

BASIC 5

INSTRUCTION MANUAL

PREMIER PUBLICATIONS
LEADERS IN UK101/OHIO SOFTWARE

Rev 1.2 8/80 Page 1

This booklet has been retyped for the Flax Cottage Educational
Archive from a scan of the original text.

John Dale
June 2016

Rev 1.2 8/80 Page 2

INSTALLATION

EPROM VERSION

The EPROM locates at 9000hex. To initialise BASIC 5 turn on the
computer, go through the cold start routine, enter the monitor and
type:-

9200G

and the following message will appear

BASIC 5 V1.x

(C)1981 P RIHAN/PREMIER

Ready

The modified prompt is a reminder that BASIC 5 is in residence.
RESET Warm start will retain BASIC 5, a cold start will deactivate
it.

If you are using PREMIER's BASIC 4 EPROM, BASIC 5 will be
automatically initialised during the cold start routine.

To engage BASIC 5 from BASIC without going through the monitor

POKE11,0:POKE12,146:X=USR(X)

If this method is used from a program, control returns to the
command prompt and program execution ceases.

If you are also using PREMIER's TOOLKIT 1 or 2, initialise BASIC 5
first then use the &GO$ command to call in TOOLKIT via the
appropriate entry point (8B50 for TK1 and 8000 for TK2).

DISK VERSION

To run the disc version, load your normal operating system, then
put in the disk containing BASIC 5 and RUN "BASIC5".

Once booted, BASIC 5 is entered by RESET warm start. This will
give the same initialisation message as the EPROM version.

Rev 1.2 8/80 Page 3

BASIC 5

BASIC 5 is a powerful and flexible extension to OSI BASIC as used
in the various OHIO and UK101 machines. Many extra BASIC keywords
are provided covering graphics, print formatting, CEGMON windows
and general programming commands including input and output.

All commands are accessible from program and are used in lines as
if they were inbuilt BASIC 'keywords'. They are all available in
the immediate mode except &PRINTUSNG and &INAT which use the input
buffer to format their text. In most circumstances (see later),
BASIC 5 commands must be the first item in any statement (1st in a
line or after ':') and may not be used within an expression or an
IF … THEN statement (though they may form one of a series of
statements after 'THEN'). The OK prompt in BASIC 5 is replaced by
the more accurate 'Ready'.

The commands available are shown below - they are followed by a
detailed explanation of each command.

GRAPHICS GENERAL FORMATTING

&SCR &GO or &GO$ &PRINTUSNG
&SET &GET &"
&TEST &GS &WI
&VLIN > &WI$
&HLIN &RD &CWI
&BLK &INAT &CWI$
 &PUTAT

The '&' shown in front of each command is essential. It flags to
BASIC 5 that there is a command to decode. Without it a syntax
error will be generated.

In the notes below the following notation is used to simplify
syntax.

< > a valid BASIC expression. Eg 10, A, N*5, "WORD"
VAR means a valid variable name - use with care
$HHHH a four digit hex address.

Rev 1.2 8/80 Page 4

GRAPHIC COMMANDS

All graphic commands (plus &INAT and &PUTAT) use a row/column
system, whereby 0,0 is the bottom left corner of the screen. Eg to
place the start of the graphics at row 7 column 12 you would use
7,12 at the appropriate place in the command.

&SCR
&SCR<char> will fill the screen with the character specified.
<char> must have a value in the range 0-255 and can be either a
number or a variable. The screen is filled in around 0.025
seconds. Try this example.

10 FORN=0TO255
20 &SCRN
30 NEXT

You will find this passes very quickly so add

15 FORI=0TO400:NEXT

to slow the process down a little! &SCR32 in the immediate mode
will clear the screen - useful if you do not have CEGMON.

&SET
&SET <row>,<column>,<char> will set the <char> at the row and
column specified. You are limited to the current screen area or
window. Try:-

10 &SCR32
20 FORN=0TO20
30 &SET8,N,161
40 NEXT

To SET an individual point on the screen at row 7, column 5 with
the letter A :-

10 &SET7,5,65 (REM 65 is ASCII for 'A'

&TEST
&TEST <row>,<column>,var returns the number of the character
located at the <row>,<column> in the variable used. The variable
must be numeric. Try:-

10 &SCR46
20 &TEST5,5,P
30 PRINT P

Rev 1.2 8/80 Page 5

&VLIN
&VLIN<row>,<column>,<length>,<char> will set a vertical line from
the <row>,<column> chosen of length <length> characters <char>.
The sum of <row> and <length> must fit within the current window.

10 &VLIN0,5,16,161

will draw a line from the bottom of the screen to the top (on a
basic, unmodified machine). Variables may be used to specify
<row>,<column>, etc. For example row can be 12, N, N*4-1, etc. A
function call error will be generated for values out of range.

&HLIN
&HLIN is the same as &VLIN, except horizontal lines are generated.

10&SCR32
20&HLIN0,0,20,132

will draw a narrow line along part of the bottom of the screen.

