.9, 69.7, 69.8, 71.0, 70.8, 67.7, 74.4, 69.9, 71.5, 71.1.

| ENTER             | PRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DISPLAY          | COMMENTS                |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|
|                   | [2nd] [Pgm] 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | Select Histogram        |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Data Program            |
|                   | [2nd] [ E' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.               | Initialize              |
| 6†                | [B]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.               | Cells                   |
| 64†               | [2nd] [ B' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64.              | × <sub>min</sub>        |
| 2†                | [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.               | Width                   |
| 68.4†             | [ A ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,00 1,000       | $x_1$                   |
| 65.3 <sup>†</sup> | [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.               | X <sub>2</sub>          |
| 66.5†             | [ A ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.               | <b>x</b> <sub>3</sub>   |
| 69.0 <sup>†</sup> | [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.               | x <sub>4</sub>          |
| 73.6 <sup>†</sup> | [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5. to 1/mi       | x <sub>5</sub>          |
| 75.9 <sup>†</sup> | [ A ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.               | x <sub>6</sub>          |
| 69.7 <sup>†</sup> | [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.               | x <sub>7</sub> Heights  |
| 69.8 <sup>†</sup> | [ A ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.               | $x_8$ of                |
| 71.0 <sup>†</sup> | [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.               | x <sub>9</sub> Sons     |
| 70.8 <sup>†</sup> | [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.              | x <sub>10</sub>         |
| 67.7 <sup>†</sup> | [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.              | x <sub>11</sub>         |
| 74.4 <sup>†</sup> | [ A ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.              | x <sub>12</sub>         |
| 69.9†             | [ A ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.              | x <sub>13</sub>         |
| 71.5 <sup>†</sup> | [ A ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.              | x <sub>14</sub>         |
| 71.1 <sup>†</sup> | [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.              | x <sub>15</sub>         |
|                   | [2nd] [Pgm] 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.              | Select Histogram        |
|                   | Partie and the control of the contro |                  | Construction Progra     |
|                   | [2nd] [E']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.               | Initialize              |
|                   | [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70.30666667†     | $\overline{\mathbf{x}}$ |
|                   | [2nd] [ A' ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.855437586†     | S                       |
|                   | [B]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.†              | Cell 1 Count            |
|                   | [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66.†             | Cell 1 Max              |
|                   | [B]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.†              | Cell 2 Count            |
|                   | [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68.†             | Cell 2 Max              |
|                   | [B]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.†              | Cell 3 Count            |
|                   | [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70.†             | Cell 3 Max              |
|                   | [B]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.†              | Cell 4 Count            |
|                   | [C] all 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72.†             |                         |
|                   | [B]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 1.t count      |                         |
|                   | [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.†             | Cell 5 Max              |
|                   | [B]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.†              | Cell 6 Count            |
|                   | [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76. <sup>†</sup> | Cell 6 Max              |
|                   | [RCL] 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.              | Total Count             |

<sup>†</sup> Printed when PC-100 is used.

#### Summary:

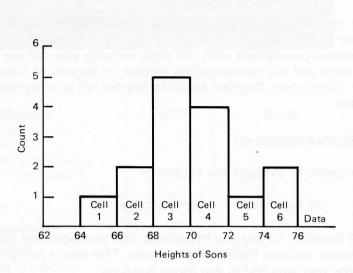



Figure 4.3

#### FREQUENCY PLOTTING

The probability of a data point falling into a given cell is known as the frequency of that cell. You may calculate the frequency of any cell by dividing the count of that cell by the total number of data points placed in the histogram. However, if you have a PC-100A, you may use the following instruction sequence to plot the frequency function.

| Location     |                   | Location     |              |
|--------------|-------------------|--------------|--------------|
| and Key Code | Key Sequence      | and Key Code | Key Sequence |
| 000 76       | [2nd] [Lbl]       | 016 55       | [÷]          |
| 001 11       | [ A ]             | 017 43       | [RCL]        |
| 002 05       | [5]               | 018 21       | [2][1]       |
| 003 42       | [STO]             | 019 65       | [ X ]        |
| 004 26       | [2][6]            | 020 01       | [1]          |
| 005 43       | [RCL]             | 021 09       | [9]          |
| 006 19       | [1][9]            | 022 95       | [=]          |
| 007 42       | [STO]             | 023 69       | [2nd] [Op]   |
| 008 00       | [0]               | 024 07       | [0][7]       |
| 009 76       | [2nd] [Lbl]       | 025 97       | [2nd] [Dsz]  |
| 010 12       | [B]               | 026 00       | [0]          |
| 011 01       | [1]               | 027 12       | [B]          |
| 012 44       | [SUM]             | 028 91       | [R/S]        |
| 013 26       | [2][6]            |              |              |
| 014 73       | [RCL] [2nd] [Ind] |              |              |
| 015 26       | [2][6]            |              |              |
|              |                   |              |              |

To use this routine press [2nd] [CP] [LRN] followed by the keystrokes listed in the key sequence column above. Then press [LRN] again and try it out by running the example on the last page and then pressing [RST] [A]. This routine plots the frequency function lengthwise on the tape with the left position equal to zero and the right equal to one.

## t-STATISTIC EVALUATION PROGRAM

(Comparison of Population Means)

The distribution of the t-statistic depends only on the population mean, not the variance. As a result, this statistic is often used to compare the means of different populations. If your samples are from normal populations with the same variance you can use this program to determine the t-statistic and the corresponding number of degrees of freedom. You may then use the *Student's t Distribution Program* found in Section VI to complete your comparison of the population means.

### FOR PAIRED OBSERVATIONS

You can use this program to evaluate the t-statistic

$$t = \overline{\Delta} \sqrt{n} / s_{\Delta}$$

with n-1 degrees of freedom, to test the hypothesis that two normally distributed populations with the same unknown variance have the same mean. This test is performed using n paired observations from the two samples. In the above equation:

 $\overline{\Delta}$  = the mean of the differences between the paired values.

n = the sample size.

 $s_{\Delta}$  = the standard deviation of the differences between the paired values using the n-1 method.

Enter your data using the Bivariate Data Program found in Section III.

#### TWO SAMPLE TEST

You may also use this program to evaluate the t-statistic

$$t = \frac{\overline{x} - \overline{y} - \Delta}{\left(\frac{1}{n_{x}} + \frac{1}{n_{y}}\right)^{1/2} \quad \left(\frac{\sum x_{i}^{2} - n_{x}\overline{x}^{2} + \sum y_{j}^{2} - n_{y}\overline{y}^{2}}{n_{x} + n_{y} - 2}\right)^{1/2}}$$

with  $n_x + n_y - 2$  degrees of freedom, to test the hypothesis that the difference between the means of two normally distributed populations having the same unknown variance is  $\Delta$ . Again, you must enter your data using the *Bivariate Data Program*. Since the sample sizes, don't have to be the same, you don't have to enter the data in pairs. (See example.) However, data deletion procedures are invalidated when the data isn't entered in pairs.

| ₹\$        | Solid S    | tate Soft                                                                                                                                  | ware            | TI ©1977 |  |
|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|--|
| t - STATIS | TIC EVALUA | ATION                                                                                                                                      |                 | ST-13    |  |
| ∆→t        |            |                                                                                                                                            |                 |          |  |
| <b>→</b> t | <b>→</b> ν | <b>→</b> <del>\</del> | →s <sub>Δ</sub> |          |  |

## **USER INSTRUCTIONS**

| STEP | PROCEDURE                                                                 | ENTER | PRESS                | DISPLAY          |
|------|---------------------------------------------------------------------------|-------|----------------------|------------------|
| 1    | Select Program                                                            |       | [2nd] [Pgm] 04       | No Change        |
| 2    | Enter Bivariate Data according to User Instructions found in Section III. |       | [2nd] [Pgm] 64       |                  |
| 3    | Select Program                                                            |       | [2nd] [Pgm] 13       | No Change        |
|      | For Paired Observation                                                    |       | far an experiment of |                  |
| 4    | Compute t-Statistic                                                       |       | [A]                  | t <sup>†</sup>   |
| 5    | Display degrees of freedom                                                |       | [B]                  | $\nu^{\dagger}$  |
| 6    | Display mean of difference between observations                           |       | [C]                  | <u>Ā</u> †       |
| 7    | Display standard deviation of difference between observations             |       | [D]                  | s <sub>A</sub> † |
|      | For Two Sample Test                                                       |       |                      |                  |
| 8    | Enter hypothesized difference and compute t-Statistic                     | Δ     | [2nd] [ A' ]         | t†               |
| 9    | Display degrees of freedom                                                |       | [B]                  | $\nu^{\dagger}$  |

NOTE:

† Printed when PC-100A is used.

#### **Register Contents**

| $R_{00}$ |              | $R_{05} \Sigma x^2$ | R <sub>10</sub>         | $R_{15}$ $n_x$  | R <sub>20</sub>             | R <sub>25</sub> <i>v</i>   |
|----------|--------------|---------------------|-------------------------|-----------------|-----------------------------|----------------------------|
| $R_{01}$ | $\Sigma$ y   | $R_{06}$            | R <sub>11</sub>         | R <sub>16</sub> | R <sub>21</sub>             | $R_{26} \overline{\Delta}$ |
| $R_{02}$ | $\Sigma y^2$ | R <sub>07</sub>     | $R_{12} \Sigma (x-y)$   | R <sub>17</sub> | R <sub>22</sub>             | $R_{27}$ $s_{\Delta}$      |
| $R_{03}$ | $n_{y}$      | $R_{08}$            | $R_{13} \Sigma (x-y)^2$ | R <sub>18</sub> | R <sub>23</sub> Used        | $R_{28}$                   |
| $R_{04}$ | $\Sigma x$   | R <sub>09</sub>     | R <sub>14</sub>         | R <sub>19</sub> | R <sub>24</sub> $\triangle$ | $R_{29}$                   |

### Example:

In an experiment to compare two different diets for pigs, a farmer randomly selects a pair of pigs from each of ten litters. He then chooses one pig from each pair and places them on diet A for a fixed period of time. The remaining pigs are placed on diet B during the same period. At the end of the experiment, the farmer weighs each pig to see how much it had gained. These results are tabulated below.

Table 4.2

|           | Litter 1 |      |      |      |      |      |      |      |      |      |
|-----------|----------|------|------|------|------|------|------|------|------|------|
| 10-21 000 | 1        | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
| Diet A    | 21.5     | 18.0 | 14.7 | 19.3 | 21.7 | 22.9 | 22.3 | 19.1 | 13.3 | 19.8 |
| Diet B    | 14.7     | 16.1 | 15.2 | 14.6 | 17.5 | 15.6 | 20.8 | 20.3 | 12.0 | 20.9 |

Evaluate the t-statistic for paired observations to test the hypotheses

 $H_0$ : the diets cause the same average weight gain ( $\mu_A = \mu_B$ )

against

 $H_1$ : the diets cause different average weight gains ( $\mu_A \neq \mu_B$ )

at the 95% confidence level.

| [2nd] [Pgm] 04    Data Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MENTS        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Data Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ivariate     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gram         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| $14.7^{\dagger}$ [B]       1. $y_1$ $18.0^{\dagger}$ [A]       2. $x_2$ $16.1^{\dagger}$ [B]       2. $y_2$ $14.7^{\dagger}$ [A]       3. $x_3$ $15.2^{\dagger}$ [B]       3. $y_3$ $19.3^{\dagger}$ [A]       4. $x_4$ $14.6^{\dagger}$ [B]       4. $y_4$ $20.00000000000000000000000000000000000$                                                                                                                                                                                                                                                                                            |              |
| $18.0^{\dagger}$ [A]       2. $x_2$ $16.1^{\dagger}$ [B]       2. $y_2$ $14.7^{\dagger}$ [A]       3. $x_3$ $15.2^{\dagger}$ [B]       3. $y_3$ $19.3^{\dagger}$ [A]       4. $x_4$ $14.6^{\dagger}$ [B]       4. $y_4$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $15.0^{\dagger}$ [B]       3. $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ |              |
| $16.1^{\dagger}$ $[B]$ 2. $y_2$ $14.7^{\dagger}$ $[A]$ 3. $x_3$ $15.2^{\dagger}$ $[B]$ 3. $y_3$ $19.3^{\dagger}$ $[A]$ 4. $x_4$ $14.6^{\dagger}$ $[B]$ 4. $y_4$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $3.$ $3.$ $3.$ $3.$ $3.$ $3.$ $19.3^{\dagger}$ $[A]$ $4.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$ $2.$                                       |              |
| $14.7^{\dagger}$ [A]       3. $x_3$ $15.2^{\dagger}$ [B]       3. $y_3$ $19.3^{\dagger}$ [A]       4. $x_4$ $14.6^{\dagger}$ [B]       4. $y_4$ $21.7^{\dagger}$ [A]       5. $x_5$ $17.5^{\dagger}$ [B]       5. $y_5$                                                                                                                                                                                                                                                                                                                                                                         |              |
| $15.2^{\dagger}$ [B]       3. $y_3$ $19.3^{\dagger}$ [A]       4. $x_4$ $14.6^{\dagger}$ [B]       4. $y_4$ $21.7^{\dagger}$ [A]       5. $x_5$ $17.5^{\dagger}$ [B]       5. $y_5$                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| 19.3†       [A]       4. $x_4$ 14.6†       [B]       4. $y_4$ 21.7†       [A]       5. $x_5$ 17.5†       [B]       5. $y_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| $14.6^{\dagger}$ [B]       4. $y_4$ $21.7^{\dagger}$ [A]       5. $x_5$ $17.5^{\dagger}$ [B]       5. $y_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| 21.7 <sup>†</sup> [A] 5. $x_5$ 17.5 <sup>†</sup> [B] 5. $y_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| 17.5 <sup>†</sup> [B] 5. y <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| 15.6 <sup>†</sup> [B] 6. y <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| 22.3 <sup>†</sup> [A] 7. $x_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| $20.8^{\dagger}$ [B] 7. $y_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| 19.1 <sup>†</sup> [A] 8. $x_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 20.3 <sup>†</sup> [B] 8. y <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| 13.3 <sup>†</sup> [A] 9. x <sub>9</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| 12.0 <sup>†</sup> [B] 9. y <sub>9</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| 19.8 <sup>†</sup> [A] 10. $x_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| $20.9^{\dagger}$ [B] 10. $y_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| [2nd] [Pgm] 13 10. Select t-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Statistic    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on Program   |
| [ A ] 2.522310351 <sup>†</sup> t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HT 1845 . NO |
| [B]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| [ C ] $\overline{\Delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| [ D ] $3.121769441^{\dagger}$ s <sub><math>\Delta</math></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |

#### Summary:

When using the t distribution to test hypotheses such as these you should accept  $H_0$  whenever your test statistic falls within a confidence interval about the mean of the distribution (t = 0). The 95% confidence interval or acceptance region for the t-statistic with 9 degrees of freedom is  $(-2.262, 2.262)^*$ . That is, the probability of a deviation of up to 2.262 is 0.95. Using this confidence interval, you will reject  $H_0$  when it is true in only 5% of your experiments. This is also known as testing at the 5% significance level, the hypotheses that the means are equal against the alternative that they are not. Since the t-statistic calculated in this exercise falls outside of the acceptance region you should reject  $H_0$  in favor of accepting  $H_1$ .

<sup>†</sup>Printed when PC-100A is used.

<sup>\*</sup>You may verify this using the Student's t Distribution Program.

In the above  $\overline{\Delta}$  was found to be 2.49. So just for practice, use the two-sample test to test the hypotheses

$$H_0: \mu_A - \mu_B = 2.5$$

against

$$H_1: \mu_A - \mu_B \neq 2.5.$$

The 95% confidence interval for the t-statistic with 18 degrees of freedom is (-2.101, 2.101). There is no need to reenter your data if you haven't disturbed your calculator since running the last example.

#### Example:

Two groups of patients at a major hospital are selected for an experiment to compare two drugs used for the relief of pain. One group is given drug x and the other drug y. The resulting number of hours of relief for each patient is given below.

Evaluate the two-sample statistic to test the hypotheses

$$H_0$$
:  $\mu_x - \mu_y = 2$  hours

against

$$H_1: \mu_x - \mu_y \neq 2 \text{ hours}$$

| ENTER           | PRESS                     | DISPLAY                         | COMMENTS                                   |
|-----------------|---------------------------|---------------------------------|--------------------------------------------|
|                 | [2nd] [Pgm] 04            | presign strictly gain 11 s.     | Select Bivariate  Data Program  Initialize |
|                 | [2nd] [ E' ]              | 0.                              |                                            |
| 2†              | [ A ]                     | sterese valget alor inc.        | <b>x</b> <sub>1</sub>                      |
| 6 <sup>†</sup>  | [ A ]                     | 2.                              | <b>x</b> <sub>2</sub>                      |
| 4†              | [A]                       | 3.                              | <b>X</b> <sub>3</sub>                      |
| 13 <sup>†</sup> | [A]                       | 4.                              | X4                                         |
| 5†              | [A]                       | 5.                              | X <sub>5</sub>                             |
| 8†              | [A]                       | 6.                              | <b>x</b> <sub>6</sub>                      |
| 4†              | [A]                       | 7.                              | ×7                                         |
| 6†              | [A]                       | 8.                              | <b>x</b> <sub>8</sub>                      |
| 6†              | [B]                       | 1.                              | Y <sub>1</sub>                             |
| 4†              | [B]                       | 2.                              | Y2                                         |
| 4†              | na at [B] says as sol but | 3.                              | У3                                         |
| 1†              | [B]                       | nuvies et estreso es 4. viso to | <b>y</b> 4                                 |
| 8†              | [B]                       | 5.                              | Y <sub>5</sub>                             |
| 2†              | [B]                       | 6.                              | <b>y</b> <sub>6</sub>                      |
| 12 <sup>†</sup> | [B]                       |                                 | У7                                         |
| 1†              | [B]                       | 8.                              | <b>y</b> 8                                 |
| 5†              | [B]                       | 2,3,1,51,51,8,9,                | <b>y</b> 9                                 |
| 2†              | [B]                       | 10.                             | Y10                                        |
| 2.              | [2nd] [Pgm] 13            | entropy of entropy 10.          | Select t-Statistic                         |
|                 | (Zilu) (i gili) 10        |                                 | <b>Evaluation Program</b>                  |
| 2               | [2nd] [ A' ]              | 3087445631 <sup>†</sup>         | $\Delta  ightarrow t$                      |
| 2               | [B]                       | 16.†                            | ν                                          |
|                 |                           |                                 |                                            |

<sup>†</sup> Printed when PC-100A is used.

#### Summary:

The 90% confidence interval for the t-statistic with 16 degrees of freedom is (-1.75, 1.75). You may accept the null hypotheses since the value computed for t falls in this range.

Note that in this experiment our null hypothesis is that  $\mu_x - \mu_y = 2$ . That is, we are assuming that  $\mu_x$  is larger than  $\mu_y$ . But what if  $\mu_y$  is the larger value. In this case you would simply test the hypothesis that  $\mu_x - \mu_y = -2$ . Try this yourself by entering the sample for drug y using the [ A ] key and drug x using [ B ]. You should get the same results when testing for  $\Delta = -2$ .

#### CONTINGENCY TABLE ANALYSIS PROGRAM

(Two-Way Classification)

A contingency table is a table in which each observation is classified in two or more ways. The data is Table 4.3 represents number of drivers in various age groups who were involved in zero, one, two, and more than two automobile accidents over a period of 3 years.

Table 4.3

Age of Driver 41 - 5061 - 7021 - 3031 - 4051 - 60Ni. 0 748 821 786 720 672 3747 Number 55 of Accidents 1 74 60 51 66 306 2 31 25 22 16 15 109 9 5 7 >2 10 6 37 N.j 862 916 865 807 749 4199

A table such as this, where only two classifications are considered, is known as a two-way contingency table. In analyzing such a table you are often interested in testing the hypothesis that the two classifications are independent of one another. In this example, that means you would like to know if the age of the driver and the number of accidents he is involved in are related. (The hypothesis is that they are not related.)

You may use this program to apply the  $\chi^2$  test of independence to the row and column classifications of a contingency table with R rows and C columns where RC  $\leq$  25. Calculations are based upon the  $\chi^2$  statistic

$$\chi^{2} = \sum_{i=1}^{R} \sum_{j=1}^{C} (N_{ij} - E_{ij})^{2} / E_{ij}$$

with (r-1)(c-1) degrees of freedom. In the above,  $N_{ij}$  is the count, or number observations occurring in cell ij (row i, column j) of the table.  $E_{ij}$  is the maximum likelihood estimator of the number of observations that should occur in cell ij when the classifications are independent (i.e., the row and column factors are not related). That is, the probability of an event falling in both row i and column j is the probability of the event falling in row i multiplied by the probability that it falls in column j. This may be expressed as

$$E_{ij} = (N_i, N_{ij})/n$$

where:  $N_i$  = the total number of counts in the i<sup>th</sup> row.