&BLK
&BLK<row>,<column>,<length>,<height>,<char> will set a block from
<row>,<column> (bottom left) of <length> and <height> using the
character <char>. For example

10&BLK0,0,20,10,161

will produce a large block on the screen very quickly.

Rev 1.2 8/80 Page 6

FORMATTING

A powerful 'PRINT USING' command is included in BASIC 5. It allows
the user to form output formats for strings and variables. Two
commands are used:-

&" ##.### to form the 'image' for output,

&PRINTUSNG to access the format.

The image for output may contain information along with the actual
'image'. A 'print list' may follow &PRINTUSNG, as shown below.
Each 'image' may contain any number of formats or may even be
empty. Exponential numbers cannot be printed.

&" TEXT IMAGE TO BE PRINTED ####.###

defines the 'image' to be printed. This comprises a text string
containing a number (no limit) of 'formats' (####.### in the above
example), into which variables or strings may be printed. The
'image' may be of any length up to the current screen width (only
checked when called) or empty. The 'image' will be used again and
again until the 'print list' is exhausted and/or printing will
stop at the first unfilled format. If you print an empty 'image'
or an 'image' without formats (eg a title), your 'print list' must
also be empty.

Formats possible are

for integer numbers (decimals are truncated) or strings

left justified and truncated to the right

####.## for decimal numbers justified on the decimal point.

Trailing zeros are printed, strings as above BUT they
count the point as a character slot.

>### integer numbers as before but leading zeros are printed,

strings are right justified and left truncated

>###.## as above but leading zeros are printed. Strings are

right justified. There must be at least one # before and
after the decimal point.

The format may contain any number of # or groups of # up to the
width limit of the screen.

The format is accessed by the command &PRINTUSNGx: where x is the
line number containing the format (x may be a number, expression
or variable). Note that the colon after the line number is
essential as it defines the start of the 'print list'.

Rev 1.2 8/80 Page 7

10 &"THE ANSWER IS #####.##
20 X=21456.9
30 &PRINTUSNG10:X,34.2,"WRONG"

Try the above example and examine the output generated. As you
will see, the three lines of output are generated by the 'print
list' on line 30 (after the colon).

It is also possible to modify the formats from program. If you do
define a string as "###.##" then print it into a format (it obeys
the standard rules for strings in that format), then the string
will form a format into which the next item in the 'print list'
will be printed. This does mean, however, that you cannot use " or
in strings to be printed this way, except deliberately!

When compiling your 'print list', do NOT use any terminator to the
list such as a comma or semi-colon.

As can be seen from the above instructions, PRINT USING is a very
powerful but rather complex command. You are advised to look at
the demonstration program supplied closely before attempting to
use the function if this is your first encounter with it. It may
also be helpful to consult any books on BASIC that you may have
which mention PRINT USING.

ERROR MESSAGES resulting from mistakes in the use of &PRINTUSNG
require careful interpretation. If you attempt to call line 20 as
an 'image' and there is no 'image' there, the normal SYNTAX error
will be generated, giving the error as being in line 20 (which,
although not an 'image', may be an otherwise valid line of BASIC).
You will, therefore, have to find the line which is calling line
20 as an 'image' to correct the error.

Rev 1.2 8/80 Page 8

WI and CWI
These commands have been included so that users of CEGMON can
easily manipulate their screen windows.

&WI will reset BASIC 5's internal pointers to the current window,
either on start up or after &CWI. (The routine is called during
initialisation.) Note that after using &WI, all error checking and
function limits (especially of the graphics commands) will not
refer to the chosen window - be sure that you want this!

&CWI<top>,<base>,<screen width>

&CWI$ <$HHHH>,<$HHHH>,<width>

These commands allow you to alter the window to anywhere in memory
and to any size up to 2K. The window is set from <top> to <base>
with <width> as specified. Either or both addresses may be decimal
or hex, but the <width> must be decimal. An expression may replace
a decimal value.

The base must line up directly below the top value chosen and it
must be below or equal to it or an FC error will be called. The
cursor automatically homes in the new window. A knowledge of the
screen addresses is needed to get the most out of this command.
UK101 users try:-

10 &CWI53264,53264+(64*8),25

Now LIST your program. !SUPERBOARD users with a 24x24 screen try:-

10 &CWI53285,53285+(29*32),23

and you should have more lines to look at!

Superboard and C1E users please note- in the 24x24 mode BASIC 5
sets its line increment (LL) to 32 ($20). If you want to use 48
width or the Screen Enhancement Kit you must poke LL (at $013C)
with 64 ($40) or restart from reset in the new mode. Otherwise
&CWI and &WI will not work and screen-based commands will produce
some interesting garbage!