 $N_{ij}$  = the total number of counts in the j<sup>th</sup> column.

 $n = the total number of cells, R \times C.$ 

The outputs of this program are the  $\chi^2$ -statistic with (R-1)(C-1) degrees of freedom and the cumulative distribution function of the  $\chi^2$ -statistic,  $P(\chi^2)$ . You should accept your null hypothesis whenever  $P(\chi^2)$  is less than or equal to the confidence level you are testing at.

| ર્સ્ક્ષુ | Solid S        | tate Softw | vare | TI ©1977   |
|----------|----------------|------------|------|------------|
| CONTING  | ENCY TABL      | E ANALYSIS |      | ST-14      |
|          | <b>→</b> P(χ²) |            |      | Initialize |
| X        | → χ²           | <b>→</b> ν | R    | С          |

### USER INSTRUCTIONS

| STEP | PROCEDURE                                                             | ENTER | PRESS          | DISPLAY            |
|------|-----------------------------------------------------------------------|-------|----------------|--------------------|
| 1    | Select Program                                                        |       | [2nd] [Pgm] 14 | No Change          |
| 2    | Establish correct partitioning                                        | 6     | [2nd] [Op] 17  | Steps. 59          |
| 3    | Enter number of rows <sup>1</sup>                                     | R†    | [D]            | R                  |
| 4    | Enter number of columns <sup>1</sup>                                  | C†    | [E]            | С                  |
| 5    | Initialize data entry routine <sup>2</sup>                            |       | [2nd] [ E' ]   | 1.                 |
| 6    | Enter data by rows $(i.e., x_{11}, x_{12}, x_{1C}, x_{21}, x_{BC})^3$ | ×ij†  | [A]            | Next j             |
| 7    | Calculate X <sup>2</sup> -statistic <sup>5</sup>                      |       | [B]            | $\chi^2$           |
| 8    | Calculate degrees of freedom if desired                               |       | [C]            | ν                  |
| 9    | Calculate cumulative distribution function                            |       | [2nd] [ B' ]   | P(X <sup>2</sup> ) |

NOTES:

- 1. R X C can be no greater than 25.
- 2. This program uses its own data entry routine.
- 3. Do not enter negative values. If an error is made, begin again.
- 4. Perform Steps 1-7 first.
- 5. Execution time increases with  $\nu$ .
- † Printed when PC-100A is used.

#### **Register Contents**

$$\begin{array}{lll} R_{01} + & N_{\cdot 1}, \ldots, N_{\cdot C}, N_{1}, \ldots, N_{R}. \\ R_{26} & \chi^{2} \\ R_{27-29} & Pointers \\ R_{30} + & N_{11}, \ldots, N_{ij} \\ R_{57} & n \end{array}$$

 $R_{58}$   $R_{59}$  C

#### Example:

200 voters in a local bond election are randomly selected and asked their opinion on the issue. The voters are then classified according to their answers to this question and whether or not they are property owners as illustrated below.

Table 4.4

| calculation directly. In | For | Against | Undecided | N <sub>i</sub> . |
|--------------------------|-----|---------|-----------|------------------|
| Property Owner           | 45  | 39      | 21        | 105              |
| Non-Property Owner       | 47  | 26      | 22        | 95               |
| N.j                      | 92  | 65      | 43        | 200              |

Test the hypothesis that a voters opinion of the bond issue is independent of whether or not he is a property owner at the 90% confidence level.

| ENTER           | PRESS          | DISPLAY                      | COMMENTS              |
|-----------------|----------------|------------------------------|-----------------------|
|                 | [2nd] [Pgm] 14 |                              | Select Contingency    |
|                 |                |                              | Table Program         |
| 6               | [2nd] ] Op] 17 | Steps . 59                   | Repartition           |
| 2†              | [D]            | 2.                           | Rows                  |
| 3†              | [E]            | 3.                           | Columns               |
|                 | [2nd] [ E' ]   | d in ongreet analysis of ve  | Initialize Data Entry |
| 45 <sup>†</sup> | [A]            | 2. T = 1                     | x <sub>11</sub>       |
| 39†             | [A]            | smula lemas altrev 3. Jon ba | X <sub>12</sub>       |
| 21†             | [A]            | 1.                           | X <sub>13</sub>       |
| 47†             | [ A ]          | 2.                           | x <sub>21</sub>       |
| 26 <sup>†</sup> | [ A ]          | 3.                           | X <sub>22</sub>       |
| 22†             | [A]            | 1.                           | X <sub>23</sub>       |
| TOTAL STREET    | [C]            | 2.                           | u                     |
|                 | [B]            | 2.172164486                  | $\chi^2$              |
|                 | [2nd] [B']     | .6624637081                  | $P(\chi^2)$           |

<sup>†</sup> Printed when PC-100A is used.

#### Summary:

The range of the  $\chi^2$ -statistic is from zero to infinity. In order to evaluate this statistic you would normally have to determine an acceptance region for the computed statistic  $(0, \chi_0^2)$ .  $\chi_0^2$  depends upon the number of degrees of freedom of your test statistic and the confidence level at which you are testing. At the 90% confidence level, this interval would be  $(0, 4.61)^*$  for a  $\chi^2$ -statistic with 2 degrees of freedom. Since the value calculated above for  $\chi^2$  falls within this interval, you should accept the original hypothesis. That is, there is no evidence that a voter's opinion on the issue is influenced by whether or not he is a property owner.

Note, however; that this program also computes  $P(\chi^2)$ . This value ranges over the interval (0, 1). When testing at the 90% confidence level  $P(\chi_0^2) = 0.90$ . This indicates that you should accept  $H_0$  whenever  $P(\chi^2) \le 0.90$ . Since  $P(\chi^2)$  for this example meets this requirement, accept  $H_0$ .

Perform this test using the data found in Table 4.3.

<sup>\*</sup>You may verify this using the Chi-Square Distribution Program.

### ANALYSIS OF VARIANCE PROGRAMS

When trying to compare the means of several distributions the Student's t-test is no longer applicable. Analysis of Variance is a statistical technique used to test the hypothesis that a number of populations all have the same mean. The test is made by using the sample means to estimate the variance of the population. This estimate is then compared to an estimate of the population variance made from differences between individual elements of the samples. The F distribution is used to perform the actual test.

Two assumptions made when using this technique are:

- The populations are normally distributed.
- The variances of the populations are approximately equal.

## ONE-WAY AOV (Many Distribution Comparisons)

Sample populations used in one-way analysis of variance are often called treatment groups. Each treatment group i (i = 1, 2, ..., K) consists of  $n_i$  observations  $x_{ij}$  (j = 1, 2, ...,  $n_i$ ). The different groups need not have the same number of observations.

In the following, let

$$N = \sum_{i=1}^{K} n_{i}.$$

This program uses the sum of squares among groups to estimate the variance from the sample means. The actual equation is

$$\sigma^{2} \doteq \sum_{i=1}^{K} (\overline{x}_{i} - \overline{x})^{2} / (K - 1) = TSS/(K - 1).$$

TSS is known as the treatment sum of squares and for this equation,

$$\overline{x} = \begin{array}{ccc} K & n_i \\ \Sigma & \Sigma & x_{ij}/N. \\ i = 1 \ j = 1 \end{array}$$

The estimate of the variance made from the individual elements of the samples is accomplished using the sum of squares within groups.

$$\sigma^{2} \doteq \sum_{i=1}^{K} \sum_{j=1}^{n_{i}} (x_{ij} - \overline{x}_{i})^{2} / (N - K) = ESS/(N - K).$$

ESS is known as the error sum of squares.

The F-statistic

$$F = \frac{TSS/(K-1)}{ESS/(N-K)}$$

with K-1 degrees of freedom in the numerator and N-K degrees of freedom in the denominator is calculated by this program. You can use this data and the F distribution program found in Section VI to test the hypothesis that the means of your populations are equal. Additional

outputs are the treatment sum of squares (TSS) and the total sum of squares (SS). Note that though TSS is calculated directly, ESS is found by determining SS and then evaluating the expression ESS = SS - TSS.

Remember to enter your data using the One-Way AOV Data Program found in Section III.

| ર્સ્ક    | Solid S                 | tate Soft | ware  | TI ©1977 |
|----------|-------------------------|-----------|-------|----------|
| 1-WAY AN | ALYSIS OF               | VARIANCE  |       | ST-15    |
|          | → v 2                   |           |       |          |
| ≯F       | <b>→</b> ν <sub>1</sub> | → ESS     | → TSS | →ss      |

# **USER INSTRUCTIONS**

| STEP | PROCEDURE                                                                  | ENTER           | PRESS                                                | DISPLAY           |
|------|----------------------------------------------------------------------------|-----------------|------------------------------------------------------|-------------------|
| 1    | Select Program                                                             | of place system | [2nd] [Pgm] 06                                       | No Change         |
| 2    | Enter One-Way AOV data according to User Instructions found in Section III | owt principmo   | 28.5<br>n pnly ise used for a<br>cience to perform t | nce the time of v |
| 3    | Select Program                                                             |                 | [2nd] [Pgm] 15                                       | No Change         |
| 4    | Calculate F-statistic <sup>1</sup>                                         |                 | [A]                                                  | F†33783           |
| 5    | Display degrees of freedom in numerator                                    |                 | [B]                                                  | $\nu_1$ †         |
| 6    | Display degrees of freedom in denominator                                  |                 | [2nd] [B']                                           | $v_2$ †           |
| 7    | Display error sum of squares                                               |                 | [C]                                                  | ESS†              |
| 8    | Display treatment sum of squares                                           |                 | [D]                                                  | TSS <sup>†</sup>  |
| 9    | Display total sum of squares                                               |                 | [E]                                                  | SS†               |

- NOTES: 1. Step 4 must be performed before Steps 5-9.
  - † Printed when PC-100A is used.

### **Register Contents**

| $R_{00}$                   | $R_{05}$            | $R_{10} \Sigma (\Sigma x)^2/n$ | $R_{15}$ TSS/ $v_1$   | $R_{20}$        | R <sub>25</sub>         |
|----------------------------|---------------------|--------------------------------|-----------------------|-----------------|-------------------------|
| $R_{01} \Sigma \Sigma X$   | $R_{06}$            | R <sub>11</sub> Used           | $R_{16}$ $\nu_2$      | R <sub>21</sub> | $R_{26}$                |
| $R_{02} \Sigma \Sigma x^2$ | R <sub>07</sub>     | R <sub>12</sub> SS             | $R_{17}$ ESS/ $\nu_2$ | $R_{22}$        | R <sub>27</sub>         |
| $R_{03}$                   | R <sub>08</sub> TSS | R <sub>13</sub> ESS            | R <sub>18</sub>       | $R_{23}$        | R <sub>28</sub> i Count |
| $R_{04}$                   | $R_{09}$ $\Sigma n$ | $R_{14}$ $\nu_1$               | R <sub>19</sub>       | R <sub>24</sub> | R <sub>29</sub>         |

#### Example:

Let's extend the second t-statistic example to compare the effects of three drugs used for the relief of pain. Assume that three groups of patients are chosen for the experiment and given drugs x, y, and z respectively. The resulting number of hours of relief for each patient is given below.

Drug x: 2, 6, 4, 13, 5, 8, 4, 6;

Drug y: 6, 4, 4, 1, 8, 2, 12, 1, 5, 2;

Drug z: 2, 1, 3, 3, 1, 7, 1, 4, 2.

### Test the hypotheses

 $H_0$ : All of the drugs relieve pain for the same amount of time  $(\mu_x = \mu_y = \mu_z)$ 

against

H<sub>1</sub>: Not all of the drugs relieve pain for the same amount of time.

Since the t-test can only be used for comparing two sample populations we'll have to use one-way analysis of variance to perform this test.

| ENTER           | PRESS          | DISPLAY           | COMMENTS                    |
|-----------------|----------------|-------------------|-----------------------------|
|                 | [2nd] [Pgm] 06 |                   | Select AOV<br>Data Program  |
|                 | [2nd] [ E' ]   | 0.                | Initialize 1-Way AOV        |
| 2†              | [ A ]          | 1.                | $x_1$                       |
| 6 <sup>†</sup>  | [ A ]          | 2.                | × <sub>2</sub>              |
| 4 <sup>†</sup>  | [ A ]          | 3.                | x <sub>3</sub>              |
| 13 <sup>†</sup> | [ A ]          | 4.                | ×4                          |
| 5†              | [ A ]          | 5.                | × <sub>5</sub>              |
| 8†              | [ A ]          | 6.                | <b>x</b> <sub>6</sub>       |
| 4†              | [ A ]          | 7.                | × <sub>7</sub>              |
| 6 <sup>†</sup>  | [A]            | 8.                | × <sub>8</sub>              |
|                 | [2nd] [ B' ]   | 6.†               | $\overline{x}$              |
|                 | [2nd] [ C' ]   | 9.75 <sup>†</sup> | s <sub>x</sub> <sup>2</sup> |
| 6 <sup>†</sup>  | [ A ]          | 1.                | Y <sub>1</sub>              |
| 4†              | [ A ]          | 2.                | Y <sub>2</sub>              |
| 4†              | [A]            | 3.                | У3                          |
| 1†              | [ A ]          | 4.                | <b>y</b> 4                  |
| 8†              | [A]            | 5.                | <b>Y</b> <sub>5</sub>       |
| 2†              | [ A ]          | 6.                | Y <sub>6</sub>              |
| 12 <sup>†</sup> | [ A ]          | 7.                | У7                          |
| 1†              | [ A ]          | 8.                | У8                          |
| 5†              | [ A ]          | 9.                | У9                          |
| 2†              | [ A ]          | 10.               | Y <sub>10</sub>             |

| ENTER          | PRESS          | PRINT                    | DISPLAY         |
|----------------|----------------|--------------------------|-----------------|
|                | [2nd] [ B' ]   | 4.5 <sup>†</sup>         | $\overline{y}$  |
|                | [2nd] [ C' ]   | 10.85 <sup>†</sup>       | sy <sup>2</sup> |
| 2†             | [A]            | 1.                       | $z_1$           |
| 1†             | [ A ]          | 2.                       | Z <sub>2</sub>  |
| 3†             | [A]            | 3.                       | $z_3$           |
| 3†             | [ A ]          | 4.                       | Z <sub>4</sub>  |
| 1 <sup>†</sup> | [A]            | 5.                       | Z <sub>5</sub>  |
| 7†             | [A]            | 6.                       | Z <sub>6</sub>  |
| 1†             | [A]            | 7.                       | Z <sub>7</sub>  |
| 4†             | [A]            | 8.                       | Z <sub>8</sub>  |
| 2†             | [A]            | 9.                       | Z9              |
|                | [2nd] [ B' ]   | 2.666666667 <sup>†</sup> | Z               |
|                | [2nd] [ C' ]   | 3.33333333 <sup>†</sup>  | $s_z^2$         |
|                | [2nd] [Pgm] 15 | 3.33333333               | Select 1-Way    |
|                | Adversarias I  |                          | AOV Program     |
|                | [A]            | 2.632794457†             | F               |
|                | [B]            | 2.†                      | $\nu_1$         |
|                | [2nd] [B']     | 24.†                     | $\nu_2$         |

<sup>†</sup> Printed when PC-100A is used.

#### Summary:

As described above, the F-statistic is actually the ratio of two estimates of a population's variance. Since variances are always positive, this ratio can never be less than zero. It should also be evident that F will vary around 1 when  $H_0$  is true. Consequently, you should reject  $H_0$  only if F is significantly greater than 1. The acceptance region for this test is  $(0, F_0)$  where the probability that F is less than  $F_0$  is equal to the degree of confidence that you desire.  $F_0$  is also controlled by the degrees of freedom of the estimates. When testing at the 90% confidence level, the acceptance region for the F-statistic with 2 degrees of freedom in the numerator and 24 in the denominator is  $(0, 2.54)^*$ . Since the F-statistic computed in this exercise exceeds 2.54 you should reject  $H_0$ .

#### TWO-WAY AOV (Row-Column Effects)

You can use two-way analysis of variance to evaluate the combined effects of two variables on a third. Table 4.5 expresses the percent of light reflected from five types of plastic surfaces coated with three types of paint.

Table 4.5

|       |   | Type of Surface |      |      |      |      |  |  |  |  |
|-------|---|-----------------|------|------|------|------|--|--|--|--|
|       |   | 1               | 2    | 3    | 4    | 5    |  |  |  |  |
| Type  | А | 14.5            | 13.6 | 16.3 | 23.2 | 19.4 |  |  |  |  |
| of    | В | 14.6            | 16.2 | 14.8 | 16.8 | 17.3 |  |  |  |  |
| Paint | С | 16.2            | 14.0 | 15.5 | 18.7 | 21.0 |  |  |  |  |

<sup>\*</sup>You may verify this using the F Distribution Program.

Here, the effects of the paint types on the population mean are known as row effects. Now, to estimate the population variance on the basis of row means, the sum of squares among rows is used.

$$\sigma^2 \doteq C \sum_{i=1}^{R} (\overline{x}_i - \overline{x})^2 / (R - 1) = RSS/(R - 1)$$

In the above equation:

R = the number of rows.

C = the number of columns.

 $\overline{x}_i$ . = the mean of the sample values in row i.

$$\overline{x} = \sum_{i=1}^{R} \sum_{j=1}^{C} x_{ij}/RC.$$

RSS = the row sum of squares (corresponds to TSS in one-way AOV).

Similar to the error sum of squares used in one-way AOV, the estimate of the variance made from the individual elements of the sample is found using the residual sum of squares (Res).

$$\sigma^2 \doteq \sum_{i=1}^{R} \sum_{j=1}^{C} (x_{ij} - \overline{x}_i - \overline{x}_{\cdot j} + \overline{x})^2 / (R-1)(C-1) = \text{Res}/(R-1)(C-1).$$

The F-statistic

$$F_{R} = \frac{RSS/(R-1)}{Res/(R-1)(C-1)}$$

with R-1 degrees of freedom in the numerator and (R-1)(C-1) degrees of freedom in the denominator is calculated by this program. And as with one-way AOV, you can use this data and the F-distribution program to test the effects of row variables on the population mean.

Similar to the above, the effects of surface types on the population mean are known as column effects. Here the estimate of the population variance made on the basis of column means is accomplished using the sum of squares among columns.

$$\sigma^2 = R \sum_{j=1}^{C} (\overline{x}_{.j} - \overline{x})^2 / (C - 1) = CSS/(C - 1).$$

CSS is known as the column sum of squares.

The F-statistic used for testing column effects is

$$F_C = \frac{CSS/(C-1)}{Res/(R-1)(C-1)}$$

with C-1 degrees of freedom in the numerator and (R-1)(C-1) degrees of freedom in the denominator.

In addition to the F-statistics and their corresponding degrees of freedom, this program yields the row sum of squares (RSS), the column sum of squares (CSS), and the total sum of squares (SS). RSS and CSS are computed directly. However, Res is evaluated as Res = SS-RSS-CSS.

Enter your data using the *Two-Way AOV Data Program* found in Section III. Remember, R+C cannot exceed 16.

| ₹\$      | Solid S    | tate Soft        | ware                             | TI ©1977 |
|----------|------------|------------------|----------------------------------|----------|
| 2-WAY AN | IALYSIS OF | VARIANCE         |                                  | ST-16    |
|          | → RSS      | → F <sub>R</sub> |                                  |          |
| → ss     | → css      | → F <sub>C</sub> | → ν <sub>1</sub> ;ν <sub>2</sub> |          |

# USER INSTRUCTIONS

| STEP | PROCEDURE                                                                               | ENTER        | PRESS                                         | DISPLAY                     |
|------|-----------------------------------------------------------------------------------------|--------------|-----------------------------------------------|-----------------------------|
| 1    | Select Program                                                                          |              | [2nd] [Pgm] 06                                | No Change                   |
| 2    | Enter Two-Way AOV data according to User Instructions found in Section III <sup>1</sup> |              | e at elli bliow aW s<br>b teet carr eslomes o | STATE STATE                 |
| 3    | Select Program                                                                          |              | [2nd] [Pgm] 16                                | No Change                   |
| 4    | Calculate total sum of squares                                                          |              | [ A ]                                         | SS <sup>†</sup>             |
| 5    | Calculate column sum of squares                                                         |              | [B]                                           | CSS <sup>†</sup>            |
| 6    | Calculate row sum of squares <sup>2</sup>                                               |              | [2nd] [ B' ]                                  | RSS†                        |
|      | For Column Effects                                                                      |              |                                               |                             |
| 7    | Calculate F-Statistic                                                                   |              | [C]                                           | F <sub>C</sub> <sup>†</sup> |
| 8    | Calculate degrees of freedom in numerator                                               | -W 90162 BIT | [D] bellis to                                 | $v_1^{\dagger}$             |
| 9    | Calculate degrees of freedom in denominator                                             |              | [R/S]                                         | ν <sub>2</sub> †            |
|      | For Row Effects <sup>3</sup>                                                            |              |                                               |                             |
| 10   | Calculate F-Statistic                                                                   |              | [2nd] [ C' ]                                  | F <sub>R</sub> †            |
| 11   | Calculate degrees of freedom in numerator                                               | avs arms art | [D]                                           | $v_1^{\dagger}$             |
| 12   | Calculate degrees of freedom in denominator                                             | - Invelo     | [R/S]                                         | $\nu_2$ †                   |

#### NOTES:

- 1. R + C cannot exceed 16.
- 2. Perform Step 5 before Step 6.
- 3. Perform Steps 7-9 first.
- † Printed when PC-100A is used.

### **Register Contents**

| $R_{oo}$ |         | $R_{05}$ |          | $R_{10}$ | RSS  | R <sub>15</sub> | * | R <sub>20</sub> | * | $R_{25}$ | *       |
|----------|---------|----------|----------|----------|------|-----------------|---|-----------------|---|----------|---------|
| $R_{01}$ | Rows    | $R_{06}$ | Mean     | $R_{11}$ | Used | $R_{16}$        | * | $R_{21}$        | * | $R_{26}$ | *       |
| $R_{02}$ | Columns | $R_{07}$ | Variance | $R_{12}$ | *    | R <sub>17</sub> | * | $R_{22}$        | * | $R_{27}$ | *       |
| $R_{03}$ | n       | $R_{08}$ | SS       | $R_{13}$ | *    | $R_{18}$        | * | $R_{23}$        | * | $R_{28}$ |         |
| $R_{04}$ |         | $R_{09}$ | CSS      | $R_{14}$ | *    | R <sub>19</sub> | * | $R_{24}$        | * | $R_{29}$ | j Count |

<sup>\*</sup>See Table 3.1.

#### Example:

Similar to the first t-statistic example, let's suppose that three pigs are randomly chosen from each of nine litters. Then, one pig from each litter is placed on diet A, a second on diet B, and the third on diet C for a fixed period of time. At the end of the experiment the pigs are weighed to see how much weight they have gained. These results are tabulated below.

Table 4.6

|        |      | Litter |      |      |      |      |      |      |      |
|--------|------|--------|------|------|------|------|------|------|------|
|        | 1    | 2      | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
| Diet A | 14.7 | 14.5   | 19.2 | 19.2 | 14.7 | 19.6 | 20.0 | 16.1 | 16.5 |
| Diet B | 18.8 | 19.2   | 19.9 | 19.0 | 20.3 | 18.8 | 20.3 | 22.0 | 16.7 |
| Diet C | 14.2 | 13.2   | 14.2 | 19.3 | 18.4 | 15.7 | 18.8 | 17.6 | 14.0 |

In the first experiment we were concerned with determining if each diet caused the same average weight gain. We would like to solve the same problem here; but since we are dealing with more than two samples the t-test can no longer be used. To perform this evaluation we again turn to analysis of variance. One-way AOV would tell us whether or not there is any significant difference between the diets. But what if we also want to compare the litters at the same time? For this purpose we may use 2-way AOV. Test the hypotheses

 $H_0$ : each diet causes the same average weight gain ( $\mu_A = \mu_B = \mu_C$ )

against

H<sub>1</sub>: not all the diets cause the same weight gain

and

H<sub>0</sub>: the litters all had the same average weight gain

against

H<sub>1</sub>: not all the litters had the same average weight gain.

Perform these tests at the 95% confidence level.

| ENTER             | PRESS                         | DISPLAY         | COMMENTS             |
|-------------------|-------------------------------|-----------------|----------------------|
|                   | [2nd] [Pgm] 06                |                 | Select AOV           |
|                   |                               |                 | Data Program         |
|                   | se con [ E ] sum of a guarde. | 0.              | Initialize 2-Way AOV |
| 3†                | [B]                           | 3.              | Rows                 |
| 9†                | [ C ]                         | 9.              | Columns              |
| 14.7 <sup>†</sup> | [ A ]                         | 1.              | x <sub>11</sub>      |
| 14.5 <sup>†</sup> | [ A ]                         | 2.              | X <sub>12</sub>      |
| 19.2 <sup>†</sup> | [ A ]                         | Total 3. Dealth | X <sub>13</sub>      |
| 19.2 <sup>†</sup> | [ A ]                         | 4.              | X <sub>14</sub>      |
| 14.7†             | [ A ]                         | 5.              | X <sub>15</sub>      |
| 19.6 <sup>†</sup> | [ A ]                         | 6.              | x <sub>16</sub>      |
|                   |                               |                 |                      |

| ENTER             | PRESS          | DISPLAY                     | COMMENTS                |
|-------------------|----------------|-----------------------------|-------------------------|
| 20.0†             | [A]            | 7.                          | × <sub>17</sub>         |
| 16.1 <sup>†</sup> | [A]            | olo p la Her mue 8. et vent | x <sub>18</sub>         |
| 16.5 <sup>†</sup> | [A]            | 9.                          | X <sub>19</sub>         |
| 18.8†             | [ A ]          | diself of animula.          | X <sub>21</sub>         |
| 19.2 <sup>†</sup> | [ A ]          | 2.                          | X <sub>22</sub>         |
| 19.9 <sup>†</sup> | [A]            | 3.                          | X <sub>23</sub>         |
| 19.0 <sup>†</sup> | [A]            | 4.                          | x <sub>24</sub>         |
| 20.3†             | [A]            | 5.                          | X <sub>25</sub>         |
| 18.8 <sup>†</sup> | [A]            | 6.                          | x <sub>26</sub>         |
| 20.3†             | [ A ]          | 7.                          | X <sub>27</sub>         |
| 22.0†             | [ A ]          | His amplication = 8.        | ×28                     |
| 16.7 <sup>†</sup> | [ A ]          | 9.                          | X <sub>29</sub>         |
| 14.2†             | [ A ]          | 1.                          | X <sub>31</sub>         |
| 13.2†             | [ A ]          | 2.                          | X <sub>32</sub>         |
| 14.2†             | [ A ]          | 3.                          | x <sub>33</sub>         |
| 19.3†             | [ A ]          | 4.                          | ×34                     |
| 18.4 <sup>†</sup> | [ A ]          | 5.                          | x <sub>35</sub>         |
| 15.7 <sup>†</sup> | [ A ]          | 6.                          | ×36                     |
| 18.8†             | [ A ]          | 7.                          | X37                     |
| 17.6 <sup>†</sup> | [ A ]          | 8.                          | ×38                     |
| 14.0†             | [ A ]          | 9.                          | X39                     |
|                   | [2nd] [ B' ]   | 17.58888889 <sup>†</sup>    | $\overline{\mathbf{x}}$ |
|                   | [2nd] [ C' ]   | 5.786172841 <sup>†</sup>    | $s^2$                   |
|                   | [2nd] [Pgm] 16 | 5.786172841                 | Select 2-Way            |
|                   |                |                             | AOV Program             |
|                   | [A]            | 156.2266667 <sup>†</sup>    | SS                      |
|                   | [B]            | 54.88666667 <sup>†</sup>    | CSS                     |
|                   | [2nd] [ B' ]   | 51.08222222 <sup>†</sup>    | RSS                     |
|                   | [ C ]          | 2.18420587 <sup>†</sup>     | F <sub>C</sub> )        |
|                   | [D]            | 8.†                         | $\nu_1$ Column Effects  |
|                   | [R/S]          | 16. <sup>†</sup>            | $\nu_2$                 |
|                   | [2nd] [ C' ]   | 8.131234517 <sup>†</sup>    | F <sub>R</sub> )        |
|                   | [D]            | 2.†                         | $\nu_1$ Row Effects     |
|                   | [R/S]          | 16. <sup>†</sup>            | $\nu_2$                 |

<sup>†</sup> Printed when PC-100A is used.

#### Summary:

The acceptance region for the F-statistic with 2 degrees of freedom in the denominator and 16 in the numerator at the 95% confidence level is  $(0, 3.63)^*$ . Since  $F_R$  falls outside of this range you should reject the hypotheses that there is no difference between the diets. In fact, since  $F_R$  is not even close to the acceptance region, the probability of a significant difference between the diets is extremely high.

At the same confidence level, the acceptance region for the F-statistic with 8 and 16 degrees of freedom is  $(0, 2.59)^*$ . Since  $F_C$  is in this interval there is no indication of a significant difference between the litters.

Just for practice, try the paint example using the data given in Table 4.5. Testing at the 95% confidence level, your acceptance regions should be (0, 4.46) for  $F_R$  and (0, 3.84) for  $F_C$ .

<sup>\*</sup>You may verify this using the F Distribution Program.

#### **RANK-SUM TESTS PROGRAM**

The Wilcoxon-Mann-Whitney rank-sum test is a procedure used to compare the means of two populations having the same distribution. You do not have to know the form of the distribution to use this test. However, assuming the distributions of the cumulative density functions f(x) and g(x) take the same form, you may use this program to test

 $H_0$ : the means of the populations are equal, f(x) = g(x)

against

 $H_1$ : the means of the populations differ by an unknown constant c, f(x + c) = g(x).

In Figure 4.4,  $H_1$  indicates that g(x) has shifted to the right by an amount c.

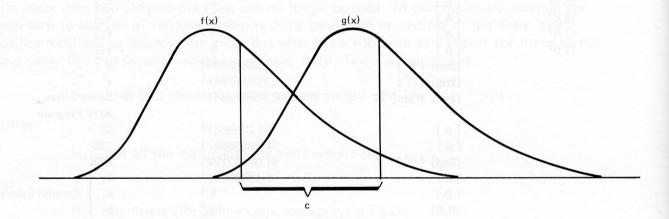



Figure 4.4

Suppose that X is a random sample of size m and Y is a random sample of size n. Assuming that these samples are from populations having the same distribution, you may use this program to compare their means. The first step is to order or rank the values in your two samples from smallest to largest. (The program does this for you.) For example, if your samples were

$$X = \{2, 5, 6\} \text{ and } Y = \{3, 6, 7\},\$$

the combined ordered set would be

$$\{X_1, Y_1, X_2, X_3, Y_2, Y_3\}$$
.

Note that when ties occur the program ranks the x value first. Naturally, you should use a larger sample than in this demonstration.

When  $H_1$  is true for a positive c, the y values tend to be larger than the x values. A statistic taking advantage of this fact is the sum of the ranks of the y's in the combined ordered set. That is, if  $R(y_i)$  is the rank of  $y_i$ , then

$$T_{y} = \sum_{i=1}^{n} R(y_{i}).$$

In the example given above  $T_y = 2 + 5 + 6 = 13$ .

Now, if  $H_0$  is true and m,  $n\geqslant 10$ , then  $T_y$  possesses an approximate normal distribution. Consequently, the Mann-Whitney statistic for y

$$w_y = mn - T_v + n(n + 1)/2$$

is also nearly normally distributed. The mean and variance of  $w_{\nu}$  are given as

$$\overline{w}$$
 = mn/2 and  $s_w^2$  = mn(m + n + 1)/12.

After the program converts this to standard normal form we have

$$z_y = (w_y - \overline{w})/s_w$$
.

You may now plug this data into the Normal Distribution Program and perform a lower-tailed test to evaluate your hypotheses.

If you suspect that  $H_1$  may be true for a negative c you should use  $T_{\rm x}$  as the basis of your test. Calculations proceed similarly to the above except that an upper-tailed test is used in the final evaluation. Upper and lower-tailed tests are described in Section VI.

To use this program, enter your data using the *Bivariate Data Program* found in Section III. Since the data is not paired enter all the x values first. Then enter all the y values. (You should note, however; that this method of entry invalidates data deletion procedures.) There is no need for the sample sizes to be the same. The only restriction is that registers  $R_{00}$  through  $R_{(31+m+n)}$  must be left available for program use.

| ₹\$       | Solid St                  | ate Soft | ware | TI ©1977                      |   |
|-----------|---------------------------|----------|------|-------------------------------|---|
| RANK SUI  | M TESTS                   |          |      | ST-17                         |   |
|           | , <b>→</b> T <sub>y</sub> |          |      | → s <sub>w</sub> <sup>2</sup> | ı |
| Rank Data | →T <sub>x</sub>           | → w      | → z  | →w                            | ı |

## **USER INSTRUCTIONS**

| STEP | PROCEDURE                                                                                   | ENTER | PRESS                                                         | DISPLAY                            |
|------|---------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------|------------------------------------|
| 1    | Select Program                                                                              |       | [2nd] [Pgm] 04                                                | No Change                          |
| 2    | Enter Bivariate Data according<br>to User Instructions found in<br>Section III <sup>1</sup> |       | aria (0.0 s/ m m ma<br>strate yentiriliV mush<br>at an ancada | w, It is, is an analysis to        |
| 3    | Select Program                                                                              |       | [2nd] [Pgm] 17                                                | No Change                          |
| 4    | Rank data <sup>2</sup>                                                                      |       | [A]                                                           | Ordered data                       |
|      | A THE REPORT OF LIFE STAN                                                                   |       | The tradition your                                            | is flashed in display and printed. |
| 5    | Calculate rank sum of x <sup>3,5</sup>                                                      |       | [B]                                                           | T <sub>x</sub> †                   |
| 6    | Calculate Mann-Whitney for x                                                                |       | [C]                                                           | w <sub>x</sub> †                   |
| 7    | Calculate normal deviate for x                                                              |       | [D]                                                           | z <sub>x</sub> †                   |
| 8    | Calculate rank sum of y <sup>4</sup>                                                        |       | [2nd] [ B' ]                                                  | T <sub>y</sub> †                   |
| 9    | Calculate Mann-Whitney for y                                                                |       | [C]                                                           | w <sub>v</sub> †                   |
| 10   | Calculate normal deviate for y                                                              |       | [D]                                                           | z <sub>y</sub> †                   |
| 11   | Display rank mean                                                                           |       | [E]                                                           | <del>v</del> t                     |
| 12   | Display rank variance                                                                       |       | [2nd] [ E' ]                                                  | s <sub>w</sub> ²†                  |

NOTES:

- 1. Enter all the x values first, then enter the y values. This invalidates data deletion procedures.
- 2. Perform this step before 5 or 8.
- 3. Perform this step before 6 and 7.
- 4. Perform this step before 9 and 10.
- 5. Execution time increases with the number of data points.
- † Printed when PC-100A is used.

# **Register Contents**

| $R_{00}$        | $R_{05}$ | $R_{10}$        | $R_{15}$ $n_x$  | R <sub>20</sub>       | R <sub>25</sub> T    | R <sub>30</sub> and above are |
|-----------------|----------|-----------------|-----------------|-----------------------|----------------------|-------------------------------|
| $R_{01}$        | $R_{06}$ | $R_{11}$        | R <sub>16</sub> | R <sub>21</sub>       | R <sub>26</sub> Used | used in ranking               |
| $R_{02}$        | $R_{07}$ | $R_{12}$        | R <sub>17</sub> | R <sub>22</sub>       | R <sub>27</sub> Used | the raw data.                 |
| $R_{03}$ $n_y$  | $R_{08}$ | $R_{13}$        | R <sub>18</sub> | $R_{23} \overline{W}$ | R <sub>28</sub>      |                               |
| R <sub>04</sub> | $R_{09}$ | R <sub>14</sub> | R <sub>19</sub> | $R_{24} s_w^2$        | R <sub>29</sub>      |                               |

### Example:

In the *Means and Moments* example we showed that the distribution of the heights of a group of men had the same shape as the distribution of the heights of their sons. The only difference detected was that the second distribution appeared to be shifted slightly to the right. The data used in that example is repeated below.

Fathers: 67.2, 65.0, 68.3, 69.9, 66.3, 69.7, 69.5, 72.9, 70.2, 74.1. Sons: 68.4, 65.3, 66.5, 69.0, 73.6, 75.9, 69.7, 69.8, 71.0, 70.8, 67.7, 74.4, 69.9, 71.5, 71.1.

### Test the hypotheses

 $H_0$ : the means of the distributions are equal, f(x) = g(x)

against

 $H_1$ : the means of the distributions differ by a positive constant c, f(x + c) = g(x).

Perform this test at the 95% confidence level.

| ENTER             | PRESS          | DISPLAY | COMMENTS                                      |
|-------------------|----------------|---------|-----------------------------------------------|
|                   | [2nd] [Pgm] 04 |         | Select Bivariate Data Program                 |
|                   | [2nd] [ E' ]   | 0.      | Initialize                                    |
| 67.2 <sup>†</sup> | [ A ]          | 1.      | X <sub>1</sub>                                |
| 65.0 <sup>†</sup> | [ A ]          | 2.      | × <sub>2</sub>                                |
| 68.3 <sup>†</sup> | [ A ]          | 3.      | <b>x</b> <sub>3</sub>                         |
| 69.9†             | [ A ]          | 4.      | X4                                            |
| 66.3†             | [ A ]          | 5.      | X <sub>5</sub> Heights                        |
| 69.7†             | [ A ]          | 6.      | $\begin{pmatrix} x_6 \\ x_6 \end{pmatrix}$ of |
| 69.5 <sup>†</sup> | [ A ]          | 7.      | × <sub>7</sub> Fathers                        |
| 72.9 <sup>†</sup> | [ A ]          | 8.      | <b>x</b> <sub>8</sub>                         |
| 70.2†             | [ A ]          | 9.      | X9                                            |
| 74.1 <sup>†</sup> | [ A ]          | 10.     | ×10                                           |
| 68.4†             | [B]            | 1.      | ×1 \                                          |
| 65.3 <sup>†</sup> | [B]            | 2.      | X <sub>2</sub>                                |
| 66.5 <sup>†</sup> | [B]            | 3.      | <b>x</b> <sub>3</sub>                         |
| 69.0†             | [B]            | 4.      | X4                                            |
| 73.6 <sup>†</sup> | [B]            | 5.      | X <sub>5</sub>                                |
| 75.9 <sup>†</sup> | [B]            | 6.      | × <sub>6</sub>                                |
| 69.7 <sup>†</sup> | [B]            | 7.      | x <sub>7</sub> Heights                        |
| 69.8†             | [B]            | 8.      | x <sub>8</sub> of                             |
| 71.0 <sup>†</sup> | [B]            | 9.      | x <sub>9</sub> Sons                           |
| 70.8†             | [B]            | 10.     | x <sub>10</sub>                               |
| 67.7 <sup>†</sup> | [B]            | 11.     | X <sub>11</sub>                               |
| 74.4†             | [B]            | 12.     | X <sub>12</sub>                               |
| 69.9 <sup>†</sup> | [B]            | 13.     | X <sub>13</sub>                               |
| 71.5 <sup>†</sup> | [B]            | 14.     | x <sub>14</sub>                               |
| 71.1 <sup>†</sup> | [B]            | 15.     | x <sub>15</sub>                               |

| ENTER | PRESS          | DISPLAY                   | COMMENTS                    |
|-------|----------------|---------------------------|-----------------------------|
|       | [2nd] [Pgm] 17 |                           | Select Rank-Sum             |
|       |                |                           | Tests Program               |
|       | [A]            | 65. <sup>†</sup>          | Rank Data —                 |
|       |                | 66.3 <sup>†</sup>         | Data for Group x            |
|       |                | 67.2 <sup>†</sup>         | is Ordered First —          |
|       |                | 68.3 <sup>†</sup>         | Ordered Data is             |
|       |                | 69.5 <sup>†</sup>         | Briefly Displayed           |
|       |                | 69.7†                     | and Printed.                |
|       |                | 69.9†                     |                             |
|       |                | 70.2†                     |                             |
|       |                | 72.9 <sup>†</sup>         |                             |
|       |                | 74.1 <sup>†</sup>         |                             |
|       |                |                           |                             |
|       |                | 65.3 <sup>†</sup>         |                             |
|       |                | 66.5 <sup>†</sup>         |                             |
|       |                | 67.7 <sup>†</sup>         |                             |
|       |                | 68.4†                     |                             |
|       |                | 69.†                      |                             |
|       |                | 69.7 <sup>†</sup>         |                             |
|       |                | 69.8†                     |                             |
|       |                | 69.9 <sup>†</sup>         |                             |
|       |                | 70.8 <sup>†</sup>         |                             |
|       |                | 71.†                      |                             |
|       |                | 71.1†                     |                             |
|       |                | 71.5 <sup>†</sup>         |                             |
|       |                | 73.6 <sup>†</sup>         |                             |
|       |                | 74.4†                     |                             |
|       |                | 75.9 <sup>†</sup>         |                             |
|       | [ ] *          | 0.                        |                             |
|       | [B]*           | 111.†                     | $T_x$                       |
|       | [ C ]          | 94.†                      | W <sub>X</sub>              |
|       | [D]            | 1.053930373†              | Zx                          |
|       | [2nd] [B']     | 214.†                     | Ty                          |
|       | [C]            | 56.†                      | Wy                          |
|       | [D]            | -1.053930373 <sup>†</sup> | Zy                          |
|       | [E]            | 75. <sup>†</sup>          | W                           |
|       | [2nd] [E']     | 325.†                     | s <sub>w</sub> <sup>2</sup> |

<sup>†</sup>Printed when PC-100A is used.