Cassette based users please note that there is no built-in
protection to this command and indiscriminate use of &CWI could
cause you to overwrite BASIC 5 if you are not careful ………

Rev 1.2 8/80 Page 9

&PUTAT
&PUTAT<row>,<column>,<MaxLength>,S$

This useful function allows you to print a string anywhere on the
screen without causing scrolling or upsetting adjacent graphics.
<row> and <column> are used to decide the start position of the
string, S$, with 0,0 being the bottom left of the screen. The
<MaxLength> parameter is needed to give the maximum field in which
the string may be printed. This generally will be the space left
on a line from the beginning of the string to the end of that
line. Eg if the screen width is 48 and the string begins at column
23, the maximum field left is 48-23 or 25, so 25 would be entered
for <MaxLength>. If the field is too short for the string being
printed, the string is truncated from the right. Try:-

10 A$="This is a string!"
20 &SCR46
30 &PUTAT5,2,22,A$

&INAT
&INAT<row>,<column>,<Length>,S$

This is a complementary function to &PUTAT and allows you to input
a string, S$, up to the length, <Length>, starting at
<row>,<column>. In use a cursor appears defining the next
character space. Anything may be entered, including any graphics
obtainable from the keyboard.

When the maximum input length is reached the routine loops until
RETURN or RUBOUT are pressed. RUBOUT has its normal function.
Try:-

10 &INAT10,10,8,A$
20 &PUTAT8,10,15,A$

Rev 1.2 8/80 Page 10

GENERAL COMMANDS

&GO and &GO$
These two commands allow you to call a machine code routine from
BASIC in either denary or hexadecimal notation. The address must
be in the range 0 - 65535 (&0000 - &FFFF). A syntax error will be
generated for a denary value out of range but if a hex value is
incorrectly input you could end up anywhere! Try:-

10 &GO$FD00:P=PEEK(531):?P;:GOTO10

Exit the routine with CTRL-C.

&GET
&GETS$

This is a much needed non-halting GET-KEY routine. It returns its
value in the string, S$. Try:-

10 &GETK$:?K$;:GOTO10

Exit the routine with CTRL-C.

> and &GS
><line number> and &GS<line number>

These two commands act exactly like GOTO and GOSUB but <line
number> can be a variable or expression thus giving variable
control of program sequence and allowing 'labels' to be used for
subroutines. Try:-

 10 X=999:&GSX:GOTO10
999 &SCR255*RND(8)+1:RETURN

&RD
&RD<number>,S$

This command will read through DATA lists to the <number>th value
chosen and returns the data item in the string, S$. <number> must
be in the range 1-255. Try:-

10 DATA1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,g,h,i,j
20 RESTORE:&RD18,A$:?A$

Rev 1.2 8/80 Page 11

GENERAL COMMENTS

All of these routines are fully error trapped (except where
specified). Generally if a parameter is out of range a FC error is
called. If incorrect syntax or use is found a SN error will occur
and if strings and numeric are mixed up TM errors occur. The error
to avoid at all costs is an OM error (referring to stack memory).
Unfortunately, by the time this is called, the stack will have
overwritten BASIC 5's workspace at $0134 - $013F.

Three methods are available for recovery:-

1. &GO$9200
2. RESET W - but this will kill anything using I/O vectors
3. RESET M 9200G - Use this if the zero-pointer has crashed but

you may have to cold start anyway.

This would only be necessary if an endless &GS or GOSUB loop had
occurred or too many FOR … NEXT loops had been nested - a fairly
rare occurrence!

BASIC 5 and TOOLKIT

Users of PREMIER's TOOLKIT should note that the two products are
completely compatible. However, RENUM will not renumber a BASIC 5
program containing >x, &GSx or &PRINTUSNG. These will have to be
renumbered manually (Use the FIND routine to make this quick and
simple.).

Locations used by BASIC 5 include the input buffer, $0011, $0012
and $00F0 - $00F3 in zero page for text formatting and temporary
pointers. Permanent pointers (including LL - see text) are held in
page 1 at $0134 - $013F.

Rev 1.2 8/80 Page 12

IMPORTANT NOTICE - PREMIER PUBLICATIONS products and printed
matter appertaining to the use thereof are copyright of PREMIER
PUBLICATIONS. Copying of the whole or in part in any medium, other
than for the personal use of the original retail purchaser is
strictly prohibited.

We are obliged to pursue an active policy against infringements of
our copyrights. PREMIER PUBLICATIONS offers a substantial reward
for information concerning copyright infringements.

GUARANTEE AND PRODUCT LIABILITY

Quality of materials and workmanship guaranteed. Claims under
guarantee must be accompanied by the program/diskette/EPROM.
Whilst every care has been taken in the preparation of this
product, PREMIER PUBLICATIONS will not be liable for claims of
loss or loss of profit, howsoever caused. It is the responsibility
of the purchaser to ensure suitability for purpose. This notice
does not affect the statutory rights of the original retail
purchaser.

BASIC 5 was commissioned by PREMIER PUBLICATIONS and written by P
RIHAN.

COPYRIGHT 1981 P RIHAN &
PREMIER PUBLICATIONS.