#### Summary:

Since  $H_1$  assumes that c is positive,  $z_y$  is the statistic that we are interested in. At the 95% confidence level the acceptance region for  $z_y$  is  $(-1.64, \infty)^*$ . Since  $z_y$  is within this range, accept  $H_0$ . That is, there is no indication that the sons are taller than their fathers.

<sup>\*</sup>Requires approximately 25 seconds.

<sup>\*</sup>You may verify this using the Normal Distribution Program.

# V. MODEL FITTING

### THEORETICAL HISTOGRAM PROGRAM

To determine the shape of your sample distribution, use this program to compare a histogram constructed from your sample data points to various histogram models. To begin, simply use your data and the *Histogram Data Program* found in Section III to construct a histogram. Next, choose a theoretical distribution that you think might fit your data. Then write a subroutine that calculates the probability function of the distribution you've selected and store it in program memory under label [2nd] [ A' ]. Remember to end your routine with [INV] [SBR] and don't use [ = ], [CLR], or [RST]. Registers 21-26 are available for your use. Note that x is in the display register when your subroutine is called. When your subroutine ends, the display register should contain f(x).

Once you have complete the above use this program to calculate the theoretically expected count of each cell. As you do this the program compiles a  $\chi^2$ -statistic for a goodness of fit test where

$$\chi^2 = \sum_{i=1}^{n} \frac{(expected count - observed count)^2}{expected count}$$

with N-1 degrees of freedom. (N is the number of cells in your histogram.) To complete the goodness of fit test simply calculate  $Q(\chi^2)$  using this program.

 $Q(\chi^2)$  is the upper tail area of the chi-square curve. If you wish to test the hypothesis that the distribution of your sample is the theoretical distribution you have chosen at say the 90% confidence level (also known as the 10% significance level), then you may accept this hypothesis whenever  $0.10 \leqslant Q(\chi^2) \leqslant 1$ . In order to ensure the validity of the goodness of fit test you should collect sufficient data for the theoretically expected count of each cell to be no less than 5. Also, your histograms should be made up of at least three cells.

## MODEL FITTING

| ર્∜્ Sol      | id State Software | TI ©1977  |
|---------------|-------------------|-----------|
| THEORETICAL I | HISTOGRAM         | ST-10     |
| → Cnt (Disc)  |                   | Init Disc |
| → Cnt (Cont)  | → Q(χ²)           | Init Cont |

# **USER INSTRUCTIONS**

| STEP | PROCEDURE                                                                                                  | ENTER                            | PRESS                                                                 | DISPLAY                                       |
|------|------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|
| 1    | Select Program                                                                                             | F Britton men                    | [2nd] [Pgm] 07                                                        | No Change                                     |
| 2    | Enter Histogram data according<br>to User Instructions found in<br>Section III                             | ric voy tero<br>rico mononu<br>s | roleuri itali labbangar<br>Viliperopropriativa<br>Labbang ora entrica | r s experto p                                 |
| 3    | Calculate sample mean if desired <sup>1,6</sup>                                                            |                                  | [2nd] [ x̄ ] [x≷t]                                                    | $\overline{\mathbf{x}}$                       |
| 4    | Calculate sample standard<br>deviation if desired <sup>1,6</sup>                                           | ker suoy nar                     | [INV] [2nd] [ x̄ ]<br>[x≷t]                                           | Ignore<br>s                                   |
|      | For Continuous Distribution                                                                                |                                  |                                                                       |                                               |
| 5    | Enter continuous probability function into program memory (do not use [ = ], [CLR], or [RST]) <sup>2</sup> | f(x)                             | [2nd] [CP] [LRN]<br>[2nd] [Lbl]<br>[2nd] [A']<br>[INV] [SBR]<br>[LRN] | e you have to<br>be to seek to<br>where       |
| 6    | Select Program                                                                                             | angée featu                      | [2nd] [Pgm] 10                                                        | No Change                                     |
| 7    | Initialize                                                                                                 | 100000                           | [E]                                                                   | 0.                                            |
| 8    | Calculate theoretically expected count of cell i <sup>3</sup> (repeat for each cell)                       | io neembin e                     | [A]                                                                   | Count <sup>†</sup>                            |
| 9    | Calculate chi-square goodness of fit test <sup>4</sup>                                                     |                                  | [C]                                                                   | $Q(X^2)^{\dagger}$                            |
|      | For Discrete Distribution <sup>5</sup>                                                                     |                                  | SITE ALTERNATION NO.                                                  |                                               |
| 10   | Enter discrete probability function into program memory (do not use [ = ], [CLR, or [RST]) <sup>2</sup>    | f(k)                             | [2nd] [CP] [LRN]<br>[2nd] [Lbl]<br>[2nd] [A']<br>[INV] [SBR]<br>[LRN] | rayor anaparan<br>should code<br>chan S. Also |
| 11   | Select Program                                                                                             |                                  | [2nd] [Pgm] 10                                                        | No Change                                     |
| 12   | Initialize                                                                                                 | •                                | [2nd] [ E' ]                                                          | 0.                                            |
| 13   | Calculate theoretically expected count of cell i <sup>3</sup> (repeat for each cell)                       |                                  | [2nd] [ A' ]                                                          | Count <sup>†</sup>                            |
| 14   | Calculate chi-square goodness<br>of fit test <sup>4</sup>                                                  |                                  | [ C ]                                                                 | $Q(X^2)^{\dagger}$                            |

#### NOTES:

- 1. Initialization of the Theoretical Histogram program destroys the data needed to compute  $\overline{x}$  and s. Note that if you need to know the observed counts of the cells in your Histogram you may perform the Histogram Construction program at this time.
- 2. Initialization of the Histogram Data program provides 60 data registers. If you own a TI Programmable 58 you will have to repartition your calculator before entering your subroutine. Observe that the prewritten library routines calculating f(x) for the normal and binomial distributions may be called by your subroutine. However, due to conflicting register assignments, the chi-square and student's -t routines may not be used. Initialization may take as long as a minute depending on the length of your subroutine.
- 3. The cell number is incremented by 1 each time you press [A] or [2nd] [A']. Calculation of the expected count may take as long as a minute to complete. A count of zero causes a flashing display indicating invalid results. Press [RCL] 20 to display  $\Sigma \chi^2$  for current cell.

#### NOTES:

- 4. This step must be performed last and can only be done once. Execution time increases with  $\nu$ . To run a new problem, recompile your data.
- 5. For discrete distributions,  $x_{min}$  and the cell width must be integers.
- 6. If the display flashes simply press [CE] and continue. The error condition is cuased when the calculator attempts to calculate the mean and std. deviation of the "x" data normally summed into  $R_{04}-R_{05}$ . Since the program uses these registers for other purposes bad data may have been stored there.
- † Printed when PC-100A is used.

## **Register Contents**

| R <sub>00</sub> | Used                            | R <sub>05</sub> | Used            | Cell 5<br>Count     |                 | Cell 10<br>Count | $R_{20} \Sigma \chi^2$ | R <sub>25</sub> |                |
|-----------------|---------------------------------|-----------------|-----------------|---------------------|-----------------|------------------|------------------------|-----------------|----------------|
| R <sub>01</sub> | X <sub>min</sub>                | R <sub>06</sub> | Cell 1<br>Count | Cell 6<br>Count     |                 | Cell 11<br>Count | R <sub>21</sub>        | R <sub>26</sub> |                |
| R <sub>02</sub> | Width                           | R <sub>07</sub> | Cell 2<br>Count | <br>Cell 7<br>Count | - '             | Cell 12<br>Count | R <sub>22</sub>        | R <sub>27</sub> | Used           |
| R <sub>03</sub> | ngeralli testal<br>Data Program | R <sub>08</sub> | Cell 3<br>Count | Cell 8<br>Count     | R <sub>18</sub> | Used             | R <sub>23</sub>        | R <sub>28</sub> | Upper<br>Limit |
| R <sub>04</sub> | Lower<br>Limit                  | R <sub>09</sub> | Cell 4<br>Count | Cell 9<br>Count     | R <sub>19</sub> | Cells            | R <sub>24</sub>        | R <sub>29</sub> | Used           |

## MODEL FITTING

#### Example:

In the *Means and Moments Program* example we discovered that the shapes of the sample distributions under consideration there are the same. Then, in the *Rank-Sum Tests Program* example we found that there is no significant difference between the means of these samples. Consequently, we may assume that the two samples come from populations having the same distribution. Combine these samples and build a histogram from the data. Then compare this histogram to a theoretical histogram based on the normal distribution. The data is repeated below

Men's Heights: 67.2, 65.0, 68.3, 69.9, 66.3, 69.7, 69.5, 72.9, 70.2, 74.1, 68.4, 65.3, 66.5, 69.0, 73.6, 75.9, 69.7, 69.8, 71.0, 70.8, 67.7, 74.4, 69.9, 71.5, 71.1.

Note that in order to have at least five data points in each cell our histogram may contain no more than three cells.

| ENTER             | PRESS                              | DISPLAY     | COMMENTS                       |
|-------------------|------------------------------------|-------------|--------------------------------|
|                   | [2nd] [Pgm] 07                     |             | Select Histogram  Data Program |
|                   | [2nd] [ E' ]                       | 0.          | Initialize                     |
| 3†                | [B]                                | 3.          | Cells                          |
| 64 <sup>†</sup>   | [2nd] [ B' ]                       | 64.         | ×min                           |
| 4†                | [ C ]                              | 4.          | Width                          |
| 67.2 <sup>†</sup> | [ A ]                              | 1.          | $x_1$                          |
| 65.0 <sup>†</sup> | [A]                                | 2.          | X <sub>2</sub>                 |
| 68.3 <sup>†</sup> | [ A ]                              | 3.          | X <sub>3</sub>                 |
| 69.9†             | [A]                                | 4.          | X4                             |
| 66.3 <sup>†</sup> | [A]                                | 5.          | X <sub>5</sub>                 |
| 69.7 <sup>†</sup> | [ A ]                              | 6.          | x <sub>6</sub>                 |
| 69.5 <sup>†</sup> | [A]                                | 7.          | X <sub>7</sub>                 |
| 72.9 <sup>†</sup> | [A]                                | 8.          | <b>x</b> <sub>8</sub>          |
| 70.2 <sup>†</sup> | [A]                                | 9.          | X9                             |
| 74.1 <sup>†</sup> | [A]                                | 10.         | X <sub>10</sub>                |
| 68.4†             | [ A ]                              | 11.         | x <sub>11</sub>                |
| 65.3 <sup>†</sup> | [A]                                | 12.         | X <sub>12</sub>                |
| 66.5 <sup>†</sup> | [A]                                | 13.         | x <sub>13</sub>                |
| 69.0†             | [ A ]                              | 14.         | X <sub>14</sub>                |
| 73.6 <sup>†</sup> | [A]                                | 15.         | X <sub>15</sub>                |
| 75.9 <sup>†</sup> | [ A ]                              | 16.         | X <sub>16</sub>                |
| 69.7 <sup>†</sup> | [A]                                | 17.         | X <sub>17</sub>                |
| 69.8†             | [A]                                | 18.         | X <sub>18</sub>                |
| 71.0 <sup>†</sup> | [A]                                | 19.         | X <sub>19</sub>                |
| 70.8†             | [A]                                | 20.         | X <sub>20</sub>                |
| 67.7 <sup>†</sup> | [A]                                | 21.         | X <sub>21</sub>                |
| 74.4†             | [A]                                | 22.         | X <sub>22</sub>                |
| 69.9†             | [A]                                | 23.         | X <sub>23</sub>                |
| 71.5 <sup>†</sup> | [A]                                | 24.         | X <sub>24</sub>                |
| 71.1 <sup>†</sup> | [ A ]                              | 25.         | X <sub>25</sub>                |
|                   | [2nd] $[\overline{x}]$ $[x \ge t]$ | 69.908      | $\overline{\mathbf{x}}$        |
|                   | [INV] [2nd] [x]                    | 2.58069758* | Ignore                         |
|                   | [CE] $[x \ge t]$                   | 2.816457586 | S                              |

<sup>\*</sup>See Note 6 of the User Instructions.

<sup>†</sup>Printed when PC-100A is used.

(Now store your subroutine for computing f(x) in program memory. Note that x must be normalized before calling the library routine described in Normal Distribution Program to calculate the probability density function. For simplicity, just use  $\overline{x} = 69.9$  and s = 2.8 as estimates of  $\mu$  and  $\sigma$ .)

| ENTER      | PRESS            | DISPLAY     | COMMENTS           |
|------------|------------------|-------------|--------------------|
|            | [2nd] [CP] [LRN] | 000 00      | (Key Codes)        |
|            | [2nd] [Lbl]      | 001 00      | 000 76             |
|            | [2nd] [ A' ]     | 002 00      | 001 16             |
|            | [(]              | 003 00      | 002 53             |
|            | [(]              | 004 00      | 003 53             |
|            | [CE]             | 005 00      | 004 24             |
|            | [-]              | 006 00      | 005 75             |
|            | [6]              | 007 00      | 006 06             |
|            | [9]              | 008 00      | 007 09             |
|            | [·]              | 009 00      | 008 93             |
|            | [9]              | 010 00      | 009 09             |
|            | [)]              | 011 00      | 010 54             |
|            | [÷]              | 012 00      | 011 55             |
|            | [2]              | 013 00      | 012 02             |
|            | [·]              | 014 00      | 013 93             |
|            | [8]              | 015 00      | 014 08             |
|            | [)]              | 016 00      | 015 54             |
|            | [2nd] [Pgm]      | 017 00      | 016 36             |
|            | [1][9]           | 018 00      | 017 19             |
|            | [A]              | 019 00      | 018 11             |
| CONTRACTOR | [INV] [SBR]      | 020 00      | 019 92             |
|            | [LRN]            | 2.814296833 | COLIST LEWIST LAND |

(Now compare your histogram against the theoretical histogram.)

| [2nd] [Pgm] 10                      | 2.814196833              | Select Theoretical    |
|-------------------------------------|--------------------------|-----------------------|
|                                     |                          | Histogram Program     |
| [E]                                 | 0.                       | Initialize Continuous |
|                                     |                          | Distribution          |
| [A]*                                | 6.057795645 <sup>†</sup> | Cell 1                |
| [A]*                                | 13.62110728 <sup>†</sup> | Cell 2                |
| [A]*                                | 5.560044745 <sup>†</sup> | Cell 3                |
| [C]*                                | .9668120413 <sup>†</sup> | $Q(X^2)$              |
| 조계루(40), 함께서 그렇게 하게 되는 뭐 먹는 이번 선생님. |                          |                       |

<sup>†</sup>Printed when PC-100A is used.

#### Summary:

The value obtained for  $Q(\chi^2)$  indicates a good fit for any reasonable confidence level that you choose to test at. However, these results should be treated with caution since the histogram contains only three cells. Note that the histogram constructed from the sample data actually has 6 data points in cell 1, 14 in cell 2, and 5 in cell 3. You could have used the *Histogram Construction Program* to obtain this information before you compared your histogram to the theoretical model.

<sup>\*</sup>Requires 10 - 30 seconds.

#### Summary:

Observe that data for this type of problem is entered by placing the x value in the T-register, the y value in the display, and pressing [2nd] [ $\Sigma$ +]. Then, the answer to your problem is found by entering the amount you want to spend on advertising (x = 4750) and predicting the resulting sales volume (y = 514,672) by pressing [2nd] [Op] 14. Additional special operating codes are used to compute the slope, intercept, and correlation coefficient. See your Owner's Manual for a complete explanation on all the built-in statistical features.

#### ABOUT THE CORRELATION COEFFICIENT

Pressing [2nd] [Op] 13 displays the correlation coefficient of the two sets of data, r. A value close to plus 1 indicates a high positive correlation and a value near minus 1 indicates a high negative correlation. A value of about zero indicates that the two sets of data are not related.

For example, suppose your company gives two tests to new employees—Test A and Test B. If there is a high positive correlation between the two tests, then you can predict that an employee who scores high (or low) on Test A will also score high (or low) on Test B. On the other hand, if there is a high negative correlation between the two tests, you can predict that an employee who scores high (or low) on Test A will score low (or high) on Test B. If there is no correlation (correlation coefficient equals 0), then you can say nothing about how an employee's performance on Test A relates to his or her performance on Test B.

In the above example then, the value we computed for r tells us there is a very high positive correlation between our samples. However, you should note an important point here. Strictly speaking all we've shown in this example is that a definite *relationship* exists between advertising and sales. Be careful about drawing conclusions about *cause and effect*. In this case, you can probably be pretty sure that your advertising is pushing your sales up—but in other cases, the "cause and effect" relation may not be so obvious. Two variables that are related to a *third* can show a relation to each other—without a "cause and effect" relation between them.

In this example, we're predicting the future based on only five data points from the past—and that's not much to go on. In general, the less data you have to go on, the more "chancy" your prediction will be. As it turns out there's a quick way to get a measure of how valid your correlation factor is under different data conditions.

This test may be used to test the hypotheses

$$H_0$$
:  $r = 0$  against  $H_1$ :  $r \neq 0$ .

First, let  $\nu = n - 2$  where n is the number of sample data points you have. Then calculate a t-statistic using the formula

$$t = \sqrt{\nu r^2 / (1 - r^2)}$$
.

For our example,

$$\nu = 3$$
 and  $t = 15.15$ .

The 95% confidence interval for the t-statistic with 3 degrees of freedom is (-3.18, 3.18). Since the t-statistic computed above is not even close to the acceptance region you may consider r to be highly significant.

## MODEL FITTING

#### BIVARIATE CURVE FITTING PROGRAM

It should be clear that a straight-line model is not applicable in all situations. Population growth for example has traditionally followed an exponential curve,

$$y = be^{mx}$$

In order to use the built-in statistical functions to fit an exponential curve to a set of sample data points you would first have to convert the above to the linear equation

$$\ln y = \ln(be^{mx}) = \ln b + mx$$
.

This expression indicates that a straight line fitted to the data points (x, ln y) would have a y-intercept of ln b and a slope of m. So all you have to do is convert your data to this form and use the linear regression feature of your calculator to fit a straight line to the transformed points. As mentioned above, this operation would give you the values of ln b and m. To find b, simply press [INV] [ln x] when ln b appears in the display.

You may perform these conversions manually if you wish—but you don't have to. You can let the *Bivariate Data Transforms Program* do it for you. This program was first introduced in Section III.

As you should already know, *Bivariate Data Transforms* can be used to transform your data points (x, y) to any of the following forms:

$$(x, \ln y)$$
,  $(\ln x, \ln y)$ ,  $(\ln x, y)$ .

You have seen that the first set of points can be used for exponential curve fit—but how may the others be used?

The expression for a power curve takes the form

$$y = bxm$$
.

We can easily convert this to

$$\ln y = \ln(bx^m) = \ln b + m \ln x.$$

This means that a straight line fitted to the data points (ln x, ln y) would have ln b as its y-intercept and m as its slope.

A logarithmic curve is expressed as

$$y = b + m \ln x$$
.

Since this equation is already in our standard format we can quickly see that a line fitted to the data points ( $\ln x$ , y) would have a y-intercept of b and a slope of m.

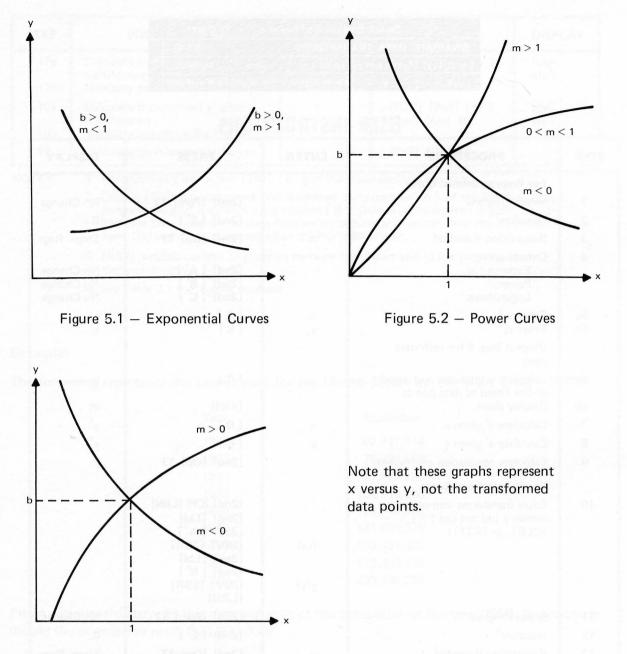



Figure 5.3 - Logarithmic Curves

If you are fitting one of these curves to your data, the *Bivariate Data Transforms Program* includes routines for determining the correct values of b and m and predicting x given y or y given x. For example, even though the built-in calculator feature can only find In b for an exponential curve fit, this program automatically transforms In b to b before displaying the result.

You also have the option of defining your own transforms for x and y as described in Section III. This allows you to easily fit almost any curve you wish to your sample data. However, this program recognizes user-defined transforms for input data only. To obtain output data, just use the built-in calculator features to compute the transformed results. Then convert this data to the correct form yourself. Remember to enter transformed values of x and y when predicting new points. The user instructions include a complete explanation of this procedure.

## MODEL FITTING

| ર્સ્ક્ષ્                        | Solid S         | tate Soft    | ware 1       | TI ©1977     |
|---------------------------------|-----------------|--------------|--------------|--------------|
| BIVARIATE DATA TRANSFORMS ST-12 |                 |              |              |              |
| Exp (x, ln y)                   | Pwr(ln x, ln y) | Ln (ln x, y) | User         | Initialize   |
| ×                               | у               | ⇒þ; m (Pgm)  | x → y' (Pgm) | y → x' (Pgm) |

## **USER INSTRUCTIONS**

| STEP       | PROCEDURE                                                                                                  | ENTER                            | PRESS                                                                                            | DISPLAY                             |
|------------|------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------|
|            | For Preprogrammed Curve                                                                                    |                                  |                                                                                                  |                                     |
| 1          | Select Program                                                                                             |                                  | [2nd] [Pgm] 12                                                                                   | No Change                           |
| 2          | Initialize <sup>1</sup>                                                                                    |                                  | [2nd] [ E' ]                                                                                     | 0.                                  |
| 3          | Repartition if desired                                                                                     | n                                | [2nd] [Op] 17                                                                                    | Steps. Reg                          |
| 4          | Choose curve: Exponential, Power, Logarithmic                                                              |                                  | [2nd] [ A' ]<br>[2nd] [ B' ]<br>[2nd] [ C' ]                                                     | No Change<br>No Change<br>No Change |
| 5a<br>5b   | Enter x <sub>i</sub> <sup>2</sup><br>Enter y <sub>i</sub> <sup>2</sup>                                     | x <sub>i</sub><br>y <sub>i</sub> | [A]<br>[B]                                                                                       | LE INSPIR                           |
|            | (Repeat Step 5 for each data pair)                                                                         |                                  |                                                                                                  |                                     |
| 6a         | Calculate y-intercept and slope of line fitted to data points                                              |                                  | [C]                                                                                              | b                                   |
| 6b         | Display slope                                                                                              |                                  | [x≷t]                                                                                            | m                                   |
| 7          | Calculate y' given x                                                                                       | ×                                | [D]                                                                                              | у′                                  |
| 8          | Calculate x' given y                                                                                       | У                                | [E]                                                                                              | x'                                  |
| 9          | Calculate correlation coefficient                                                                          |                                  | [2nd] [Op] 13                                                                                    | r                                   |
|            | For User-Defined Curve                                                                                     |                                  |                                                                                                  |                                     |
| 10         | Enter transforms into program memory (do not use [ = ], [CLR], or [RST])                                   | f(x)<br>g(y)                     | [2nd] [CP] [LRN] [2nd] [Lbl] [2nd] [ A' ] [INV] [SBR] [2nd] [Lbl] [2nd] [ B' ] [INV] [SBR] [LRN] |                                     |
| 11         | Select Program                                                                                             |                                  | [2nd] [Pgm] 12                                                                                   | No Change                           |
| 12         | Initialize <sup>1</sup>                                                                                    |                                  | [2nd] [ E' ]                                                                                     | 0.                                  |
| 13         | Repartition if needed                                                                                      | n                                | [2nd] [Op] 17                                                                                    | Steps. Regs                         |
| 14         | Select User-Defined Curve Mode                                                                             |                                  | [2nd] [ D' ]                                                                                     | No Change                           |
| 15a<br>15b | Enter x <sub>i</sub> <sup>2</sup><br>Enter y <sub>i</sub> <sup>2</sup>                                     |                                  | [A]<br>[B]                                                                                       | i ne sas                            |
|            | (Repeat Step 15 for each data pair)                                                                        |                                  | on thought to                                                                                    | 7.9 103, K-116                      |
| 16a<br>16b | Calculate slope and intercept of straight line fitted to transformed data  Manually transform b to correct |                                  | [C]                                                                                              | b                                   |
| 16c<br>16d | form Display transformed m Manually transform m to correct form                                            |                                  | [x≷t]                                                                                            | m                                   |

| STEP       | PROCEDURE                                                                                      | ENTER | PRESS                               | DISPLAY       |
|------------|------------------------------------------------------------------------------------------------|-------|-------------------------------------|---------------|
| 17a<br>17b | Calculate transformed y' given<br>transformed x <sup>3</sup><br>Manually transform g(y') to y' | ×     | [RST] [2nd] [ A' ]<br>[2nd] [Op] 14 | f(x)<br>g(y') |
| 18a<br>18b | Calculate transformed y' given<br>transformed y <sup>3</sup><br>Manually transform f(x') to x' | Y     | [RST] [2nd] [B']<br>[2nd] [Op] 15   | g(y)<br>f(x') |
| 19         | Calculate correlation coefficient                                                              |       | [2nd] [Op] 13                       | r             |

#### NOTES:

- 1. Initialization uses routine [2nd] [E'] of the Bivariate Data program.
- 2. Once the data is transformed, f(x) is entered using routine [A] of the Bivariate Data program and g(y) is entered using routine [B]. Data must be entered in pairs. See the Bivariate Data program for data deletion procedures and limitation of the Raw Data Base. f(x) and g(y) are printed when the PC-100A is used.
- 3. [RST] returns control to program memory and allows you to use your transform routines directly.
- 4. See Table 3.1 for register contents.

### Example:

The following represents the census data for the United States for the years 1890 - 1970.

| Year | Population  |
|------|-------------|
| 1890 | 62,947,714  |
| 1900 | 75,994,575  |
| 1910 | 91,972,266  |
| 1920 | 105,710,620 |
| 1930 | 122,775,046 |
| 1940 | 131,669,275 |
| 1950 | 150,697,361 |
| 1960 | 179,323,175 |
| 1970 | 203,235,298 |

Fit an exponential curve to this data and predict the population in the year 2000. In what year should the population reach 300,000,000?

## MODEL FITTING

| ENTER                  | PRESS          | DISPLAY             | COMMENTS                      |
|------------------------|----------------|---------------------|-------------------------------|
|                        | [2nd] [Pgm] 12 |                     | Select Bivariate              |
|                        | [2nd] [ E' ]   | 0.                  | Transforms Program Initialize |
|                        | [2nd] [ A' ]   | 0.                  | Choose Exponential            |
|                        | er [c0] [bes]  |                     | Curve Fit                     |
| 1890 <sup>†</sup>      | [ A ]          | 1.                  | $x_1$                         |
| 62947714 <sup>†</sup>  | [ B ]          | arms in healthan su | Y <sub>1</sub>                |
| 1900 <sup>†</sup>      | [ A ]          | 2.                  | $x_2$                         |
| 75994575 <sup>†</sup>  | [ B ]          | 2.                  | Y <sub>2</sub>                |
| 1910 <sup>†</sup>      | [ A ]          | 3.                  | X <sub>3</sub>                |
| 91972266 <sup>†</sup>  | [ B ]          | 3.                  | У3                            |
| 1920 <sup>†</sup>      | [ A ]          | 4.                  | X4                            |
| 105710620 <sup>†</sup> | [ B ]          | 4.                  | <b>Y</b> 4                    |
| 1930 <sup>†</sup>      | [ A ]          | 5.                  | X <sub>5</sub>                |
| 122775046 <sup>†</sup> | [B[            | 5.                  | Y5                            |
| 1940†                  | [ A ]          | 6.                  | <b>X</b> 6                    |
| 131669275†             | [ B ]          | 6.                  | У6                            |
| 1950 <sup>†</sup>      | [ A ]          | 7.                  | × <sub>7</sub>                |
| 150697361 <sup>†</sup> | [B]            | 7.                  | Y7                            |
| 1960 <sup>†</sup>      | [ A ]          | 8.                  | X <sub>8</sub>                |
| 179323175 <sup>†</sup> | [B]            | 8.                  | У8                            |
| 1970 <sup>†</sup>      | [ A ]          | 9.                  | X9                            |
| 203235298†             | [B]            | 9.                  | У9                            |
|                        | [ C ]          | .0001716447         | b                             |
|                        | $[x \ge t]$    | .0141183066         | m                             |
|                        | [2nd] [Op] 13  | .9957238762         | r                             |
| 2000                   | [ D ]          | 314510832.3         | $x \rightarrow y'$            |
| 300000000              | [E]            | 1996.65427          | $y \rightarrow x'$            |

### Summary:

The resulting curve is

$$y = 0.0001716447 e^{(0.0141183066)x}$$
.

You may evaluate the t-statistic for r if you wish. However, due to the high value of r, there is really no need to perform this test. As you can see, the population should exceed 314 million in the year 2000 and reach 300 million in mid-1996.

#### Example:

In attempting to determine an appropriate price to charge for his product, a manufacturer obtained the following data in units sold is on a monthly basis.

Table 5.1

| Price in Dollars        | 21   | 22   | 23   | 24   | 25   | 26   |
|-------------------------|------|------|------|------|------|------|
| Thousands of Units Sold | 20.3 | 17.8 | 15.9 | 14.1 | 12.4 | 10.8 |

Fit a reciprocal curve to this data where

$$y = b + m (1/x).$$

<sup>†</sup> Printed when PC-100A is used. (If data is transformed then the transformed values are printed instead).

Then determine what price the manufacturer should charge if he wants to sell 15,000 units per month. How many units could he sell if he only charged \$18?

[2nd] [CP]
 [LRN]
[2nd] [Lbl]
[2nd] [A']
 [1/x]
[INV] [SBR]
[2nd] [Lbl]
[2nd] [B']
[INV] [SBR]
[LRN]

Subroutine [2nd] [ A' ] transforms x to 1/x. Subroutine [2nd] [ B' ], even though it just returns y in its original form, is needed in order to prevent an error condition. Now run this problem.

Note that if you have a TI Programmable 58 you will have to repartition your calculator after initialization.

| ENTER             | PRESS                                         | DISPLAY                       | COMMENTS                                                                 |
|-------------------|-----------------------------------------------|-------------------------------|--------------------------------------------------------------------------|
|                   | [2nd] [Pgm] 12                                |                               | Select Bivariate                                                         |
| 5                 | [2nd] [ E' ]<br>[2nd] [Op] 17<br>[2nd] [ D' ] | 0.<br>79.49                   | Transform Program<br>Initialize<br>Repartition (58 Only)<br>Select User- |
| 21†               | [ A ]                                         | the cold technologies and the | Defined Curve                                                            |
| 20.3†             | [B]                                           | 1                             | $x_1$                                                                    |
| 20.31             |                                               | 1.                            | У1                                                                       |
| 17.8 <sup>†</sup> | [A]                                           | 2.                            | $x_2$                                                                    |
|                   | [ B ]                                         | 2.                            | У2                                                                       |
| 23 <sup>†</sup>   | [ A ]                                         | 3.                            | X <sub>3</sub>                                                           |
| 15.9 <sup>†</sup> | [B]                                           | 3.                            | У3                                                                       |
| 24†               | [ A ]                                         | 4.                            | X4                                                                       |
| 14.1†             | [ B ]                                         | 4.                            | <b>Y</b> 4                                                               |
| 25†               | [ A ]                                         | 5.                            | <b>x</b> <sub>5</sub>                                                    |
| 12.4 <sup>†</sup> | [ B ]                                         | 5.                            | <b>Y</b> 5                                                               |
| 26†               | [ A ]                                         | 6.                            | <b>x</b> <sub>6</sub>                                                    |
| 10.8†             | [ B ]                                         | 6.                            | У6                                                                       |
|                   | [ C ]                                         | -28.62600532                  | b                                                                        |
|                   | [x ≥ t]                                       | 1024.840156                   | m                                                                        |
|                   | [2nd] [Op] 13                                 | .9996511874                   | Passenol asseguit                                                        |
| 18                | [1/x] [2nd] [Op] 14                           | 28.30955893                   | $x \rightarrow y'$                                                       |
| 15                | [2nd] [Op] 15 [1/x]                           | 23.49149662                   | $y \rightarrow x'$                                                       |
|                   |                                               |                               | , ,,                                                                     |

<sup>†</sup> Printed when PC-100A is used. (If data is transformed - transformed values are printed.)

## Summary:

The resulting curve is approximately

$$y = -28.6 + 1024.8/x$$
.

If the manufacturer wants to sell 15,000 units he may charge \$23.49 for his product. If he only charged \$18 he could sell over 28,000 units.

## MODEL FITTING

## MULTIPLE LINEAR REGRESSION PROGRAM

When working with trivariate data you can use this program to fit an equation of the form

$$z = a_0 + a_1 x + a_2 y$$

to your sample data triplets (x, y, z).

The regression coefficients are calculated using the least-squares method. You can also use this program to find the multiple coefficient of determination and to predict values of z for a given x and y. You must enter your data using the *Trivariate Data Program* found in Section III.

| <b>र</b> ्क     | Solid St                | tate Soft               | ware            | TI ©1977 |
|-----------------|-------------------------|-------------------------|-----------------|----------|
| MULTIPLE        | E LINEAR R              | EGRESSION               | ı               | ST-18    |
| x               | y <b>→</b> z′           |                         |                 |          |
| →a <sub>0</sub> | <b>→</b> a <sub>1</sub> | <b>→</b> a <sub>2</sub> | →R <sup>2</sup> |          |

## **USER INSTRUCTIONS**

| STEP     | PROCEDURE                                                                 | ENTER                            | PRESS                        | DISPLAY                              |
|----------|---------------------------------------------------------------------------|----------------------------------|------------------------------|--------------------------------------|
| 1        | Select Program                                                            |                                  | [2nd] [Pgm] 05               | No Change                            |
| 2        | Enter Trivariate Data according to User Instructions found in Section III |                                  | [=10] [1gm] 00               |                                      |
| 3        | Select Program                                                            |                                  | [2nd] [Pgm] 18               | No Change                            |
| 4a       | Calculate coefficients and display a <sub>o</sub>                         |                                  | [A]                          | a <sub>o</sub> †                     |
| 4b<br>4c | Display a <sub>1</sub><br>Display a <sub>2</sub>                          |                                  | [B]<br>[C]                   | a <sub>1</sub> †<br>a <sub>2</sub> † |
| 5        | Calculate coefficient of determination                                    |                                  | [D]                          | R <sup>2</sup> †                     |
| 6        | Calculate z' for a given x and y                                          | x <sup>†</sup><br>y <sup>†</sup> | [2nd] [ A' ]<br>[2nd] [ B' ] | x<br>z't                             |

NOTE:

† Printed when PC-100A is used.

## **Register Contents**

| $R_{00}$ $R_{01} \Sigma y$ $R_{02} \Sigma y^{2}$ $R_{03} n$ $R_{03} \Sigma y$ | $\begin{array}{ll} R_{05} & \Sigma  x^2 \\ R_{06} & \Sigma  xy \\ R_{07} & \Sigma  z \\ R_{08} & \\ R_{08} & \\ \end{array}$ | $R_{10}$ $R_{11} \Sigma xz$ $R_{12} \Sigma yz$ $R_{13} \Sigma z^{2}$ | $R_{15}$ Used $R_{16}$ Used $R_{17}$ Used $R_{18}$ Used | $\begin{array}{ccc} R_{20} & a_1 \\ R_{21} & a_2 \\ R_{22} & Used \\ R_{23} & Used \end{array}$ | $R_{25}$ $R_{26}$ $R_{27}$ $R_{28}$ |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------|
| $R_{04}$ $\Sigma x$                                                           | $R_{09}$ x                                                                                                                   | R <sub>14</sub> Used                                                 | $R_{19}$ $a_0$                                          | R <sub>24</sub>                                                                                 | $R_{29}$                            |

## Example:

In an experiment to study the effects of two gasoline additives on the gas mileage of a specific car the following data is obtained.

Table 5.2

| Units of Additive x | 0    | 0    | 0    | 1    | 1    | 1    | 2    | 2    | 2    |
|---------------------|------|------|------|------|------|------|------|------|------|
| Units of Additive y | 0    | 1    | 2    | 0    | 1    | 2    | 0    | 1    | 2    |
| Gas Mileage (z)     | 17.3 | 18.1 | 18.7 | 18.6 | 19.1 | 19.5 | 19.6 | 19.9 | 20.3 |

Fit an equation of the form

$$z = a_0 + a_1 x + a_2 y$$

to this data and predict the gas mileage for x = 1, y = 0.5.

| ENTER             | PRESS                    | DISPLAY | COMMENTS              |
|-------------------|--------------------------|---------|-----------------------|
|                   | [2nd] [Pgm] 05           |         | Select Trivariate     |
|                   |                          |         | Data Program          |
|                   | [2nd] [ E <sup>'</sup> ] | 0.      | Initialize            |
| 0†                | [ A ]                    | 1.      | $x_1$                 |
| 0†                | [B]                      | 1.      | У1                    |
| 17.3†             | [ C ]                    | 1.      | $z_1$                 |
| 0†                | [ A ]                    | 2.      | X <sub>2</sub>        |
| -1 <sup>†</sup>   | [B]                      | 2.      | Y <sub>2</sub>        |
| 18.1 <sup>†</sup> | [ C ]                    | 2.      | $z_2$                 |
| 0†                | [A]                      | 3.      | x <sub>3</sub>        |
| 2†                | [B]                      | 3.      | У3                    |
| 18.7 <sup>†</sup> | [ <b>C</b> ]             | 3.      | z <sub>3</sub>        |
| 1†                | [ A ]                    | 4.      | X <sub>4</sub>        |
| 0,                | [B]                      | 4.      | <b>y</b> 4            |
| 18.6 <sup>†</sup> | [ C ]                    | 4.      | Z <sub>4</sub>        |
| 1†                | [A]                      | 5.      | X <sub>5</sub>        |
| 1†                | [B]                      | 5.      | Y <sub>5</sub>        |
| 19.1 <sup>†</sup> | [ C ]                    | 5.      | z <sub>5</sub>        |
| 1†                | [ A ]                    | 6.      | <b>x</b> <sub>6</sub> |
| 2†                | [B]                      | 6.      | Y <sub>6</sub>        |
| 19.5 <sup>†</sup> | [ C ]                    | 6.      | z <sub>6</sub>        |
| 2†                | [ A ]                    | 7.      | × <sub>7</sub>        |
| 0†                | [B]                      | 7.      | y <sub>7</sub>        |
| 19.6 <sup>†</sup> | [ C ]                    | 7.      | z <sub>7</sub>        |
| 2†                | [ A ]                    | 8.      | x <sub>8</sub>        |
| 1†                | [B]                      | 8.      | У8                    |
| 19.9†             | [ C ]                    | 8.      | z <sub>8</sub>        |
| 2†                | [ A ]                    | 9.      | -8<br>X9              |
| 2†                | [B]                      | 9.      | У9                    |
| 20.3†             | [C]                      | 9.      | 70                    |

## MODEL FITTING

| ENTER | PRESS          | DISPLAY                  | COMMENTS           |
|-------|----------------|--------------------------|--------------------|
|       | [2nd] [Pgm] 18 |                          | Select Multiple    |
|       |                |                          | Regression Program |
|       | [ A ]          | 17.56111111 <sup>†</sup> | a <sub>0</sub>     |
|       | [B]            | 0.95 <sup>†</sup>        | $a_1$              |
|       | [C]            | 0.5 <sup>†</sup>         | a <sub>2</sub>     |
|       | [D]            | .9782301163 <sup>†</sup> | R <sup>2</sup>     |
| 1†    | [2nd] [ A' ]   | 1                        | X                  |
| .5†   | [2nd] [ B' ]   | 18.76111111 <sup>†</sup> | $v \rightarrow z'$ |

<sup>†</sup> Printed when PC-100A is used.

#### Summary:

The resulting equation is approximately

$$z = 17.56 + 0.95x + 0.5y$$
.

Clearly, additive x is twice as effective as y. Note that  $a_0$  corresponds to the gas mileage of the car when no additive is entered.

#### NONLINEAR REGRESSION

Just as with bivariate models, multivariate regression models may assume a nonlinear form. For example you may want to fit an equation of the form

$$z = a_0 x^{a_1} y^{a_2}$$

to your sample data. To do this simply convert this equation to the standard format given earlier. The new equation is

$$\ln z = \ln a_0 + a_1 \ln x + a_2 \ln y$$
.

Now, instead of entering x, y, and z into the program, enter  $\ln x$ ,  $\ln y$ , and  $\ln z$ . The resulting regression coefficients are  $\ln a_0$ ,  $a_1$ , and  $a_2$ . To find  $a_0$  simply press [INV] [ $\ln x$ ] when  $\ln a_0$  appears in the display. And if you need to predict new values for z, enter  $\ln x$  and  $\ln y$  to obtain  $\ln z$ . Then convert  $\ln z$  to z by pressing [INV] [ $\ln x$ ].

This is just one example of fitting a nonlinear equation to sample data. Naturally, there are many equations that you may choose to use. Another example is given below

#### Example:

A production manager believes that a workman's performance is related to the number of hours that he works in a week according to the quadratic equation

$$y = a_0 + a_1 x + a_2 x^2$$
.

The following data is based on a scale devised by the manager.

Table 5.3

| Hours Worked (x) | 20  | 30   | 40   | 50   | 60  | 70  |
|------------------|-----|------|------|------|-----|-----|
| Performance (y)  | 7.8 | 10.6 | 11.7 | 10.5 | 7.9 | 5.1 |

Fit this equation to the sample data and predict the scaled performance for a 45-hour week.

| ENTER             | PRESS                | DISPLAY                   | COMMENTS                    |
|-------------------|----------------------|---------------------------|-----------------------------|
|                   | [2nd] [Pgm] 05       |                           | Select Trivariate           |
|                   |                      |                           | Data Program                |
|                   | [2nd] [ E' ]         | 0.                        | Initialize                  |
| 20†               | [ A ]                | 1.                        | $x_1$                       |
| 20†               | $[x^2][B]$           | 1.                        | $x_1^2$                     |
| 7.8†              | [ C ]                | 1.                        | У1                          |
| 30†               | [ A ]                | 2.                        | X <sub>2</sub>              |
| 30†               | $[x^2][B]$           | 2.                        | $x_2^2$                     |
| 10.6 <sup>†</sup> | [ <b>C</b> ]         | 2.                        | У2                          |
| 40 <sup>†</sup>   | [ A ]                | 3.                        | <b>x</b> <sub>3</sub>       |
| 40 <sup>†</sup>   | [x <sup>2</sup> ][B] | 3.                        | x <sub>3</sub> <sup>2</sup> |
| 11.7 <sup>†</sup> | [ C ]                | 3.                        | У3                          |
| 50 <sup>†</sup>   | [ A ]                | 4.                        | <b>x</b> <sub>4</sub>       |
| 50 <sup>†</sup>   | [x <sup>2</sup> ][B] | 4.                        | $x_4^2$                     |
| 10.5 <sup>†</sup> | [ <b>C</b> ]         | 4.                        | У4                          |
| 60 <sup>†</sup>   | [ A ]                | 5.                        | <b>x</b> <sub>5</sub>       |
| 60 <sup>†</sup>   | $[x^2][B]$           | 5.                        | x <sub>5</sub> <sup>2</sup> |
| 7.9†              | [ C ]                | 5.                        | У5                          |
| 70 <sup>†</sup>   | [ A ]                | 6.                        | Y.                          |
| 70 <sup>†</sup>   | $[ x^2 ] [ B ]$      | 6.                        | x <sub>6</sub> <sup>2</sup> |
| 5.1 <sup>†</sup>  | [C]                  | 6.                        | У6                          |
|                   | [2nd] [Pgm] 18       | 6.                        | Select Multiple             |
|                   |                      |                           | Regression Program          |
|                   | [ A ]                | -1.382857143 <sup>†</sup> | a <sub>0</sub>              |
|                   | [B]                  | .6227142857†              | a <sub>1</sub>              |
|                   | [ <b>c</b> ]         | 0076428571 <sup>†</sup>   | $a_2$                       |
|                   | [D]                  | .9766337894†              | $R^2$                       |
| 45 <sup>†</sup>   | [2nd] [ A ' ]        | 45.                       | X                           |
| 45 <sup>†</sup>   | $[x^2]$ [2nd] $[B']$ | 11.1625 <sup>†</sup>      | $x^2 \rightarrow y$         |
| 40                | [ , ] [ _ , , ]      | 11.1020                   | ~ ,                         |

†Printed when PC-100A is used. (Note that the squared value is printed when the data is squared before entry.)

## Summary:

The resulting equation is approximately

$$y = -1.3829 + .6227x - .0076x^{2}$$
.

The coefficient of determination calculated by the program indicates that this is a good fit. The predicted performance for a 45-hour week is 11.16.

As you have seen in *Data Evaluation*, a statistical experiment leads to the evaluation of a test statistic. A test statistic is nothing more than a random variable with a known frequency of occurrence or distribution. Since you know the distribution this statistic you can determine the range of values that it may take when your null hypothesis is true. This range is called the acceptance region. If your value falls outside of the acceptance region it is in what is known as the critical region. The sizes of these regions depend upon the confidence level at which you wish to make your test.

There is always the possibility of chance variations occuring when you sample a population. Confidence levels are used to take these chance variations into consideration so as to protect against rejecting your null hypothesis ( $H_0$ ) when it is actually true. For example, if you are testing at the 95% confidence level and the test statistic falls inside the critical region, then you are 95% sure that this result is significant and not simply caused by chance variations in sampling.

Testing at the 95% confidence level is also known as testing at the 5% level of significance. That is, you will reject  $H_0$  when it is true in only 5% of your experiments.

Let's take a look at the upper-tailed test. The hypotheses tested in this case are

$$H_0$$
:  $S \leqslant S_0$  against  $H_1$ :  $S > S_0$ .

In the above, S is the test statistic and  $S_0$  is the critical point or dividing line between the acceptance and critical regions. If we were testing at the 5% significance level, our frequency distribution curve might look like Figure 6.1.

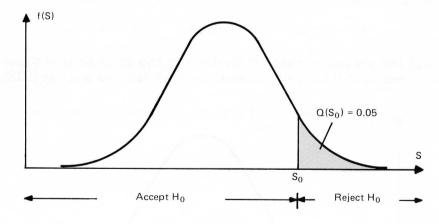



Figure 6.1

The shaded area designated  $Q(S_0)$  is the upper-tail area of the distribution curve. Since we are testing at the 5% significance level  $S_0$  has been chosen such that this area equals 0.05. Now, if our test statistic does not exceed  $S_0$  we will accept the null hypothesis. The critical region for this test is  $(S_0, \infty)$ .

To determine if your statistic falls within the critical region simply calculate Q(S) using an appropriate program from this section. In this case, if Q(S) is no less than 0.05 we would accept  $H_0$  since this would indicate that S does not exceed  $S_0$ . This is the same as accepting  $H_0$  when P(S) is no greater than 0.95.

In the case of a lower-tailed test the hypotheses being tested are

$$H_0: S \geqslant S_0$$

against

$$H_1: S < S_0$$
.

The lower-tail area of a frequency distribution curve is designated by P(S).

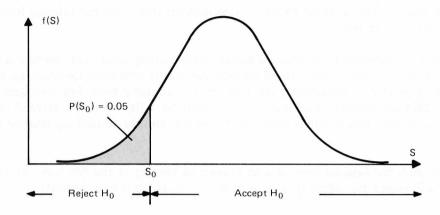



Figure 6.2

The critical region for this test is  $(-\infty, S_0)$ . To complete this test simply calculate P(S) for your statistic and accept  $H_0$  if this value is 0.05 or greater. Or if you wish, you may determine Q(S) and accept  $H_0$  if this value does not exceed 0.95.

The hypotheses of a two-tailed test are

$$H_0: S = S_0$$

against

 $H_1: S \neq S_0.$ 

For this type of test the critical region is divided into two equal parts as shown in Figure 6.3. Note that when testing at the 5% significance level each tail area is set at 0.025.

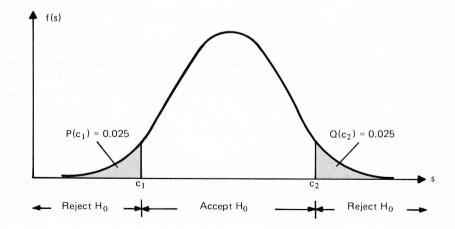



Figure 6.3

In this case we have two critical points  $c_1$  and  $c_2$ . These points establish what is known as a confidence interval for  $S_0$ . Specifically,  $(c_1, c_2)$  is a 95% confidence interval for  $S_0$ . If our statistic is such that  $c_1 \le S \le c_2$  we would accept the null hypotheses. To determine if S is in this range simply calculate P(S) or Q(S). Then if  $0.025 \le P(S) \le 0.975$  or  $0.025 \le Q(S) \le 0.975$ , accept  $H_0$ . (Note that when one of these conditions is met the other is also true.)

#### SELECTING A CONFIDENCE LEVEL

When you select a confidence level for your experiment it is important that you realize how the statistical process works. Remember, the amount of information you have in your sample does not change. Therefore, if you select a high level of confidence, then what you are confident of is less definite.

Since this last statement may be a little vague, here's an example. Suppose that a mechanic looks at your car and tells you he is pretty sure it will cost between \$80 and \$100 to fix it. However, if you tell him that he has to be 99.9% sure of his estimate, he will probably estimate a wider range, say \$50 to \$200. If your experiment requires more confidence over a smaller range you may need to take a larger sample.

As we have pointed out before, testing at the 95% confidence level (5% level of significance) means that the probability of rejecting  $H_0$  when it is true is 0.05. But what about the probability of accepting  $H_0$  when it is false? Calculating this probability is beyond the scope of this material. However, it should be evident that as you decrease the probability of rejecting a true  $H_0$ , you increase the probability of accepting a false  $H_0$ . The following guidelines should help you to determine what level you should test at.

- If you strongly believe that H<sub>0</sub> is true, or if rejecting a true H<sub>0</sub> would be costly or serious, select of small probability of rejecting a true H<sub>0</sub> by testing at a low level of significance. (Say 1% or even less.)
- If you strongly believe that H<sub>0</sub> is false, or if accepting a false H<sub>0</sub> would be costly or serious, select a low probability of accepting a false H<sub>0</sub> by testing at a high level of significance. (Say 10%, or even as high 25%.)
- If you have no convictions either way, test at a moderate level of significance. (Say 5%.)

#### NORMAL DISTRIBUTION PROGRAM

The normal distribution is the most often used probability model in modern statistics. As a general rule, you may use this model whenever the distribution of the population you are sampling from takes on one of the shapes illustrated below. However, for the best results make sure that your parent population has at least 100 elements and that your sample size is greater than thirty. The probability density function of a random variable having normal distribution is given by

$$f(x) = (1/\sigma\sqrt{2\pi}) \exp[-(x - \mu)^2/2\sigma^2].$$

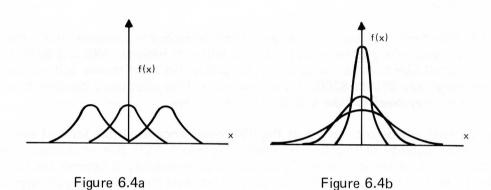



Figure 6.4a illustrates three normal curves with the same standard deviation and different means. Figure 6.4b shows three normal curves with the same mean and different standard deviations. (The normal distribution actually has an infinite range. That is, the density curve never reaches the x-axis even though it may appear to do so in the diagrams.)

For the sake of convenience, a normal curve is said to be in standard form when it has a mean of zero and a standard deviation of one. Now, since any linear transformation of a normal variable yields a new normal variable, any normal variable x may be transformed to standard form or normalized using the equation

$$z = (x - \mu)/\sigma$$
.

Here  $\mu$  is the population mean and  $\sigma$  is its standard deviation. The probability density function of the standard normal variable then becomes

$$\phi(z) = (1/\sqrt{2\pi}) \exp(-z^2/2).$$

Now consider the case where you would like to use the normal model when your population isn't normally distributed. If you are working with a large sample, and if you know the mean and standard deviation of your parent population, you may use the central limit theorem to make inferences about the mean of your sample,  $\overline{x}$ . Specifically, if n is your sample size, then

$$f(\overline{x}) = \phi [\sqrt{n} (\overline{x} - \mu)/\sigma].$$

Once you have normalized your random variable you may use this program to evaluate the probabilities listed below.

$$Pr(Z \leq z) = P(z)$$
.

$$Pr(Z > z) = Q(z)$$
.

$$Pr(Z \leq |z|) = A(z).$$

Calculations are performed using a series expansion to approximate

$$Q(z) = \int_{z}^{\infty} \phi(u) du.$$

This approximation is accurate to  $\pm 7.5 \times 10^{-8}$  for  $z \le 4.7$ . The remaining probabilities are calculated from Q(z).

$$P(z) = 1 - Q(z).$$

$$A(z) = 1 - 2Q(z)$$
.

$$P(-z) = Q(z).$$

| ર્સ્કું   | ware T     | 'I ©1977  |           |       |
|-----------|------------|-----------|-----------|-------|
| NORMAL    | DISTRIBUTI | ON        |           | ST-19 |
| z → φ (z) | z → P (z)  | z → Q (z) | z → A (z) |       |

## **USER INSTRUCTIONS**

| STEP | PROCEDURE                              | ENTER | PRESS          | DISPLAY   |
|------|----------------------------------------|-------|----------------|-----------|
| 1    | Select Program                         |       | [2nd] [Pgm] 19 | No Change |
| 2    | Calculate standard normal density of z | Z     | [A]            | φ(z)      |
| 3    | Calculate $Pr(Z \leq z)$               | Z     | [B]            | P(z)      |
| 4    | Calculate Pr(Z > z)                    | Z     | [C]            | Q(z)      |
| 5    | Calculate $Pr(Z \leq  z )$             | Z     | [D]            | A(z)      |

### **Register Contents**

| $R_{00}$ | $R_{05}$        | $R_{10}$        | R <sub>15</sub> | $R_{20}$ | R <sub>25</sub> Used |
|----------|-----------------|-----------------|-----------------|----------|----------------------|
| $R_{01}$ | $R_{06}$        | $R_{11}$        | R <sub>16</sub> | $R_{21}$ | R <sub>26</sub> Used |
| $R_{02}$ | R <sub>07</sub> | R <sub>12</sub> | R <sub>17</sub> | $R_{22}$ | $R_{27}$             |
| $R_{03}$ | $R_{08}$        | R <sub>13</sub> | $R_{18}$        | $R_{23}$ | $R_{28}$             |
| $R_{04}$ | $R_{09}$        | $R_{14}$        | $R_{19}$        | $R_{24}$ | $R_{29}$             |

## **Examples:**

- 1. Find the area under the standard normal curve between z = 0 and z = 1.2.
- 2. If the life of a flashlight battery is normally distributed with mean  $\mu$  = 120 hours and standard deviation  $\sigma$  = 10 hours, find the probability that the battery will last for more than 100 hours.
- 3. Prove that the null hypothesis in the Rank Sum Tests example should be accepted  $(z_v = -1.05)$ .
- 4. A steel company produces steel beams with a mean weight of 1245 pounds and a standard deviation of 10 pounds. Find the probability that a shipment of 20 beams will exceed a 25,000 pound weight limit. ( $\overline{x} = 25,000/20 = 1250$ .)

| ENTER | PRESS              | DISPLAY     | COMMENTS                                 |
|-------|--------------------|-------------|------------------------------------------|
|       | [2nd] [Pgm] 19     |             | Select Normal                            |
|       |                    |             | Distribution Program                     |
| 1.2   | [ B ]              | .8849302684 | P(z)                                     |
|       | [ - ]              | .8849302684 |                                          |
| 0     | [B]                | .500000005  | P(z)                                     |
|       | [ = ]              | .3849302679 | Area                                     |
| 100   | [-]                | 100.        | ×                                        |
| 120   | [ = ] [ ÷ ]        | -20.        | x - μ                                    |
| 10    | [ = ]              | -2.         | $(x - \mu)/\sigma = z$                   |
|       | [ C ]              | 0.977249938 | Q(z)                                     |
| 1.05  | [+/—] [B]          | .1468590807 | P(z <sub>y</sub> )                       |
| 1250  | [-]                | 1250.       | $\overline{x}$                           |
| 1245  | [ = ] [ ÷ ] [ ( ]  | 5.          | $\frac{\overline{x}}{x} - \mu$           |
| 10    | [ ÷ ]              | 10.         | σ                                        |
| 20    | $[\sqrt{x}][]][=]$ | 2.236067977 | $(\overline{x} - \mu/(\sigma/\sqrt{n}))$ |
| *     | [ C ]              | .0126736174 | Q(z)                                     |

### Summary:

1. This area is found by simply performing the following calculations:

$$Pr(Z \le 1.2) - Pr(Z \le 0) = P(1.2) - P(0) = Area.$$

2. In this example x is first converted to a standard normal variable using the expression

$$z = (x-\mu)/\sigma$$
.

Once this conversion is made, the probability of the battery lasting more than 100 hours is found as Pr(Z > z) = Q(z).

3. Since H<sub>1</sub> assumes that the distribution of the heights of the sons has shifted to the right when compared with that of the fathers we may restate our hypotheses as

$$H_0$$
:  $\mu_x = \mu_y$  against  $H_1$ :  $\mu_x < \mu_y$ .

In this case a lower-tailed test is needed to complete the evaluation. That is, we should accept  $H_0$  only if  $\Omega(z_y) \leqslant 0.95$  when testing at the 95% confidence level. Since  $\Omega(-1.05) < 0.95$ , accept  $H_0$ .

4. The central limit theorem is used to calculate  $Pr(\overline{x} > 1250)$ . As you can see, this implies that the probability of exceeding the weight limit is extremely low.

#### **BINOMIAL DISTRIBUTION PROGRAM**

The binomial distribution may be used when your sample is obtained using either of the following techniques.

- Sampling from an infinite population.
- Sampling from a finite population with replacement.

Bascially, you may be dealing with binomial variables when these conditions are satisfied.

- The experiment consists of a fixed number of statistically independent trials.
- Each trial results in either success or failure.
- Each trial has identical probabilities of success p, and failure 1 p.

The probability function of a binomial distribution is given by

$$f(k; n, p) = \begin{cases} \binom{n}{k} p^{k} (1-p)^{n-k}, & k = 0, 1, 2, ..., n; \\ 0, & \text{elsewhere} \end{cases}$$

where n is the number of trials and k is the number of successes in the experiment.

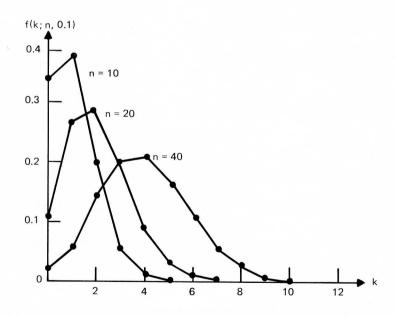



Figure 6.5

As you can see, the normal curve is a good approximation for the binomial distribution when n is large. This relationship becomes more apparent as p approaches 0.5.

The cumulative distribution function of a random variable with binomial distribution is simply

$$F(k; n, p) = \sum_{j=0}^{k} f(j; n, p).$$

You can use this program to calculate the following probabilities for n trials of an experiment. Calculations are based on the above summation.

Probability of exactly k successes = f(k; n, p) = f(k).

Probability of k or fewer successes = F(k; n, p) = P(k).

Probability of more than k success = 1 - F(k; n, p) = Q(k).

You may also use this program to determine the mean and standard deviation of a binomially distributed population where

$$\mu = np$$
 and  $\sigma = \sqrt{np(1-p)}$ .

| ₹\$        | Solid S    | state Soft       | ware 1   | TI ©1977  |
|------------|------------|------------------|----------|-----------|
| BINOMIA    | L DISTRIBU | TION             |          | ST-20     |
| <b>+</b> μ | <b>→</b> σ |                  |          |           |
| n          | р          | k <b>→</b> f (k) | k → P(k) | k → Q (k) |

## **USER INSTRUCTIONS**

| STEP | PROCEDURE                                      | ENTER | PRESS          | DISPLAY   |
|------|------------------------------------------------|-------|----------------|-----------|
| 1    | Select Program                                 |       | [2nd] [Pgm] 20 | No Change |
| 2    | Enter number of trials                         | n     | [A]            | n         |
| 3    | Enter probability of success on each trial     | p     | [B]            | р         |
| 4    | Calculate mean                                 |       | [2nd] [ A' ]   | $\mu$     |
| 5    | Calculate standard deviation                   |       | [2nd] [ B' ]   | σ         |
| 6    | Calculate probability of k successes           | k     | [c]            | f(k)      |
| 7    | Calculate probability of k or fewer successes  | k     | [D]            | P(k)      |
| 8    | Calculate probability of more than k successes | k     | [E]            | Q(k)      |

NOTES:

- 1. Steps 4-8 may be performed at any time and in any order following Steps 1-3.
- 2. If an output flashes in the display the calculator probably overflowed in calculation. Disregard results. (This only occurs for large n and small k.)

#### **Register Contents**

| Roo      | $R_{05}$ | $R_{10}$ | R <sub>15</sub> | $R_{20}$             | R <sub>25</sub> Used |
|----------|----------|----------|-----------------|----------------------|----------------------|
| $R_{01}$ | $R_{o6}$ | $R_{11}$ | $R_{16}$        | $R_{21}$ N           | $R_{26}$ f(k)        |
| $R_{02}$ | $R_{07}$ | $R_{12}$ | R <sub>17</sub> | $R_{22}$ p           | R <sub>27</sub>      |
| $R_{03}$ | $R_{08}$ | $R_{13}$ | R <sub>18</sub> | $R_{23} 1 - p$       | $R_{28}$             |
| $R_{04}$ | $R_{09}$ | $R_{14}$ | $R_{19}$        | R <sub>24</sub> P(k) | $R_{29}$             |

#### Example:

Suppose that you tossed a coin 50 times and obtained 28 heads. Test the hypotheses

 $H_0$ : the coin is balanced (p = 0.5)

against

 $H_1$ : the coin is unbalanced (p  $\neq$  0.5)

at the 95% confidence level.

| ENTER | PRESS          | DISPLAY     | COMMENTS                             |
|-------|----------------|-------------|--------------------------------------|
|       | [2nd] [Pgm] 20 |             | Select Binomial Distribution Program |
| 50    | [ A ]          | 50.         | n                                    |
| .5    | [B]            | 0.5         | р                                    |
|       | [2nd] [ A' ]   | 25.         | $\mu$                                |
|       | [2nd] [ B' ]   | 3.535533906 | $\sigma$                             |
| 28    | [C]*           | .0788256707 | f(k)                                 |
| 28    | [D]*           | .8388818398 | P(k)                                 |
| 28    | [E]*           | .1611181602 | Q(k)                                 |

<sup>\*</sup>Requires approximately 25 seconds.

#### Summary:

A two-tailed test is required for this exercise. You should accept  $H_0$  if  $0.025 \le P(k) \le 0.975$ . Since the value found above falls in this range, you may say that the coin is balanced. The other outputs are informative, but they are not needed in this example. Therefore, you could complete this exercise by simply entering n and p and evaluating P(k).

## ANALYZING WITH SMALL SAMPLES

As mentioned earlier, the normal distribution is the most commonly used probability model for large samples. But what if you could only collect a sample of 5 or 10 elements? Or what if you didn't know the mean or standard deviation of your parent population? Well, you would probably use one of the families of distributions discussed on the following pages. Statistics for small sample sizes often assume one of these distributions. Each of these distributions is related to the standard normal probability model. These relationships are based on the number of degrees of freedom of the sample distribution.

The term degrees of freedom is first introduced in Seciton IV where applications of these special distributions are discussed. But no explanation is given there. Basically, you may think of the number of degrees of freedom as the number of free or functionally independent variables in a sample. To clarify this, consider the case of a sample of size one. What if you wanted to estimate the population variance from your sample? It can't be done! You need at least two variables to estimate the variance of a population. Even then the variance can be based on only one item. Thus, one of the variables must be considered as functionally dependent on the other, and we say that the sample distribution has 2-1=1 degree of freedom. In general, the number of degrees of freedom is  $\nu=n-k$  where k is the number of constraints present in the calculation of a given parameter.

Just how the number of degrees of freedom affects the shape of a distribution curve is illustrated on the following pages.

#### CHI-SQUARE DISTRIBUTION PROGRAM

Essentially, the chi-square distribution is the distribution of the variance of a normally distributed random variable. That is, if  $X_1$ ,  $X_2$ , ...,  $X_n$  are independent standard normal random variables, then  $X_1^2 + X_2^2 + \ldots + X_n^2 = x^2$  has a chi-square distributition with n degrees of freedom. This statistic is most often used to establish confidence intervals for the standard deviation of a population since its distribution depends only on  $\sigma$ .

The shape of a chi-square curve is controlled by its number of degrees of freedom,  $\nu$ . As you can see in Figure 6.6 the mean of the chi-square distribution is  $\nu$ . Also, the variance of each curve is equal to  $2\nu$ . Clearly, the range of a chi-square variable is from zero to infinity as its distribution is defined as the sum of squared values.

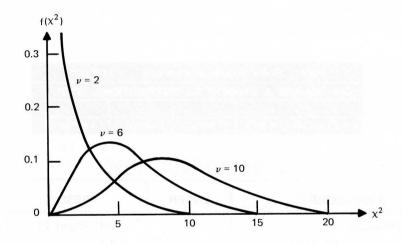



Figure 6.6

For values of  $\nu$  greater than 30, use is recommended of the fact that, for large  $\nu$ , the sampling distribution of

$$z = \sqrt{2\chi^2} - \sqrt{2\nu}$$

is approximately the standard unit normal distribution. If this normal approximation is not used for  $\nu > 30$ , the inequality

$$e^{\chi^2}$$
 and  $\left(\frac{\chi^2}{2}\right)^{-\nu} \leq 9.9999999 \times 10^{99}$ 

must be satisfied or erroneous results will be obtained with this program.

The probability density function of a chi-square variable computed directly by this program, is evaluated as

$$f(X^2) = [(X^2)^{(\nu-2)/2} \exp(-X^2/2)]/2^{\nu/2} \Gamma(\nu/2).$$

A series expansion is used to approximate the cumulative distribution function

$$P(\chi^2) = \int_0^{\chi^2} f(u) du = Pr(X \le \chi^2).$$

You may calculate the following probability manually.

$$Q(x^2) = 1 - P(x^2) = Pr(X > x^2).$$

An additional output of this program computed when the number of degrees of freedom is entered is the gamma function of  $\nu/2$  where

$$\Gamma(\nu/2) = (\nu/2 - 1)!$$

| €                  | Solid S                          | tate Softv                     | ware       | TI ©1977 |
|--------------------|----------------------------------|--------------------------------|------------|----------|
| CHI - SQU          | ARE & STU                        | IDENT'S-t D                    | ISTRIBUTIO | NS ST-21 |
| <b>ν → Γ</b> (ν/2) | $\chi^2  ightharpoons f(\chi^2)$ | $\chi^2 \rightarrow P(\chi^2)$ | t → f (t)  | t → P(t) |

## USER INSTRUCTIONS

| STEP | PROCEDURE                                                                          | ENTER | PRESS          | DISPLAY            |
|------|------------------------------------------------------------------------------------|-------|----------------|--------------------|
| 1    | Select Program                                                                     |       | [2nd] [Pgm] 21 | No Change          |
| 2    | Enter degrees of freedom <sup>1</sup>                                              | ν     | [ A ]          | $\Gamma(\nu/2)$    |
| 3    | Enter $X^2$ -Statistic and calculate density function <sup>2</sup>                 | χ2    | [B]            | f(X <sup>2</sup> ) |
| 4    | Enter $X^2$ -Statistic and calculate cumulative distribution function <sup>2</sup> | χ2    | [C]            | P(X <sup>2</sup> ) |

NOTES:

- 1. Execution time increases with  $\nu$ .
- 2. Perform Step 2 first.

### **Register Contents**

| $R_{oo}$ | $R_{os}$ | $R_{10}$        | $R_{15}$ $\nu$               | R <sub>20</sub> Used | $R_{25}$ |
|----------|----------|-----------------|------------------------------|----------------------|----------|
| $R_{01}$ | $R_{06}$ | $R_{11}$        | $R_{16} \chi^2$              | R <sub>21</sub> Used | $R_{26}$ |
| $R_{02}$ | $R_{07}$ | $R_{12}$        | $R_{17} \Gamma[(\nu + 2)/2]$ | R <sub>22</sub> Used | $R_{27}$ |
| $R_{03}$ | $R_{08}$ | R <sub>13</sub> | $R_{18} \Gamma[(\nu + 1)/2]$ | R <sub>23</sub> Used | $R_{28}$ |
| $R_{04}$ | $R_{09}$ | $R_{14}$        | $R_{19} \Gamma(\nu/2)$       | R <sub>24</sub>      | $R_{29}$ |

#### Example:

If  $s^2$  is the sample variance of a sample of size n selected from a normal population, then the distribution of  $s^2$  can be obtained from

$$s^2 = \chi^2 (\sigma^2/n).$$

where  $\chi^2$  is the  $\chi^2$ -statistic with n-1 degrees of freedom and  $\sigma^2$  is the population variance. This is equivalent to

$$\chi^2 = (n s^2 / \sigma^2).$$

Now suppose that 20 scales of a certain make are tested for accuracy and yield a sample variance of 3 ounces. Use the above to verify that this sample variance does not contradict the assumption that the population variance is no more than 2.5 ounces at the 95% confidence level.

| ENTER | PRESS          | DISPLAY     | COMMENTS                                  |
|-------|----------------|-------------|-------------------------------------------|
|       | [2nd] [Pgm] 21 |             | Select Chi-Square<br>Distribution Program |
| 19    | [ A ]          | 119292.462  | $\nu \to \Gamma \ (\nu/2)$                |
| 20    | [ x ]          | 20.         | n                                         |
| 3     | [÷]            | 60.         | ns <sup>2</sup>                           |
| 2.5   | [ = ]          | 24.         | $ns^2/\sigma^2 = X^2$                     |
|       | [ C ]          | .8038476428 | $P(X^2)$                                  |

#### Summary:

The actual hypotheses tested in this example are

$$H_0: \sigma^2 \leq 2.5$$
 against  $H_1: \sigma^2 > 2.5$ .

However, to make this evaluation you must test

$$H_0'$$
:  $\chi^2 \le ns^2/\sigma^2$  against  $H_1'$ :  $\chi^2 > ns^2/\sigma^2$ 

where  $\chi^2$  is the  $\chi^2$ -statistic with n-1 degrees of freedom.

Due to the nature of the hypotheses, an upper-tailed test is required to complete this evaluation. That is, you may accept  $H_0$  only if  $P(X^2) \le 0.95$  when testing at the 95% confidence level. Since P(24) with 19 degrees of freedom is within this range, accept  $H_0$ .

#### STUDENT'S t DISTRIBUTION PROGRAM

When small samples are involved, t curves are often used as probability models when it can be assumed that the parent population is approximately normally distributed. The t-statistic with n degrees of freedom is defined as

$$t = X_0/(\sqrt{X_1^2 + X_2^2 + ... + X_n^2})/n = X_0/(\sqrt{X^2}/n)$$

where  $X_0$ ,  $X_1$ , . . .,  $X_n$  are n+1 independent standard normal variables.

A t curve with  $\nu > 1$  degrees of freedom is similar to a standard normal curve in that its mean is always zero\*. However, its standard deviation is given as  $\sigma = \sqrt{\nu/(\nu-2)}$ .\* It should be clear that  $\sigma$  converges to one for large values of  $\nu$ . Therefore, for  $\nu$  greater than 30, the t curve becomes the standard normal curve.

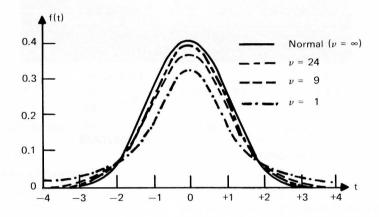



Figure 6.7

The probability density function of the t distribution is evaluated as

$$f(t) = \frac{\Gamma[(\nu + 1)/2] (1 + t^2/\nu)^{-(\nu + 1)/2}}{\sqrt{\pi \nu} \Gamma(\nu/2)}$$

The program then uses a series expansion to approximate the cumulative distribution function

$$P(t) = \int_{-\infty}^{t} f(u) du = Pr(T \leqslant t).$$

Using this result, you may calculate the following probabilities manually.

$$Q(t) = 1 - P(t) = Pr(T > t).$$

$$A(t) = 2P(t) - 1 = Pr(T \le |t|).$$

<sup>\*</sup> A random variable with t distribution has no mean for  $\nu = 1$  and no standard deviation for  $\nu \leq 2$ .

This program also computes the gamma function of v/2 when the number of degrees of freedom is entered as in the last program.

| ₹્કેં             | Solid S                        | tate Softv                     | vare             | TI ©1977  |  |
|-------------------|--------------------------------|--------------------------------|------------------|-----------|--|
| CHI - SQUA        | ARE & STU                      | IDENT'S-t DI                   | STRIBUTIC        | NS ST-21  |  |
| ν <b>→</b> Γ(ν/2) | $\chi^2 \rightarrow f(\chi^2)$ | $\chi^2 \rightarrow P(\chi^2)$ | t <b>→</b> f (t) | t → P (t) |  |

## **USER INSTRUCTIONS**

| STEP | PROCEDURE                                                                        | ENTER | PRESS          | DISPLAY         |
|------|----------------------------------------------------------------------------------|-------|----------------|-----------------|
| 1    | Select Program                                                                   |       | [2nd] [Pgm] 21 | No Change       |
| 2    | Enter degrees of freedom <sup>1</sup>                                            | u     | [ A ]          | $\Gamma(\nu/2)$ |
| 3    | Enter t-Statistic and calculate density function <sup>2</sup>                    | t     | [D]            | f(t)            |
| 4    | Enter t-Statistic and calculate cumulative distribution function <sup>1, 2</sup> | t     | [E]            | P(t)            |

NOTES:

- 1. Execution time increases with  $\nu$ .
- 2. Perform Step 2 first.
- 3. Program operation leaves the calculator in radian mode.

## **Register Contents**

| $R_{oo}$ | $R_{05}$ | $R_{10}$        | $R_{15}$ $\nu$               | R <sub>20</sub> Used | R <sub>25</sub> |
|----------|----------|-----------------|------------------------------|----------------------|-----------------|
| $R_{01}$ | $R_{06}$ | $R_{11}$        | R <sub>16</sub> t            | R <sub>21</sub> Used | $R_{26}$        |
| $R_{02}$ | $R_{07}$ | $R_{12}$        | $R_{17} \Gamma[(\nu + 2)/2]$ | R <sub>22</sub> Used | $R_{27}$        |
| $R_{03}$ | $R_{08}$ | $R_{13}$        | $R_{18} \Gamma[(\nu + 1)/2]$ | R <sub>23</sub> Used | $R_{28}$        |
| $R_{04}$ | $R_{09}$ | R <sub>14</sub> | $R_{19} \Gamma(\nu/2)$       | R <sub>24</sub>      | $R_{29}$        |

#### **Examples:**

- 1. Find the area under the t curve with 30 degrees of freedom between t = 0 and t = 1.2. Compare this area with the corresponding area for the standard normal curve.
- 2. Show that the null hypothesis in the first *t-Statistic Evaluation* example should be rejected ( $t \doteq 2.5$ , v = 9).
- 3. Verify that the null hypothesis in the second *t-Statistic Evaluation* example should be accepted (t = -0.31,  $\nu = 16$ ).

| ENTER | PRESS          | DISPLAY      | COMMENTS                      |
|-------|----------------|--------------|-------------------------------|
|       | [2nd] [Pgm] 21 |              | Select Student's t            |
|       |                | 0.7170201.10 | Distribution Program          |
| 30    | [ A ]          | 8.7178291 10 | $ u 	o \Gamma(\nu/2)$         |
| 1.2   | [E]            | .8802348246  | P(t)                          |
|       | [-]            | .8802348246  |                               |
| 0     | [E]            | 0.5          | P(t)                          |
|       | [=]            | .3802348246  | Area                          |
| 9     | [A]            | 11.6317284   | $ u  ightarrow \Gamma(\nu/2)$ |
| 2.5   | [ E ]          | .9830690862  | P(t)                          |
| 16    | [ A ]          | 5040.        | $\nu 	o \Gamma(\nu/2)$        |
| .31   | [+/—] [ E ]    | .3802810836  | P(t)                          |

## Summary:

- 1. This area is found using the same procedure described in the Normal Distribution example. Note that the sizes of these areas are the same, demonstrating the fact that the t curve becomes the standard normal curve for  $\nu \geqslant 30$ .
- 2. The hypotheses of this example require a two-tailed test. We should therefore accept  $H_0$  if  $0.025 \leqslant P(t) \leqslant 0.975\,$  when testing at the 95% confidence level. Since P(2.5) for 9 degrees of freedom is not in this range, reject  $H_0$ .
- 3. Again, a two-tailed test is required to complete this example, However, since P(-0.31) for 16 degrees of freedom is such that  $0.05 \le P(t) \le 0.95$ , you should accept  $H_0$  at the 90% confidence level.

#### F DISTRIBUTION PROGRAM

The F-Statistic is actually the ratio of two variances. Accordingly, you may use this ratio to compare the variances of normal populations. It may also be used to make inferences about the effect of one random variable on another by studying the population variance as is done in *Analysis of Variance* in Section IV.

By definition, if X and Y are independent random variables having chi-square distribution with  $\nu_1$  and  $\nu_2$  degrees of freedom respectively, then the F-statistic is

$$F_{\nu_1, \nu_2} = \frac{X/\nu_1}{Y/\nu_2}$$

with  $\nu_1$  degrees of freedom in the numerator and  $\nu_2$  degrees of freedom in the denominator. Again, the shape of an F curve is defined by its number of degrees of freedom. The mean and variance are given by

$$\mu = \nu_2/(\nu_2 - 2)$$
 and  $\sigma^2 = \frac{2 \nu_2^2 (\nu_1 + \nu_2 - 2)}{\nu_1 (\nu_2 - 2)(\nu_2 - 4)}$ .

A random variable with F distribution has no mean for  $v_2 \le 2$  and no variance for  $v_2 \le 4$ .

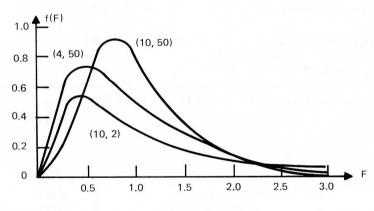



Figure 6.8

The probability density function of a F variable is given by

$$f(F) = \left(\frac{\Gamma[(v_1 + v_2)/2] \ v_1^{(v_1/2)} \ v_2^{(v_2/2)}}{\Gamma(v_1/2) \ \Gamma(v_2/2)}\right) \left(\frac{F^{(v_1/2) - 1}}{(v_1 \ F + v_2)^{(v_1 + v_2)/2}}\right)$$

Once you have entered the degrees of freedom for your variable into the program, the tail area of the appropriate F curve is evaluated as

Q(F) = 
$$\int_{F}^{\infty} f(u)du = Pr(F > F)$$
.

A series expansion is used to approximate this integral. You may use this information to calculate the following probability.

$$P(F) = 1 - Q(F) = Pr(F \leqslant F).$$

Note that a reasonable limit for  $v_1$  and  $v_2$  is 120.

| ₹\$       | Solid S | State Software | TI ©1977 |
|-----------|---------|----------------|----------|
| f distrib | UTION   |                | ST-22    |
| ¥         |         |                |          |
| ν1        | ν2      | F → Q (F)      |          |

## **USER INSTRUCTIONS**

| STEP | PROCEDURE                               | ENTER   | PRESS          | DISPLAY   |
|------|-----------------------------------------|---------|----------------|-----------|
| 1    | Select Program                          |         | [2nd] [Pgm] 22 | No Change |
| 2    | Enter degrees of freedom in numerator   | $\nu_1$ | [A]            | $\nu_1$   |
| 3    | Enter degrees of freedom in denominator | $\nu_2$ | [B]            | $\nu_2$   |
| 4    | Calculate $Pr(\mathbf{F} > F)^1$        | ×       | [C]            | Q(F)      |

NOTE:

1. Execution time increases as  $\nu_1$  and  $\nu_2$  increase and F decreases.

### **Register Contents**

| $R_{oo}$        | $R_{os}$        | $R_{10}$        | $R_{15}$ $\nu_1$     | R <sub>20</sub> Used | R <sub>25</sub> Used |
|-----------------|-----------------|-----------------|----------------------|----------------------|----------------------|
| R <sub>01</sub> | R <sub>06</sub> | R <sub>11</sub> | $R_{16}$ $\nu_2$     | R <sub>21</sub> Used | R <sub>26</sub> Used |
| $R_{02}$        | R <sub>07</sub> | R <sub>12</sub> | R <sub>17</sub> Used | R <sub>22</sub> Used | R <sub>27</sub> Used |
| $R_{03}$        | $R_{08}$        | R <sub>13</sub> | R <sub>18</sub> Used | R <sub>23</sub> Used | $R_{28}$             |
| R <sub>04</sub> | $R_{09}$        | R <sub>14</sub> | R <sub>19</sub> Used | R <sub>24</sub> Used | $R_{29}$             |

## **Examples:**

- 1. Find Q(F) for  $F_{7,20} = 2.5$ . Then find P(F) for  $F_{20,7} = 1/2.5 = 0.4$ . What do you notice about these results?
- 2. Prove that the null hypothesis in the *One-Way AOV* example should be rejected  $(F_{2.24} \doteq 2.63)$ .
- 3. Verify the results of the *Two-Way AOV* example  $(F_{C(8,16)} \pm 2.18, F_{R(2,16)} \pm 8.13)$ .

| ENTE   | R PRESS        | DISPLAY     | COMMENTS                         |
|--------|----------------|-------------|----------------------------------|
|        | [2nd] [Pgm] 22 |             | Select F Distribution<br>Program |
| 7      | [ A ]          | 7.          | $\nu_1$                          |
| 20     | [B]            | 20.         | $ u_2$                           |
| 2.5    | [ <b>c</b> ]   | .0510167666 | Q(F)                             |
| 20     | [ A ]          | 20.         | $\nu_1$                          |
| 7<br>1 | [B]<br>[-]     | 7.          | $\nu_2$                          |
| .4     | [ <b>c</b> ]   | .9489832334 | Q(F)                             |
|        | [=]            | .0510167666 | P(F)                             |
| 2      | [ A ]          | 2.          | $ u_1$                           |
| 24     | [ B ]          | 24.         | $ u_2$                           |
| 2.63   | [ C ]          | .0927348639 | Q(F)                             |
| 8      | [ A ]          | 8.          | $\nu_1$                          |
| 16     | [B]            | 16.         | $\nu_2$                          |
| 2.18   | [ C ]          | .0878610597 | Q(F <sub>C</sub> )               |
| 2      | [ A ]          | 2.          | $ u_1$                           |
| 16     | [ B ]          | 16.         | $\nu_2$                          |
| 8.13   | [ C ]          | .0036613813 | Q(F <sub>R</sub> )               |

#### Summary:

1. This example illustrates what is known as the reciprocal property of the F distribution. That is,

$$Pr(F_{\nu_1, \nu_2} \geqslant F) = Pr(F_{\nu_1, \nu_2} \leqslant 1/F).$$

- 2. We need to use an upper-tailed test for this example. To test at the 90% confidence level  $H_0$  should be accepted if  $P(F) \le 0.90$ . This is the same as accepting  $H_0$  when Q(F) > 0.10. Since Q(2.63) < 0.10 for 2 and 24 degrees of freedom, reject  $H_0$ .
- 3. Since these tests are performed at the 95% confidence level (5% level of significance) you should conclude that there are no row or column effects only when  $\Omega(F)>0.05.$  Since  $\Omega(F_{\rm C})>0.05$  for 8 and 16 degrees of freedom there is no indication of column effects. However, since  $\Omega(F_{\rm R})<0.05$  for 2 and 16 degrees of freedom, there is a strong indication of row effects.

APPENDIX A: PROGRAM REFERENCE DATA

| Program<br>Number            | 10                                                                                                                                | 02                                                                                                                                                                                                             | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90                                                                                                                                                          | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                            | Ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E.                           |                                                                                                                                   |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Print                        | Output                                                                                                                            | In/Out                                                                                                                                                                                                         | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | In/Out                                                                                                                                                      | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Output                                                                        | Trans-<br>formed<br>Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Trans-<br>formed<br>Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In/Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Angular<br>Model             | Deg                                                                                                                               | Rad                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ij                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ABS<br>Address               | ×                                                                                                                                 | ×                                                                                                                                                                                                              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| x ⊗ t                        | ×                                                                                                                                 | <u>გ</u>                                                                                                                                                                                                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Special<br>Functions<br>Used | A/N                                                                                                                               | Ω <sup>+</sup>                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⊼<br>0p 11                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X<br> X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Calls<br>Pgm.                | 2                                                                                                                                 | -                                                                                                                                                                                                              | 4,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ო                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,7                                                                                                                                                         | 3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,21                                                                          | က                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ą.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Paren.<br>Levels             | 4                                                                                                                                 | ო                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                           | က                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ო                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ო                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | က                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SBR<br>Levels                | -                                                                                                                                 | -                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                             | က                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Flags<br>Used                |                                                                                                                                   |                                                                                                                                                                                                                | 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2'0                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               | 0,1,<br>2,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2<br>3,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Data<br>Reg.<br>Used         | 1-6, 9, 10                                                                                                                        | 1-6,<br>9-13                                                                                                                                                                                                   | 0, 3-18,<br>26, 28+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-17, 26<br>28, 29, 31+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-14, 26-29,<br>32+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +08-0                                                                                                                                                       | 0-19<br>26, 28+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-5, 7, 8,<br>11, 17,<br>19-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0-17,<br>19-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-29                                                                          | 0, 3-18,<br>26, 28+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-17, 26,<br>28, 29, 31+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-5, 12, 13<br>15, 23-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1, 2, 8-17,<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-3, 6-27,<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3, 15, 23-<br>27, 30+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-7,9,<br>14-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Data<br>Base<br>Used         |                                                                                                                                   | -                                                                                                                                                                                                              | Uni-<br>variate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bivariate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tri-<br>variate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AOV                                                                                                                                                         | Histo-<br>gram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Uni-<br>variate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Histo-<br>gram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Histo-<br>gram                                                                | Uni-<br>variate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bivariate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bivariate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bivariate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tri-<br>variate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| No. of<br>Steps              | 111                                                                                                                               | 141                                                                                                                                                                                                            | 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 251                                                                                                                                                         | 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 216                                                                           | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Title                        | Diagnostic                                                                                                                        | Random Number<br>Generator                                                                                                                                                                                     | Univariate Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bivariate Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trivariate Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AOV Data                                                                                                                                                    | Histogram Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Means and<br>Moments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Histogram<br>Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Theoretical<br>Histogram                                                      | Transforms for<br>Univariate Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Transforms for<br>Bivariate Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t-Statistic<br>Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contingency Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-Way AOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Way AOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rank-Sum Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Multiple Linear<br>Regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Program<br>Number            | 10                                                                                                                                | 02                                                                                                                                                                                                             | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90                                                                                                                                                          | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | Data Data Paren. Calls Functions ABS Angular Print Steps Used Used Used Levels Paren. Calls Functions x≥t Address Model Print EE* | No. of StepsData Data No. of StepsData Reg. UsedFlags Paren. UsedStepsParen. LevelsCalls Functions Print PunctionsABS Angular AddressAngular Angular Print Ref.Print Ref.Diagnostic11116,9,10142N/AXXDegOutput | No. of Pate Steps         Data Data Data Steps         Flags Paren. Base Print Diagnostic         Special Flags Paren. Base Print Galls Functions Print P | No. of Pase Steps         Reg. Used         Flags Generator Generator Anizate Data         Flags Levels Pgm. Levels Pgm. Used         Calls Punctions Age Punctions Pgm. Used         ABS Angular Andress Model Print EF*         Angular Print Remomentary Rad Nodel Print S = 1.6, 9, 10         Flags Reg. Used         Levels Levels Pgm. Used         Pgm. Used         X × x + Address Model Print Remomentary Rad Nodel Print Remomentary Rad Nodel In/Out Remomentary Rad Nodel In/Out Remomentary Variate Data         AG | No. of Base Steps         Reg. Used         Flags Obstage Data Steps         Flags Diagnostic         Special Levels of Base Levels         Calls Punctions Pare Diagnostic         ABS Punctions Number Steps         ABS Punctions Number Steps <th>No. of Base Steps         Reg. Used Used Used Used Used Used Data         Flags Data Data Steps         Sheel Levels Used Used Used Used Used Used Used Use</th> <th>Title         Steps         Base Steps         Reg. Losed         Losed Levels Losed         Losed Levels Levels         Paren. Losed Losed Levels         Paren. Losed Losed Levels         Paren. Losed Losed Losed Levels         Paren. Losed Losed Losed Levels         Paren. Losed Lose</th> <th>Title         Steps         Levels         Saperial Levels         Saper</th> <th>Tritle         Steps         Data of Steps         Data of Steps         Data of Steps         Cavels of Steps         Paren. Levels of Steps         Paren. Le</th> <th>Title         No. of Steps         Base Used Used Used Used Used Used Used Us</th> <th>Title         Steps         Data base of Steps         Base of Steps         Reg. base of Base of Base of Base of Base of Steps         Flag         Steps         Steps         Steps         Address         Address         Address         Model         Print         EF           Diagnostic         111         14.6 g. 10         14.6 g. 10         1.4 g. 1.7 g. 1.4 g. 1.7 g. 1.4 g. 1.7 g. 1.4 g. 1.7 g. 1.4 g. 1.</th> <th>Tritle         No. of Steps         Data Losed         Death Losed         Losed Levels         Paren. Losed         Calls         Functions pgm.         X = 4         Address         Model Model         Print         EFF           Diagnostic         111         Josed         156.9         1         1         4         2         N/A         X = 4         Address         Model         Print         Print         1.6.9         1         4         2         N/A         X = 4         X = 4         Address         Model         Print         Print         1.6.9         1         4         2         N/A         X = 4         X = 4         Address         Model         Print         Print         1.6.9         1         2         2         4         7         X = 4         X = 4         X = 4         Address         Model         Print         Print         1.6.9         7         2         2         4         7         X = 4         Address         Model         Print         Print         N = 4         Address         Model         Print         Print         N = 4         Address         Model         Print         Print         N = 4         Address         N = 4         Address         N = 4         &lt;</th> <th>Title Steps   No. of Steps   Data   Data   Levels   Levels   Paren.   Calls   Special   No. of Steps   Data   Used   Used   Used   Levels   Paren.   Calls   Special   No. of Steps   No. of Steps   Used   Used   Used   Levels   Paren.   Used   No. of Steps   No. of Steps   Used   Used   Used   Used   Levels   Paren.   Used   No. of Steps   No. of Steps   Used   Us</th> <th>  No. of   Sae   Sae   Lie   Lie   Sae   Lie   Lie   Sae   Lie   Sae   Lie   Lie   Sae   S</th> <th>Title         Steps         Date of Steps         Date of Steps         Date of Steps         Levels of Steps         Figher of Steps         Fine of Steps</th> <th>Tritle         Steps         Included by the step of the state of the step of the st</th> <th>Tritle         Stage         Data Data         Regal Levels         Paren         Calls Functions         Specials Functions         Functions         X = X + Address         Angular Model         Print         EP           Biggloostic         111         1.6, 9.10         1.6, 9.10         1         4         2         N/A         X + Address         Angular Model         Print         EP           Reaction Number         111         1.6, 9.10         1         1         3         1         X + A         X Hodel         Infoort         Infoort           Generator         111         1.6, 9.10         1         2         4.7         X Hodel         X Hodel         Infoort         Infoort           Generator         1.00         0.3-18         5.7         2         2         4.7         X Hodel         X Hodel         Infoort         Infoort           Gendrator         2.00         0.3-18         5.7         2         1         4         X X X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <t< th=""><th>  No. of Base   Data   Data  </th></t<></th> | No. of Base Steps         Reg. Used Used Used Used Used Used Data         Flags Data Data Steps         Sheel Levels Used Used Used Used Used Used Used Use | Title         Steps         Base Steps         Reg. Losed         Losed Levels Losed         Losed Levels Levels         Paren. Losed Losed Levels         Paren. Losed Losed Levels         Paren. Losed Losed Losed Levels         Paren. Losed Losed Losed Levels         Paren. Losed Lose | Title         Steps         Levels         Saperial Levels         Saper | Tritle         Steps         Data of Steps         Data of Steps         Data of Steps         Cavels of Steps         Paren. Levels of Steps         Paren. Le | Title         No. of Steps         Base Used Used Used Used Used Used Used Us | Title         Steps         Data base of Steps         Base of Steps         Reg. base of Base of Base of Base of Base of Steps         Flag         Steps         Steps         Steps         Address         Address         Address         Model         Print         EF           Diagnostic         111         14.6 g. 10         14.6 g. 10         1.4 g. 1.7 g. 1.4 g. 1.7 g. 1.4 g. 1.7 g. 1.4 g. 1.7 g. 1.4 g. 1. | Tritle         No. of Steps         Data Losed         Death Losed         Losed Levels         Paren. Losed         Calls         Functions pgm.         X = 4         Address         Model Model         Print         EFF           Diagnostic         111         Josed         156.9         1         1         4         2         N/A         X = 4         Address         Model         Print         Print         1.6.9         1         4         2         N/A         X = 4         X = 4         Address         Model         Print         Print         1.6.9         1         4         2         N/A         X = 4         X = 4         Address         Model         Print         Print         1.6.9         1         2         2         4         7         X = 4         X = 4         X = 4         Address         Model         Print         Print         1.6.9         7         2         2         4         7         X = 4         Address         Model         Print         Print         N = 4         Address         Model         Print         Print         N = 4         Address         Model         Print         Print         N = 4         Address         N = 4         Address         N = 4         < | Title Steps   No. of Steps   Data   Data   Levels   Levels   Paren.   Calls   Special   No. of Steps   Data   Used   Used   Used   Levels   Paren.   Calls   Special   No. of Steps   No. of Steps   Used   Used   Used   Levels   Paren.   Used   No. of Steps   No. of Steps   Used   Used   Used   Used   Levels   Paren.   Used   No. of Steps   No. of Steps   Used   Us | No. of   Sae   Sae   Lie   Lie   Sae   Lie   Lie   Sae   Lie   Sae   Lie   Lie   Sae   S | Title         Steps         Date of Steps         Date of Steps         Date of Steps         Levels of Steps         Figher of Steps         Fine of Steps | Tritle         Steps         Included by the step of the state of the step of the st | Tritle         Stage         Data Data         Regal Levels         Paren         Calls Functions         Specials Functions         Functions         X = X + Address         Angular Model         Print         EP           Biggloostic         111         1.6, 9.10         1.6, 9.10         1         4         2         N/A         X + Address         Angular Model         Print         EP           Reaction Number         111         1.6, 9.10         1         1         3         1         X + A         X Hodel         Infoort         Infoort           Generator         111         1.6, 9.10         1         2         4.7         X Hodel         X Hodel         Infoort         Infoort           Generator         1.00         0.3-18         5.7         2         2         4.7         X Hodel         X Hodel         Infoort         Infoort           Gendrator         2.00         0.3-18         5.7         2         1         4         X X X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X <t< th=""><th>  No. of Base   Data   Data  </th></t<> | No. of Base   Data   Data |

APPENDIX A: PROGRAM REFERENCE DATA

| d        | Assession in the second          |                 |                      | ALLENOE STATE FILEROE CALLE |               | )             |                  |               | 1011                         |              |     |             |       |        |                   |
|----------|----------------------------------|-----------------|----------------------|-----------------------------|---------------|---------------|------------------|---------------|------------------------------|--------------|-----|-------------|-------|--------|-------------------|
|          | Title                            | No. of<br>Steps | Data<br>Base<br>Used | Data<br>Reg.<br>Used        | Flags<br>Used | SBR<br>Levels | Paren.<br>Levels | Calls<br>Pgm. | Special<br>Functions<br>Used | x ≥ t        | ABS | ABS Angular | Print | *<br>Ш | Program<br>Number |
| ニニモ      | Normal<br>Distribution           | 159             | 150                  | 25, 26                      | -             | 2             | 2                |               |                              | S S          | ×   |             |       |        | 19                |
| ot str   | Binomial<br>Distribution         | 152             |                      | 21-26                       |               | -             | 7                |               |                              | <del>ن</del> | ×   |             |       |        | 20                |
| Le d     | Chi-Square and Student's t Dist. | 381             |                      | 15-23                       |               | -             | 7                |               |                              | ×            | ×   | Rad         |       |        | 21                |
| Ö        | F Distribution                   | 400             |                      | 15-27                       | 1,2           | -             | -                |               |                              | ×            | ×   | Rad         |       |        | 22                |
| <u>.</u> | Pointers and                     | 201             |                      |                             |               |               |                  |               |                              |              |     |             |       |        |                   |
| no       | Counters                         |                 |                      |                             |               |               |                  |               |                              |              |     |             |       |        |                   |
| noo      | ulers                            |                 |                      |                             |               |               |                  |               | 7                            |              |     |             |       |        |                   |

\*May not be run in engineering mode.

# ONE-YEAR LIMITED WARRANTY FOR CALCULATOR AND/OR LIBRARY MODULE

THIS TEXAS INSTRUMENTS ELECTRONIC CALCULATOR WARRANTY EXTENDS TO THE ORIGINAL CONSUMER PURCHASER OF THE CALCULATOR OR MODULE.

**WARRANTY DURATION:** This calculator and/or module is warranted to the original consumer purchaser for a period of one year from the original purchase date.

WARRANTY COVERAGE: This calculator and/or module is warranted against defective materials or workmanship. THIS WARRANTY IS VOID IF THE CALCULATOR OR MODULE HAS BEEN DAMAGED BY ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER SERVICE OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIAL OR WORKMANSHIP.

WARRANTY DISCLAIMERS: ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSS, ARE LIMITED IN DURATION TO THE ABOVE ONE YEAR PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE CALCULATOR OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER.

Some states do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.

**LEGAL REMEDIES:** This warranty gives you specific legal rights, and you may also have other rights that vary from state to state.

**WARRANTY PERFORMANCE:** During the above one year warranty period, your TI calculator or module will either be repaired or replaced with a reconditioned comparable model (at TI's option) when the calculator or module is returned postage prepaid to a Texas Instruments Service Facility listed below.

In the event of replacement with a reconditioned model, the replacement calculator will continue the warranty of the original unit or six months, whichever is longer. Other than the postage requirement, no charge will be made for such repair or replacement of in-warranty calculators or modules unless one of the alternative remedies is chosen.

TI strongly recommends that you insure the product for value, prior to mailing.

#### TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES

Texas Instruments Service Facility P.O. Box 2500

Lubbock, Texas 79408

Texas Instruments Service Facility 41 Shelley Road Richmond Hill, Ontario, Canada

Consumers in California and Oregon may contact the following Texas Instruments offices for additional assistance or information.

Texas Instruments Consumer Service 831 South Douglas Street El Segundo, California 90245 (213) 973-1803

Texas Instruments Consumer Service 10700 Southwest Beaverton Highway Park Plaza West, Suite 565 Beaverton, Oregon 97005 (503) 643-6758

## IMPORTANT NOTICE REGARDING PROGRAMS AND BOOK MATERIALS

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, REGARDING THESE PROGRAMS OR BOOK MATERIALS OR ANY PROGRAMS DERIVED THEREFROM AND MAKES SUCH MATERIALS AVAILABLE SOLELY ON AN "AS IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THESE BOOK MATERIALS OR PROGRAMS AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS INSTRUMENTS, REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED \$25.00. MOREOVER, TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY KIND WHAT-SOEVER AGAINST THE USER OF THESE PROGRAMS OR BOOK MATERIALS BY ANY OTHER PARTY.

# TEXAS INSTRUMENTS

INCORPORATED

DALLAS, TEXAS